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Abstract. Recent concern about the consequences of continuing increases in atmospheric CO2 as a key 15 

heat-trapping agent (USGCRP, 2017; IPCC, 2021) have prompted ocean experts to come together to discuss how to 16 
provide science-based solutions. Ocean alkalinity enhancement (OAE) is being considered not only as a ocean 17 
carbon dioxide removal (CDR) approach, but also as a potential way to mitigate ocean acidification. Over the last 18 
two decades, inter-laboratory comparisons have proven valuable in evaluating the reliability of methodologies 19 
associated with sampling and analysis of carbonate chemistry parameters, which have been routinely used in ocean 20 
acidification research (Bockmon and Dickson, 2015). Given the complexity of processes and mechanisms related to 21 
ecosystem responses to OAE, consolidating protocols to ensure compatibility across studies is fundamental for 22 
synthesis and upscaling analysis. This chapter provides an overview of best practice in OAE laboratory 23 
experimentation and facilitates awareness of the importance of applying standardized methods to promote data re-24 
use, inter-lab comparisons, and transparency. This chapter provides the reader with the tools to (1) identify the 25 
criteria to achieve the best laboratory practice and experimental design; (2) provide guidance on the selection of 26 
response variables for various purposes (physiological, biogeochemical, ecological, evolutionary) for inter-lab 27 
comparisons; (3) offer recommendation for a minimum set of variables that should be sampled and propose 28 
additional variables critical for different types of synthesis and upscaling; and (4) identify protocols for standardized 29 
measurements of response variables. 30 

 31 
1. Introduction 32 
Laboratory studies on ocean alkalinity enhancement (OAE) are intended to be reproducible, consistent and 33 

transparent to provide the scientific community and regulators with useful information to move the field forward and 34 
facilitate the development of safe guidelines. The current focus is on understanding ocean carbon dioxide removal 35 
(CDR) potential through the addition of various alkali via direct carbonate chemistry analysis and measuring 36 
impacts at various levels of biological organization (ecological, physiological, biochemical, molecular) of OAE 37 
approaches. The field of OAE faces a great diversity of challenges given the continuously evolving experimental 38 
methods, diverse approaches and emerging data availability that will undoubtedly provide new information and 39 
ideas to optimize best practice in laboratory experimentation. 40 

 41 
The rich insights obtained in ocean acidification research are key to supporting OAE studies. However, as 42 

crucial as it is to follow guidelines when designing laboratory experiments, it is equally important to acknowledge 43 
that there may be potential confounders and challenges which may not be accounted for in the guidelines. Being able 44 
to conduct quantitative laboratory intercomparisons will be critically dependent on identifying recommendations 45 
regarding experimental design, sample collection and data analysis. Important considerations include the source of 46 
alkalinity, rate of alkalinity addition, testing air-CO2-equilibrated versus non-equilibrated seawater, and the effect of 47 
ancillary variables (e.g., temperature) in multifactorial experiments which are known to yield complex and variable 48 
results (see the interactive effects of ocean acidification and warming - Harvey et al., 2013). Offering guidelines 49 
provided in this chapter should significantly improve the quality and impact of the OAE research, which is required 50 
to meet the identified societal need for research on OAE and other types of ocean CDR (NASEM, 2021). 51 
  52 

2. Lessons learned from ocean acidification research 53 
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 2 

An exploration of procedures, patterns and challenges associated with ocean acidification research has 54 
offered ideas on how to design rigorous and reproducible laboratory experiments that enable measuring and 55 
monitoring carbonate chemistry shifts and biological responses to ocean acidification (Cornwall and Hurd, 2016). In 56 
their study, 95% of the experimental work between 1993 and 2014 had interdependent or lacked replication in 57 
clearly defined treatments, or did not report sufficient methodological detail. More broadly, results from Wernberg 58 
et al. (2012) from marine climate change experiments between 2000 and 2009, reported that ~49% of the 59 
experiments had identifiable issues with their experimental procedures, and 91% of the experiments reported 60 
showed a lack of treatment replication or pseudo-replication. Amongst the studies, 9% included extreme/unrealistic 61 
treatments of temperature or pH far beyond worst case scenario projections (Wernberg et al., 2012) although 62 
‘extreme’ pH/alkalinity conditions may prove useful to define thresholds of tolerance and to constrain upper limits 63 
of alkalinity enhancement. Given the urgent need for laboratory data before conducting field trials, addressing these 64 
issues upfront is a necessary step. 65 

  66 
Like in ocean acidification research, careful attention should be paid to the advantages and disadvantages 67 

that concern the choices of dissolved inorganic carbon species to measure, and how error propagation will affect the 68 
calculated parameters (Martz et al., 2015). Moreover, dissolved organic matter (DOM) is known to contribute to 69 
alkalinity (Kim and Lee, 2009; Koeve et al., 2010) and therefore, care should be taken to the design of experiments, 70 
particularly when using natural seawater. 71 

 72 
While it is fairly straightforward to determine how individual changes in parameters influence chemical 73 

and biological responses, understanding impacts of multiple parameters (e.g., increased alkalinity and warming) can 74 
be challenging as they can interact in complex ways. Indeed, ocean acidification research revealed antagonistic, 75 
synergistic, and additive responses when studying ocean acidification and warming (Byrne and Przeslawski, 2013; 76 
Kroeker et al., 2013a; Harvey et al., 2015; Pistevos et al., 2016). Identifying tipping points and interactive effects 77 
when other parameters (e.g., temperature) are altered in seawater, in addition to alkalinity, is critical given the 78 
capacity to drive (otherwise unpredictable) shifts in species abundances, biodiversity and community composition 79 
(Crain et al., 2008; Darling and Côté, 2008; Galic et al., 2018).  80 

Box 1. Good standard practices 81 

·   Reproducibility. From the emerging OAE research (e.g., regarding the formation of secondary 82 
precipitates - see Montserrat et al., 2017 versus Fuhr et al., 2022; and Moras et al., 2022) and the ocean 83 
acidification literature (e.g., see Ridgwell et al., 2009), we have learned that similar approaches can 84 
lead to conflicting and unresolved outcomes. Without appropriate reporting of sample collection, 85 
methodology and data processing, it is challenging to re-analyze the data and reconcile the 86 
discrepancies. As the field emerges and evolves, it will be required to reevaluate early experiments and 87 
possibly re-analyze results with updated protocols. 88 
·   Defining inclusion and exclusion criteria. In order to reduce confounding covariates, attention 89 
must be paid to factors affecting flocculation, aggregation of particles (e.g., possibly impacted by 90 
dissolved organic matter increases after phytoplankton blooms), fluctuations in temperature, which 91 
affect mineral dissolution rates, and biological and physiological properties, including stage during the 92 
life cycle, trophic state, and seasonality, that affect the susceptibility of organisms to OAE (e.g., see 93 
Vandamme et al., 2015; Subhas et al., 2022).  94 
·   Establishing experimental controls. In OAE experimental designs, controls must be appropriately 95 
selected. These could include seawater without added alkalinity, seawater ± nutrients/food, treatments 96 
with and without the organisms tested. When mineral dissolution is too slow, an alternative analog that 97 
reproduces the basic chemistry is encouraged (for example, the use of salts and alkali; e.g., CaCl2 and 98 
Na2CO3 to mimic the effect of limestone-based mineral dissolution). Controls could also contain an 99 
alternative form of alkalinity that alters the seawater carbonate chemistry solely, without adding carbon 100 
or metals (e.g., NaOH). 101 
·   Basic biological responses. Studies on organisms’ physiological responses (e.g., growth, 102 
respiration, size, reproduction, photosynthesis and calcification) are recommended. These responses 103 
can be measured directly; for example, as uptake rates of solutes using traditional assays, mass 104 
spectrometric methods for indirect assessment of changes in elements, or molecular responses using 105 
markers of functional processes. For organisms that undergo development one must determine which 106 
stage of development (e.g., larval vs adult; vegetative vs gamete stage) to target. Also, when altering 107 
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more than one parameter, particular attention must be paid to potential confounding effects. Multi-108 
factorial experiments can be used as controls to explore the weight of each parameter.  109 

  110 
3. Seawater media preparation 111 
The different steps in experimental design are outlined in Table 1. The process starts with natural or 112 

artificially made seawater with or without nutrient additions. One must consider whether adding nutrients/food/prey 113 
is required; for example, whether exploring OAE impacts is intended in conjunction with specific scenarios, e.g., 114 
nutrient fertilization, specific stages of growth or population development, and the extent to which nutrient additions 115 
or any other basic manipulation of the environmental conditions might impact the interpretation of results. For OAE 116 
manipulations, autoclaving is discouraged given the alterations in carbonate chemistry, including loss of CO2, 117 
leading to a decrease in dissolved inorganic carbon and alterations in alkalinity (increase with increasing 118 
salinity/decrease with precipitation of carbonate) triggered by autoclaving. Filter-sterilization of seawater through 119 
small pore size filters (e.g., 0.22 µm filters) is required to remove particles and most bacteria, and produce the stock 120 
media where different manipulations are applied to create different alkalinity treatments. 121 

  122 
There are several approaches to simulating the addition of alkalinity that  capture different components of 123 

any manipulation experiment. The first could be viewed as testing the impact of instantaneous addition of alkalinity 124 
to seawater to mimic the impact on ecosystems at the point of deployment. The second involves aeration and 125 
equilibration with the atmosphere to explore the physico-chemical response to an equilibrium scenario. In the latter 126 
instance, the medium is aliquoted out to the experimental vessels/tanks where aeration is applied to promote air 127 
equilibration. Monitoring carbonate chemistry through time enables determining when equilibration of seawater 128 
with air occurs.  129 
 130 

4. Sources of alkalinity 131 
As yet, it is unclear what the optimal method or source of alkalinity enhancement may be in order to 132 

simulate the desired chemistry in seawater media. Proposed sources of alkalinity include silicate minerals (olivine, 133 
basalt), brucite, limestone and its derivatives (quicklime and portlandite), NaOH and mine tailings (NASEM, 2021; 134 
Nawaz et al., 2023). Given the slow dissolution kinetics of the minerals, generating alkaline solutions artificially is 135 
acceptable. For example, Gately et al. (2023) simulated alkalinity enhancement via a limestone-inspired solution by 136 
adding Na2CO3 and CaCl2 or its hydrated form (CaCl2H4O2) to seawater. Adding Na2CO3 raises TA and DIC in a 137 
2:1 ratio, with 2 moles of TA added by 2 conservative Na+ ions in Na2CO3, and 1 mole DIC added by CO3

2-. CaCl2 138 
does not raise alkalinity because it adds equal amounts of positive and negative conservative charge to the solution 139 
from Ca2+ and 2 x Cl-. However, it does raise the Ca in solution. 140 
 141 

Many possibilities for solid or liquid alkalinity additions are being considered (see chapter 3). While adding 142 
minerals as precursors of alkalinity can provide a source of potentially beneficial nutrients (e.g., silicate, iron, 143 
magnesium) (Hartmann et al. 2013), the possible toxic effect of metals such as nickel (Ni) (Montserrat et al., 2017), 144 
leached from olivine, is of concern. Therefore, cleaner sources such as NaOH might perhaps be preferable in that 145 
respect as it can be considered ‘clean’ (although its production generates HCl, which is currently processed as a 146 
source of hydrogen or as a cleaning agent - see Thiel et al., 2017). Indeed, the use of NaOH is currently gaining 147 
attention as a preferred choice of alkali given that (a) it does not contain residues and the amount of Na added to 148 
seawater is very small relative to the large background of NaCl in seawater; and (b) it does not require the 149 
environmental footprint of minerals proposed for OAE, which necessitate an expansion of mining operations, 150 
transportation, and industrial processing, which are energetically costly and can lead to air pollution.  151 

 152 
The addition of NaOH and other forms of alkalinity to seawater cause initial spikes in pH and drops in CO2 153 

that can be balanced to a steady state via bubbling with air (Table 1). It may be that large manipulations of alkalinity 154 
are needed to elicit a measurable and reproducible response, and the required alkalinity concentrations will be 155 
refined with more detailed modeling but, based on current information, reasonable targets for alkalinity 156 
manipulations are 3000-4000 μmol kg-1 (Renforth and Henderson, 2017). ~4000 μmol/kg is the concentration of 157 
alkalinity expected at locations in the ocean where alkalinity is initially added, and ~3000 μmol/kg is the 158 
concentration of alkalinity expected once ocean circulation has dispersed the alkalinity over a larger area (Renforth 159 
and Henderson, 2017). Alkalinity thresholds for the formation of precipitates will need to be determined for each 160 
experimental approach and condition. 161 
 162 
 163 
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 164 
Table 1. Experimental design considerations for OAE experimentation. Medium preparation: the seawater can be 165 
obtained from coastal or open ocean sites and supplemented with nutrients using f/2 or variations of f/2 media; see 166 
Guillard and Ryder, 1962). Alternatively, seawater media can be prepared from artificial recipes (e.g., Aquil 167 
medium; Morel et al., 1979). Media must be sterilized by filtration rather than through autoclaving and nutrients can 168 
be added, typically from stock solutions. When possible, moderate aeration should be applied. Types of alkali 169 
include adding pulverized mineral directly to the media and promote dissolution physically (e.g., by stirring); 170 
dissolving the mineral separately and filter out any particles remaining in the media before experimentation; 171 
dissolving salts to mimic the chemistry of the dissolved alkali (e.g., to mimic limestone dissolution, dissolve CaCl2 172 
and NaCO3, which result in higher dissolution rates); and adding liquid alkali such as NaOH. Establishing time 173 
series prior to the experiment to determine time frames regarding length of experiment, frequency of sampling, etc. 174 
is recommended. Experimental design: in addition to optimizing reproducibility by designing enough replication 175 
and test the reproducibility of the method, researchers should remain engaged with respect to protocols and 176 
experimental design to avoid artifacts and undesirable side effects of methodology. When possible, ensure 177 
equilibration of seawater gasses with air and define experimental time frames to test impacts under conditions 178 
representative of the site of deployment (where limited gas exchange occurs) and those representative of steady 179 
state/equilibrated conditions. Although most laboratory experiments address short term impacts, chronic effects can 180 
be tested in long term incubations. Sampling and analysis: the parameters to be considered should allow inter-181 
lab comparisons, address functional properties of organisms (e.g., calcification, silicification, particulate organic 182 
carbon) and fulfill needs to improve model parameterizations. It is important to establish well defined time windows 183 
for sampling as well as frequency of sampling to capture physical, chemical and biological properties of the studied 184 
system. It is advisable to limit the time of sample storage to minimize observations that might confound 185 
interpretation of results (e.g., reverse weathering during storage). Stock solutions (e.g., nutrient and alkalinity 186 
solutions) must be stored in the appropriate vessels to avoid contamination from leachates coming out of the vessel 187 
itself (e.g., silicate contamination from solutions stored in borosilicate containers). Detection limits and accuracy 188 
and precision should be offered for each protocol. 189 
 190 

 191 
 192 

5. Impacts of impurities/metal leachates 193 
An important consideration in OAE studies is the impact of metals leached from dissolving minerals and 194 

their ecotoxicological potential on marine organisms. For example, although some elements (e.g., Fe and Mg) 195 
leached out of minerals could be beneficial micronutrients, the potentially toxic effect of metals such as nickel (Ni) 196 
(Montserrat et al., 2017), leached from olivine, is of concern. Diverse responses have however been reported with 197 
respect to Ni and it appears that some cyanobacteria rely on Ni more than other photosynthetic organisms (see 198 

Natural/artificial seawater

Filter sterilization (e.g., 0.22 um)

+/- nutrient addition

+/- aeration

Type of alkalinity treatments

• Pulverized mineral

• Pre-dissolved mineral

• Dissolved salts

• Liquid alkali

Pre-equilibrated vs non-equilibrated 

seawater with air phase

• Carbonate chemistry

• Flocculation/aggregation

• Biology

Medium preparation Experiment design Sampling and analysis

Best actions to maximize confidence 

• Within study replication and 

pseudo-replication

• Coordinated networks (teams 

sharing progress to decide on best 

protocols)  

Preliminary time series of TA and 

carbonate chemistry

• Define experimental time frames

• Assess TA upper limits 

• Expand the upper limits to address 

impacts at site of deployment

Abrupt vs chronic biology impacts

• Short-term tests (acclimation)

• Long-term experiments 
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• Inter-lab comparisons
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• Select time window for sampling
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biological features

Limit storage to minimize artifacts

Identify and report key analytical 

parameters affecting error

• Detection limits

• Measurement accuracy/precision

• Identify any impact of 
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uncertainties 
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Dupont et al., 2008, 2010; Ho, 2013; Guo et al., in review). A recent laboratory study testing olivine leachates 199 
(containing Si, Ni, Mg, Fe, Cr and Co) in phytoplankton revealed either positive or neutral physiological short term 200 
responses in all treatments (Hutchins et al., 2023). However, one should consider the role of long-term experiments 201 
to examine organismal and population adaptation of metal exposure as well as potential bioaccumulation and 202 
biomagnification impacts in consumers. 203 

  204 
Another important consideration is the effect of pH on metal speciation as pH and a decrease in the 205 

concentration of OH– and CO3
2– ions can affect the solubility, adsorption, toxicity, and rates of redox processes of 206 

metals in seawater thus affecting the interactions of metals with marine organisms (Millero et al., 2009). When 207 
dissolving minerals in seawater one must consider nonstoichiometry and incomplete dissolution perhaps as a result 208 
of dissolution of impurities, precipitation of secondary minerals, or preferential leaching of elements from the 209 
mineral surface (Brantley, 2008, NASEM, 2021). The formation of secondary precipitates has been observed in 210 
several studies exploring the dissolution of olivine (Fuhr et al., 2022), and limestone derivatives (Moras et al., 2022; 211 
Gately et al., 2023; Hartmann et al., 2023). Using an alkaline solution rather than reactive alkaline particles has been 212 
recommended to reduce carbonate formation unless seawater critical supersaturation levels are exceeded (Hartmann 213 
et al., 2023). In addition of runaway CaCO3 precipitation, a condition where more alkalinity is removed than initially 214 
added, which reduces the OAE CO2 uptake efficiency, more complex precipitates containing Fe, Si, and P were 215 
observed in a study using a limestone-inspired OAE approach revealing that mineral precipitation caused by 216 
seawater alkalinization can also remove inorganic nutrients from solution (Gately et al., 2023). Identifying 217 
thresholds of alkalinity addition (e.g., <1000 μmol kg-1) and timely analysis of samples, i.e., avoiding long storage 218 
times has been recommended (Subhas et al., 2022). 219 

 220 
Maintaining alkalinity following OAE is critically dependent on the carbonate saturation state, its temporal 221 

evolution, and particle surface processes (Hartmann et al., 2023). To minimize the loss of alkalinity and maximize 222 
alkalinity enhancement, Hartmann et al (2023) propose the application of an alkaline solution in CO2 equilibrium 223 
with the atmosphere and/or solutions with tested saturation levels to avoid loss of alkalinity. A separate reservoir 224 
where alkaline solutions have been prepared is desirable for testing upper limits of alkalinity addition and 225 
identifying saturation thresholds to minimize precipitation. 226 
 227 

6. Experimental replication 228 
Several approaches are applied experimentally to address replication (Fig. 1). For example, simple 229 

replication involves an experimental unit (containing replicates) per treatment where responses to the treatment are 230 
measured [defined by Hurlbert (2009) as the “evaluation unit”] and each experimental unit is treated as independent. 231 
In temporal replication, multiple measurements are made through time (temporal trends) on the same experimental 232 
unit and treated as independent experimental units of a treatment. Sacrificial replication involves the use of multiple 233 
experimental units per treatment (for example, a time series) and multiple replicates within each experimental unit, 234 
but the replicates are treated as the experimental units during statistical analysis. Each approach has distinct 235 
strengths and limitations, and the choice of the approach depends on the scientific questions and the extent of the 236 
risk of error propagation. For example, one might choose sacrificial replication for certain chemical manipulations 237 
that require sampling from vessels with comparable volumes but choose instead temporal replication for monitoring 238 
the evolution of a microbial culture or the physiology of fish over time under certain alkalinity conditions. To 239 
improve comparability between future work, it may be useful to agree on a desirable minimum set of variables with 240 
the understanding that more variables might be added as new results emerge (Table 2). 241 

  242 
Technical variability amongst experimental methods ranging from sampling and sampling processing can 243 

propagate through the various steps before analysis; for example, chemical analysis and molecular work/sequencing 244 
can be significant and error-prone (e.g., Catlett et al., 2020). The use of blanks every time sampling is conducted is 245 
essential for detecting contamination originating from the experiment itself or from the adjacent environment (e.g., 246 
exogenous sources such as surface contamination, flagellates in droplets through aeration, etc.). When possible, 247 
several barriers to contamination are recommended (e.g., filters at various points of aeration). Additionally, for 248 
samples (other than those preserved for analysis of alkalinity, dissolved inorganic carbon analysis or pH) that are 249 
kept for further analyses, contaminants that grow during shipping or while samples are being stored can sometimes 250 
be reduced by freezing at -80 °C, when possible, or by using the appropriate preservatives when storing at ambient 251 
temperature is required (e.g., ethanol, paraformaldehyde, glutaraldehyde). Attention should be paid to the material of 252 
vessels where samples and solutions are stored; for example, avoid borosilicate bottles to store nutrients or alkalinity 253 
solutions as silicate can be leached into solution.  254 
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 255 
7. Testing impacts on marine organisms 256 
In addition to testing the biological responses to abrupt enhanced alkalinity exposure, marine organisms can 257 

be exposed to enhanced alkalinity conditions after equilibration of seawater pCO2 with that in the air-phase 258 
following alkalinity addition. Ideally, aeration should be maintained to ensure O2 levels required by marine animals 259 
and also maintain stable pCO2 levels in the alkalinity perturbation experiments. Depending on the organism tested (a 260 
few organisms do not tolerate aeration in tanks), aeration might or might not remain for the duration of the 261 
experiment. The vessels used in OAE experiments might not be traditional tanks used in aquaria, but rather any type 262 
of container adequate for different type of organisms (e.g., culture flasks for bacteria, conical flasks, carboys for 263 
phytoplankton, open tanks for echinoderms and fish) with air lines to introduce aeration in the media. When running 264 
multifactorial experiments (e.g., temperature and alkalinity), designing an analysis plan and concrete experimental 265 
questions to interrogate can help determine the sample size and minimum number of treatments. 266 

  267 
Standardizing technical details in protocols, sampling, sample processing and analyses are crucial to control 268 

for variation introduced by reagents, sample storage and other factors. The collection and curation of metadata 269 
associated with each sample are critical for data interpretation, inter-lab comparison and drawing conclusions to 270 
move forward with planning of research field deployments. For studies involving more than one level of biological 271 
organization; i.e., grazing experiments, competition experiments, particular attention should be paid to designing 272 
adequate controls. 273 

 274 
The effects of OAE and its interactions with other parameters might differ depending on the duration of the 275 

experiments. Indeed, in ocean acidification studies, compensatory metabolic pathways appear to take longer to 276 
become established, depending on factors such as the exposure history (Calosi et al., 2013) and phase of the life 277 
cycle phase (Hettinger et al., 2012). In a study testing ocean acidification and warming, biological effects were not 278 
detectable in the short term, but were rather manifested over time (Godbold and Solan, 2013). It was suggested that 279 
species responses to seasonal variations in environmental conditions might explain these differences that, depending 280 
upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing (Godbold and 281 
Solan, 2013).  282 

 283 
8. Choice of species 284 
Criteria for selection of species should include whether the organism is amenable to laboratory 285 

experimentation, the amount of background knowledge on the organism’s physiology and biogeochemistry, 286 
ecological importance of the organism, and local and global impacts. Considerations when selecting organisms 287 
should also include geographic origin (e.g., temperate/tropical/polar) and ecosystem type (e.g., benthic vs pelagic). 288 
Special attention should be paid to those species that (1) significantly impact or respond biogeochemically to 289 
chemical changes caused by alkalinity addition (e.g., possibly calcifiers, photosynthetic organisms); (2) keystone 290 
organisms (e.g., corals, salmon, sea stars, toxin-producing phytoplankton); and (3) organisms/functional groups of 291 
known vulnerability to climate change (corals, urchins). 292 

 293 
Calcium carbonate producing organisms are particularly interesting because of their known sensitivity to 294 

changes in carbonate chemistry and because any alteration in their abundance or calcification rates could have 295 
implications in the CDR potential of alkalinization. Mineralogical composition of carbonate containing organisms 296 
might possibly be affected by alkalinization. For example, recent meta-analysis of studies exploring the effects of 297 
the carbonate chemistry shifts caused by ocean acidification revealed effects on shell state, development and growth 298 
rate (Figuerola et al., 2021). Biomineralization studies should explore species-specific responses driven by 299 
mineralogical composition (calcite, aragonitic, high/low Mg calcite) of their tests, shells and skeletons. 300 
Environmental and biological control on calcification particularly any changes in the Mg content in calcite driven by 301 
the use of brucite and other minerals potentially adding Mg to calcite must be reported as calcite with a high Mg 302 
content is less stable in aqueous solutions (Bischoff et al., 1987).  303 
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 304 
 305 
Figure 1. Examples of experimental laboratory design with regards to replication. Each experimental unit contains 306 
replicates and different treatments are represented by colors. Each experimental unit is treated as an independent 307 
experiment except in the sacrificial replication approach, where each replicate is treated statistically as an 308 
experimental unit. 309 

  310 
9. Species interactions 311 
For the most part, laboratory experiments are aimed at elucidating the physiological performance and 312 

biogeochemical responses of organisms (rather than communities) to physical or chemical alterations in the 313 
environment although responses in ecological fitness could be drawn from laboratory experiments (Table 2). 314 
Importantly, environmental change can affect species differently and interactions between species that are sensitive 315 
to environmental change can function as ecological leverage points through which modest changes in abiotic 316 
conditions are amplified into large changes in marine ecosystems (see Kroeker and Sanford, 2022). These 317 
interactions can be measured as competition, predation, and symbiotic relationships (mutualism, commensalism and 318 
parasitism) that can vary along environmental gradients that cause stress (Stachowick, 2001; Bruno et al., 2003; Ma 319 
et al., 2023). 320 

  321 
Results from ocean acidification mesocosm experiments revealed that nutrient-limited phytoplankton 322 

communities appeared to be more responsive to changing carbonate chemistry than those having access to high 323 
inorganic nutrient concentrations (see Paul et al., 2015; Sala et al., 2015; Bach et al., 2016). These observations 324 
indicate that trophic state might play a role in the susceptibility of organisms to the changes in carbonate chemistry 325 
driven by alkalinization. Also, competition between species has been found to be altered under various carbonate 326 
chemistry conditions (see Kroeker et al., 2013b), which merits a focus on experiments that address preferential 327 
selection of taxonomic groups under different alkalinity conditions. Although applying nutrient-limiting conditions 328 
is experimentally challenging and requires complex experimental design, understanding how species succession and 329 
community composition might respond to alkalinization could in part be addressed in a laboratory context. 330 

 331 
It should be noted that laboratory experiments can provide insights into the short and long term 332 

physiological responses of selected marine biota to OAE which can provide mechanistic insight into immediate and 333 
long-term impacts on particular biological pathways and key cellular/organismal attributes. Community scale and 334 
ecosystem natural selection responses can only be afforded by experiments in the natural environment either from 335 
manipulated perturbation or observations of responses to known events. 336 

  337 

Experimental units (three replicates each)

Simple 

replication

Temporal 

replication

Sacrificial 

replication

Control + Alkalinity moderate + Alkalinity high

Treatments

Tim
e

https://doi.org/10.5194/sp-2023-7

Discussions

Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



 8 

10. Stress responses 338 
Central to OAE laboratory experimentation is our ability to measure any possible stress induced by 339 

alkalinization and learn about underlying mechanisms behind acclimation to the chemical alterations of seawater 340 
caused by OAE.  In addition to measuring basic functions (growth rates, size, reproductive success), sensitivities to 341 
alkalinization might be organism-specific and possibly trophic level-specific (e.g., Voigt et al. 2003, Gilman et al. 342 
2010) although most laboratory experiments do not address trophic levels. Similarly, measuring adaptation and 343 
diversity in acclimation between and within related organisms is a challenge and the ocean acidification literature 344 
revealed how important it is to pay attention to diversity of responses (see Kroeker et al., 2010). 345 

  346 
Stress is often measured as a reduction in organismal performance or fitness caused by environmental 347 

change (Schulte, 2014). In addition to these general physiological or behavioral responses, markers of stress such as 348 
oxidative stress can be used as a measure of stress. It is well established that the production of reactive oxygen 349 
species (ROS) can increase due to environmental stress including ocean acidification (Lesser, 2006; Lushchak, 350 
2011). Many biomarkers are commonly used for studying oxidative stress in marine organisms (Cailleaud et al., 351 
2007; Vehmaa et al., 2013) and an increase in ROS and superoxide dismutase and catalase activities have been 352 
reported in marine animals under stress (von Weissenberg et al., 2022). Heat shock proteins (HSPs) are also used as 353 
molecular markers of stress because of their abundance, high sensitivity to stress and being ubiquitously expressed 354 
(Gross, 2004). Among all HSPs, HSP70s are the most studied as a strong up-regulation of HSP70 production has 355 
been demonstrated broadly with the exception of Hydra oligactis (Bosch et al., 1998), and some Antarctic animals 356 
(La Terza et al. 2001; Place and Hofmann, 2005). 357 

  358 
11. Effect of OAE on the uptake rates of nutrients 359 
The uptake rate of carbon and other nutrients that results in the observed standing stocks of particulate 360 

matter involve many physiological processes that are sensitive to changes in inorganic carbon chemistry and pH 361 
(Matsumoto et al., 2020). Chemical changes following addition of alkalinity might alter physiological processes that 362 
represent sources (calcification, respiration) and sinks (photosynthesis) of CO2. One should also pay attention to the 363 
reciprocal interactions between these physiological processes and the chemically altered environment as even minor 364 
changes in biological processes, or in the balance between them, can have implications for the CDR potential and 365 
biodiversity. 366 

One of the most unknown effects of OAE is the fate of biological fixation rates of different elements (e.g., 367 
carbon and N2 fixation rates). Such rates are measured in batch cultures and bioassay (mixed natural community) 368 
incubation experiments (LaRoche et al., 2010). While the objective of culture experiments is to understand the effect 369 
of environmental parameters on the elemental uptake by particular species in a lab, bioassay experiments have to 370 
deal with a rather complex species interaction in the field or after subsampling of mesocosms in a lab (Hutchins et 371 
al., 2007; Paul et al., 2016). Labelled/enriched (~99%) stable isotope tracers are the most used method for rate 372 
estimation these days. The rate calculation is based on isotopic mass balance equation (Montoya et al., 1996):  373 

C or N2 fixation rate = [POM] (
𝐴𝑓−𝐴0

𝐴𝑒−𝐴0
)                       (1)   374 

where, [POM] is the concentration of element of interest (C or N) at the end of the incubation. Likewise, Af 375 
= atom% in POM at the end of incubation, A0= atom% in POM at the start of the incubation, t is time of incubation, 376 
and Ae = isotopic enrichment in the dissolved form after the tracer addition at the start of the incubation 377 

This equation/method is sensitive to analytical protocols in routine incubations (White et al., 2020), and 378 
might be even more sensitive in OAE incubations due to the issue of gas equilibration in tightly capped bottles. While 379 
the C substrate-based incubations are supposedly straightforward in incubations, N2 gas incubation face a challenge 380 
of under-equilibration leading to underestimation of rates. But OAE incubations can produce larger errors in the C 381 
fixation estimates as well. This is because NaHCO3 is generally used as a C substrate. To estimate 13C isotopic 382 
enrichment after tracer addition (term in equation 1), a DIC value is normally assumed (as it does not change much at 383 
a given region). But OAE will have increased (or fluctuating) DIC during the experimental period, and thus a measured 384 
DIC value should be used in the enrichment factor calculation. Likewise, slow dissolution of N2 gas poses a challenge 385 
to accurately estimating isotopic enrichment factor (Ae), and it is advisable to measure this term. 386 
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Although the analytical precision of C and N isotopes is of order of sub permil levels, many times the low 387 
reported rates (<0.1 nmol N L-1 d-1) are questionable (Gradoville et al., 2017).  Therefore, the detection limit of rate 388 
measurements and its proper reporting is a major concern. To overcome this, following the prorogation of analytical 389 
and statistical errors in each term of mass balance equation (1), Gradoville et al. (2017) have proposed to report 390 
minimal quantifiable rates (MQR) and the limit of detection (LOD) in triplicate samples. We ought to follow these 391 
protocols in the rates measured in OAE. In addition, we must make sure to sample/filter sufficient water to achieve 392 
35 µg N and 150 µg C in the sample for reliable mass spectrometric measurements.   393 

12. Portable Incubation Experiments 394 
Incubation experiments that simulate regional in situ alkalinity deployments will be an important step in 395 

understanding the potential impacts of alkalinization on marine organisms prior to field testing. These incubation 396 
experiments, which simulate alkalinity additions under diverse local in situ parameters (e.g., temperature, irradiance, 397 
nutrients), can be accomplished using portable incubators onboard research vessels (i.e., deck incubations) or 398 
outdoors, at coastal research facilities (Fig. 2). 399 

 400 
When designing a portable incubator, one should use durable, clear acrylic (or plexiglass) – the thickness of 401 

the acrylic should be considered in relation to the volume of seawater to be contained within the incubator.  If one is 402 
interested in studying photosynthetic organisms at specific depths, high-quality light filters should be attached to the 403 
acrylic to adjust photosynthetically active radiation (PAR) within the incubator (e.g., Fig. 2). To maintain in situ 404 
seawater temperatures, an inflow port can supply seawater to the incubator. Effort should be taken to ensure 405 
movement of seawater quickly through the incubator to maintain a uniform temperature, as well as to reduce biofilm 406 
buildup on the outside of culture vessels (e.g., polycarbonate carboys). An approach that one may use to accomplish 407 
this is to install a false bottom within the incubator to promote conveyor-like flow between the seawater inflow and 408 
outflow ports [e.g., see design in (Marcel et al., 1994)].  409 

 410 
Natural seawater should be used when simulating in situ alkalinization. When collecting natural seawater, 411 

one must consider how biological interactions (e.g., grazing) could confound results and filter accordingly.  Portable 412 
incubation experiments require instantaneous alkalinity additions; thus, careful consideration should be given to the 413 
method of alkalinity addition used. Filter-sterilized stock solutions (e.g., 1 M NaOH) are easy to transport, but 414 
flocculation commonly occurs upon alkalinity addition (Subhas et al., 2022). Another option is to add pulverized 415 
minerals directly to the treatment vessels; however, this method may be inefficient as mineral dissolution rates can 416 
be slow (e.g., Fuhr et al., 2022), leading some researchers to mimic mineral dissolution instead (Gately et al., 2023). 417 

 418 
Once the vessels have been placed into the tank, they should be secured – especially for deck incubations at 419 

sea – to prevent damage (and potentially contamination) due to the motion of the vessel. Additionally, for deck 420 
incubations at sea, durable stainless-steel frames should be used to lift the incubator off the deck to allow ample 421 
water flow beneath it; doing so will minimize damage to, and the potential loss of, the incubator in heavy seas. One 422 
should also minimize the potential for vessel contamination while they are secured within the incubator: carefully 423 
wrap caps and vent ports with parafilm and avoid submerging carboys with spigots in running seawater. 424 

 425 
As in the laboratory experiments described above, vessels within the incubator should ideally be aerated 426 

during experimentation. Careful attention should be given to securing the air supply including gas tanks and air 427 
pumps. In addition to chemical and biological parameters, PAR and temperature data should be collected throughout 428 
the experimental timeframe using applicable sensors and data loggers. The best practices outlined in Box 1 should 429 
be adhered to when planning portable incubation experiments. 430 

 431 
 432 
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 433 
  434 

Figure 2. A, B: Portable incubator with blue filters (Lee Filters #068) to adjust photosynthetically active radiation 435 
(PAR). A scalar PAR sensor (LI-COR) can be observed within the incubator (A, right side). C: for reference, 436 
laboratory experiment using aeration and sacrificial replication. Images were taken by James Gately (A, C) and 437 
Sylvia Kim (B). 438 
 439 
 440 
 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 
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      449 
     Table 2. Examples of responses to ocean alkalinity enhancement to be measured in experimental 450 

manipulation studies. Knowledge need (M=medium, H=high; measurement mode (MM=manual mode; S=sensor; 451 
SD=sensor in development). A minimum variable set is highlighted in bold. Selected references are provided as 452 
examples of protocols. 453 

 454 
 455 

Type of response Variable Knowledge need Measurement 

mode 

Protocol reference 

Basic chemistry 

variables 

Carbonate 

chemistry 

parameters 

{[HCO3
-], [CO3

2-], 

[CO2], pCO2, } 

H MM, S, SD Dickson (2010); 

Bockmon and 

Dickson (2015)  

Dissolved organic 

matter 

M MM Marañón et al. 

(2004); Sharp et al. 

(1995)  

Particulate organic 

matter (C, N, P) 

H MM Verardo et al. 

(1990); Hilton et al. 

(1996); Pujo-Pay 

and Raimbault 

(1994); Fu et al. 

(2008) 

Trace metals (in 

solution and in 

aggregates) 

M MM Guo et al. (2022); 

Hutchins et al. 

(2023) 

Biologically and 

biogeochemically 

relevant elements 

(e.g., Si, Mg:Ca) 

M MM Brzezinski (1985); 

Lebrato et al. (2020) 

Physiological Basic physiology 

(respiration, 

photosynthetic, 

growth rates; 

morphometric 

measurements) 

H MM, S Iglesias-Rodriguez 

et al. (2008); Kelly 

et al. (2013); Farrell 

et al. (2009) 

Functional group-

specific physiology 

(e.g., calcification, 

silicification, 

nitrification/denitri

fication, toxin 

production) 

H MM, S Cohen et al. (2017); 

DeCarlo et al. 

(2019)   

Stress physiology 

[e.g., heat shock 

proteins, oxidative 

stress-related 

M MM O’Donnell et al. 

(2009); Moya et al. 

(2015); Trimborn et 

al. (2017) 
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proteins, 

photosynthetic 

stress (shifts in 

quantum yield), 

morphological 

alterations (e.g., cyst 

formation) 

Incidence of 

pathogens and 

disease 

H MM Asplund et al. 

(2014)  

Reproduction Spawning success M MM Liu et al. (2011)  

Size of offspring M MM Cao et al. (2018); 

Johnson (2022); 

Albright et al. 

(2010)  

Sperm motility M MM Esposito et al. 

(2020); Havenhand 

et al. (2008) 

Epigenetic analysis M MM Li et al. (2018); Lee 

et al. (2022) 

Fecundity M MM Maranhão and 

Marques (2003); 

Thor and Dupont 

(2015) 

Hatching success M MM Saigusa (1992)   

Species interactions Competition for 

resources 

M MM Connell et al. 

(2013); Guo et al. 

(2022) 

Predation and 

species interactions 

M MM Greatorex and 

Knights (2023); 

Bacus and Kelley 

(2023); Mitchell et 

al. (2023) 

Synergistic/antagoni

stic effects of other 

environmental 

parameters 

M MM, S  Gerhard et al. 

(2023); Khalil et al. 

(2023) 

  456 
 457 
 458 
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