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Abstract. Recent concern about the consequences of continuing increases in atmospheric CO2 as a key 15 
heat-trapping agent (USGCRP, 2017; IPCC, 2021) have prompted ocean experts to come together to 16 
discuss how to provide science-based solutions. Ocean alkalinity enhancement (OAE) is being considered 17 
not only as an ocean carbon dioxide removal (CDR) approach, but also as a potential way to mitigate ocean 18 
acidification. Over the last two decades, inter-laboratory comparisons have proven valuable in evaluating 19 
the reliability of methodologies associated with sampling and analysis of carbonate chemistry parameters, 20 
which have been routinely used in ocean acidification research. Given the complexity of processes and 21 
mechanisms related to ecosystem responses to OAE, consolidating protocols to ensure compatibility across 22 
studies is fundamental for synthesis and upscaling analysis. This chapter provides an overview of best 23 
practice in OAE laboratory experimentation and facilitates awareness of the importance of applying 24 
standardized methods to promote data re-use, inter-lab comparisons, meta-analysis and transparency. This 25 
chapter provides the reader with the tools to (1) identify the criteria to achieve the best laboratory practice 26 
and experimental design; (2) provide guidance on the selection of response variables for various purposes 27 
(physiological, biogeochemical, ecological, evolutionary) for inter-lab comparisons; (3) offer 28 
recommendation for a minimum set of variables that should be sampled and propose additional variables 29 
critical for different types of synthesis and upscaling; and (4) identify protocols for standardized 30 
measurements of response variables. Key recommendations include ensuring reproducibility through 31 
appropriate experimental design and replication, assessing alkalinity thresholds for secondary precipitates 32 
for each experimental approach and condition, using recommended targets of alkalinity (3000-4000 μmol 33 
kg-1) and levels exceeding these concentrations to mimic responses at the site of deployment/non 34 
equilibrium and use intermediate alkalinity levels to identify potential nonlinear responses, and establish 35 
the appropriate experimental design to address questions at specific levels of organization (chemical, 36 
physiological, molecular) and assuming different scenarios (e.g., mimicking impacts at the site of 37 
deployment in a non-equilibrated system versus steady state scenarios in an equilibrated system. 38 
 39 
1. Introduction 40 
Laboratory studies need to be reproducible, consistent and transparent (Box 1) to provide the scientific 41 

community and regulators with useful information to move the field forward and facilitate the development of safe 42 
guidelines. Based on numerous modeling studies, ocean alkalinity enhancement (OAE) appears to be a promising 43 
ocean carbon dioxide removal (CDR) approach, with the likely beneficial side effect of mitigating ocean 44 
acidification (Burt et al., 2021; Hartmann et al., 2023; NASEM, 2022; Wang et al., 2023). Laboratory experiments 45 
are urgently needed to determine the CDR potential of various OAE methods as well as OAE impacts at various 46 
levels of biological organization (ecological, physiological, biochemical, molecular). The emerging empirical 47 
studies are offering insight while revealing gaps in our knowledge of the mechanisms governing OAE and its effect 48 
on marine biota (e.g., Ferderer et al., 2022; Gately et al., 2023; Yang et al., 2023). For example, the conditions 49 
preventing or limiting the formation of secondary precipitates and the pros and cons of various alkali are still under 50 
debate. Given that empirical work on OAE is still in its infancy and that some of the assumptions based on modeling 51 
studies remail untested, this chapter is an evolving document that will be updated as the OAE community continues 52 
to release results. 53 
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 54 
Laboratory manipulations allow making observations in a highly controlled environment using model 55 

species or subsets of populations (selected species or populations). Results are generally considered highly 56 
reproducible (Box 1) and therefore laboratory manipulations are viewed as a necessary step to either generate 57 
hypotheses to test in the field or vice versa, when field experimentation is an option. Under the latter, field 58 
observations guide the laboratory experiments to validate field results in well-known systems and under tightly 59 
controlled conditions. 60 

 61 
A number of approaches – batch, semi-continuous and continuous cultures – have been used to address 62 

diverse OAE settings (e.g., at the point of deployment, under steady state conditions, air- versus non air-equilibrated 63 
seawater) and various biological scenarios (specific stages of growth, life cycle, and to explore abrupt/short term 64 
versus long term responses to manipulations). In some cases, specific stages during the life cycle of organisms can 65 
be selected (for example, larval versus adult stage; sexual versus asexual phase). Time series laboratory experiments 66 
are less restricted than mesocosm experiments with regards to the duration of experiments because they tend to be 67 
‘cleaner’, with relatively low bacteria numbers and generally without biological confounding factors (viruses, 68 
predation, competition for resources, etc.). Therefore, the cause–effect relationships are easier to elucidate as 69 
conditions and organisms can be tested in relative isolation, and there is the possibility of extensive replication.  70 

 71 
The main limitation of laboratory experiments is that the dynamic phenomena occurring in the natural 72 

environment cannot be captured in the laboratory and, therefore, results may not be applicable to real life scenarios. 73 
For example, in laboratory experiments the influence of mixing processes, conditions governing particle flocculation 74 
or the linkage to higher levels of biological organization (e.g., predation) are difficult to discern (see Forbes and 75 
Calow, 2002; Martin et al., 2014). Portable lab experiments, such as deck incubations abord research vessels or 76 
outdoor incubations, with some influence from the local environment (e.g., diurnal alterations of light, water flow 77 
through from the coast to maintain in-situ temperature) as well as community-level mesocosm experiments are the 78 
conduit to field manipulations. These large-scale community experimental tanks address the importance of the 79 
physico-chemical conditions, space, density-dependent effects, biotic interactions and complexity of natural 80 
environments in their response to OAE manipulations\buffering, or boosting, the direct effects of environmental 81 
stress on organisms (Paiva et al., 2021). 82 

 83 
This chapter provides best practice guidelines in OAE laboratory experimentation and offers 84 

recommendations to enable data re-use, inter-lab comparisons, and transparency. We offer recommendations 85 
regarding (1) the criteria to achieve the best laboratory practice and experimental design; (2) the selection of 86 
response variables for various purposes (physiological, biogeochemical, ecological, evolutionary) for inter-lab 87 
comparisons; (3) a minimum set of variables that should be sampled and additional variables critical for different 88 
types of synthesis and upscaling; and (4) protocols for standardized measurements of response variables. 89 

 90 
 91 
2. Lessons learned from ocean acidification research 92 
The rich insights obtained in ocean acidification research are key to supporting OAE studies. However, as 93 

crucial as it is to follow guidelines when designing laboratory experiments, it is equally important to acknowledge 94 
that there may be potential confounders and challenges that may not be accounted for in the guidelines. Being able 95 
to conduct quantitative laboratory intercomparisons, including interspecies comparisons, will be critically dependent 96 
on identifying recommendations regarding experimental design, sample collection and data analysis. Important 97 
considerations include the source of alkalinity, rate of alkalinity addition, testing air-CO2-equilibrated versus non-98 
equilibrated seawater, and the effect of ancillary variables (e.g., temperature) in multifactorial experiments which 99 
are known to yield complex and variable results (e.g., see the interactive effects of ocean acidification and warming 100 
- Harvey et al., 2013). The guidelines provided in this chapter should significantly improve the quality and impact of 101 
the OAE research, which is required to meet the identified societal need for research on OAE and other types of 102 
ocean CDR (NASEM, 2021). 103 
  104 

An exploration of procedures, patterns and challenges associated with ocean acidification research has 105 
offered ideas on how to design rigorous and reproducible laboratory experiments that enable measuring and 106 
monitoring carbonate chemistry shifts and biological responses to ocean acidification (Cornwall and Hurd, 2016). 107 
Cornwall and Hurd (2016) reported that 95% of the experimental work between 1993 and 2014 had interdependent 108 
or lacked replication in clearly defined treatments, or did not report sufficient methodological detail. More broadly, 109 
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results from Wernberg et al. (2012) from marine climate change experiments between 2000 and 2009, reported that 110 
~49% of the experiments had identifiable issues with their experimental procedures, and 91% of the experiments 111 
reported showed a lack of treatment replication or pseudo-replication. Amongst the studies, 9% included 112 
extreme/unrealistic treatments of temperature or pH far beyond worst case scenario projections (Wernberg et al., 113 
2012) although ‘extreme’ pH/alkalinity conditions may prove useful to define thresholds of tolerance and upper 114 
limits of alkalinity enhancement, and to understand underlying physiological mechanisms of acclimation to 115 
alkalinization. While the urgent need for field trials requires careful consideration of treatment levels, in order to 116 
maximize the insight gained from OAE experiments, testing conditions outside the year 2100 IPCC CO2 emission 117 
scenarios are encouraged. These conditions outside worst case scenario projections will further our knowledge on 118 
the mechanisms governing biological (e.g., shell production) and abiotic (e.g., particle aggregation, secondary 119 
precipitation) responses to applied chemical CDR.  120 

  121 
Like in ocean acidification research, careful attention should be given to the advantages and disadvantages 122 

that concern the choices of dissolved inorganic carbon species to measure, and how error propagation will affect the 123 
calculated parameters (Martz et al., 2015). Moreover, dissolved organic matter (DOM) is known to contribute to 124 
alkalinity (Kim and Lee, 2009; Koeve et al., 2010) although the presence of strong acidic groups in organic matter 125 
can decrease net alkalinity (Hu, 2020; Middelburg et al., 2020). Depending on the type of system under 126 
investigation, attention should be paid to whether to apply titration alkalinity (typically used in ocean studies) versus 127 
the charge balance approach (often used in freshwater systems, with high concentrations of dissolved organic 128 
matter) (see Middlebufg et al., 2020). Results from ocean acidification mesocosm experiments focused on 129 
phytoplankton revealed that nutrient-limited communities appeared to be more responsive to changing carbonate 130 
chemistry than those having access to high inorganic nutrient concentrations (see Paul et al., 2015; Sala et al., 2015; 131 
Bach et al., 2016). These observations indicate that trophic state might play a role in the susceptibility of organisms 132 
to the changes in carbonate chemistry driven by alkalinization. Also, competition between species has been found to 133 
be altered under various carbonate chemistry conditions (see Kroeker et al., 2013a), which merits a focus on 134 
experiments that address preferential selection of taxonomic groups under different alkalinity conditions. Although 135 
applying nutrient-limiting conditions is experimentally challenging, understanding how species succession and 136 
community composition might respond to alkalinization could in part be addressed in a laboratory context. 137 

 138 
While it is fairly straightforward to determine how individual changes in parameters influence chemical 139 

and biological responses, understanding impacts of multiple parameters [e.g., increased alkalinity and warming, 140 
increased alkalinity and resource availability (nutrients, light, prey)] can be challenging as they can interact in 141 
complex ways. Indeed, ocean acidification research revealed antagonistic, synergistic, and additive responses when 142 
studying ocean acidification and warming (Byrne and Przeslawski, 2013; Kroeker et al., 2013b; Harvey et al., 2015; 143 
Pistevos et al., 2016). Identifying tipping points and interactive effects when other parameters (e.g., temperature) are 144 
altered in seawater, in addition to alkalinity, is critical given the capacity of these parameters to drive (otherwise 145 
unpredictable) shifts in species abundances, biodiversity and community composition, physiological outputs, 146 
survival, and reproduction (Crain et al., 2008; Darling and Côté, 2008; Galic et al., 2018).  147 

Box 1. Criteria for best laboratory practice 148 

·   Reproducibility. From the emerging OAE research (e.g., regarding the formation of secondary 149 
precipitates - see Montserrat et al., 2017 versus Fuhr et al., 2022; and Moras et al., 2022) and the ocean 150 
acidification literature (e.g., see Ridgwell et al., 2009), we have learned that similar approaches can 151 
lead to conflicting and unresolved outcomes. Without appropriate reporting of sample collection, 152 
methodology and data processing, it is challenging to re-analyze the data and reconcile the 153 
discrepancies. As the field emerges and evolves, it will be required to reevaluate early experiments and 154 
possibly re-analyze results with updated protocols. 155 
·   Defining inclusion and exclusion criteria. In order to reduce confounding covariates, attention 156 
must be paid to factors affecting flocculation, aggregation of particles (e.g., possibly impacted by 157 
dissolved organic matter increases after phytoplankton blooms), fluctuations in temperature, which 158 
affect mineral dissolution and precipitation rates, and biological and physiological properties, 159 
including stage during the life cycle, trophic state, and seasonality, that affect the susceptibility of 160 
organisms to OAE (e.g., see Vandamme et al., 2015; Subhas et al., 2022).  161 
·   Establishing experimental controls. In OAE experimental designs, controls must be appropriately 162 
selected. These could include seawater without added alkalinity, seawater ± nutrients/food, treatments 163 
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with and without the organisms tested. When mineral dissolution is too slow, an alternative analog that 164 
reproduces the basic chemistry is encouraged (for example, the use of salts and alkali; e.g., CaCl2 and 165 
Na2CO3 to mimic the effect of limestone-based mineral dissolution). Controls could also contain an 166 
alternative form of alkalinity that alters the seawater carbonate chemistry solely, without adding carbon 167 
or trace metals (e.g., NaOH). 168 
·   Basic biological responses. Studies on organisms’ physiological responses (e.g., growth, 169 
respiration, size, reproduction, photosynthesis and calcification) are recommended. These responses 170 
can be measured directly; for example, as uptake rates of solutes using traditional assays, mass 171 
spectrometric methods for indirect assessment of changes in elements, or molecular responses using 172 
markers of functional processes. Rates of growth and calcification can also be measured by changes in 173 
dry mass or buoyant mass in many types of organisms, especially in macroinvertebrates and 174 
macroalgae (see Dodge et al., 1984; Davis, 1989; Sanders et al., 2018). For organisms that undergo 175 
development one must determine which stage of development (e.g., larval vs adult; vegetative vs 176 
gamete stage) to target. Also, when altering more than one parameter, particular attention must be paid 177 
to potential confounding effects. Multi-factorial experiments can be used to explore the weight of each 178 
parameter.  179 

  180 
3. Seawater media preparation and manipulation of carbonate chemistry 181 
The different steps in experimental design are outlined in Table 1. The process starts with natural or 182 

artificially made seawater with or without nutrient additions. One must consider whether adding nutrients/food/prey 183 
is required; for example, whether exploring OAE impacts is intended in conjunction with specific scenarios, e.g., 184 
nutrient fertilization, specific stages of growth or population development, and the extent to which nutrient additions 185 
or any other basic manipulation of the environmental conditions might impact the interpretation of results. For OAE 186 
manipulations where sterilization is required for the experimental set up, autoclaving is discouraged given the 187 
alterations in carbonate chemistry, including loss of CO2, leading to a decrease in dissolved inorganic carbon and 188 
alterations in alkalinity (increase with increasing salinity/decrease with precipitation of carbonate) triggered by 189 
autoclaving. Instead, filter-sterilization of seawater through small pore size filters (e.g., 0.22 µm filters) is required 190 
to remove particles and most bacteria, and produce the stock media where different manipulations are applied to 191 
create different alkalinity treatments. 192 

  193 
There are several approaches to simulating the addition of alkalinity that  capture different components of 194 

any manipulation experiment. The first approach could be testing the impact of instantaneous addition of alkalinity 195 
to seawater to mimic the impact on seawater chemistry and ecosystems at the point of deployment. The second 196 
involves aeration and equilibration with the atmosphere to explore the physico-chemical response to a staeady state/ 197 
equilibrated scenario. In the latter instance, the medium is aliquoted out to the experimental vessels/tanks where 198 
aeration is applied to promote air equilibration. Monitoring carbonate chemistry through time enables determining 199 
when equilibration of seawater with air occurs. 200 
 201 
Table 1. Experimental considerations for OAE experimentation.  202 
Medium preparation: the seawater can be obtained from coastal or open ocean sites. Filtered seawater or, when 203 
appropriate (e.g., when growing autotrophic organisms), seawater supplemented with nutrients; for example, using 204 
f/2 or variations of f/2 media (see Guillard and Ryder, 1962) will be used for growing organisms. Seawater media 205 
can also be prepared from artificial recipes (e.g., Aquil medium; Morel et al., 1979) when specific compounds or 206 
elements need to be altered in seawater. Media must be sterilized by filtration rather than through autoclaving and 207 
nutrients can be added, typically from stock solutions. When possible, moderate aeration should be applied. Types 208 
of alkali include adding pulverized mineral directly to the media and promote dissolution physically (e.g., by 209 
stirring); dissolving the mineral separately and filter out any particles remaining in the media before 210 
experimentation; dissolving salts to mimic the chemistry of the dissolved alkali (e.g., to mimic limestone 211 
dissolution, dissolve CaCl2 and NaCO3, which result in higher dissolution rates); and adding liquid alkali such as 212 
NaOH. Establishing time series prior to the experiment to determine time frames regarding length of experiment, 213 
frequency of sampling, etc. is recommended. Experimental design: in addition to optimizing reproducibility by 214 
designing enough replication and test the reproducibility of the method, researchers should remain engaged with 215 
respect to protocols and experimental design to avoid artifacts and undesirable side effects of methodology. When 216 
possible, ensure equilibration of seawater gasses with air and define experimental time frames to test impacts under 217 
conditions representative of the site of deployment (where limited gas exchange occurs) and those representative of 218 
steady state/equilibrated conditions. Although most laboratory experiments address short term impacts, chronic 219 
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effects can be tested in long term incubations. Sampling and analysis: the parameters to be considered should allow 220 
inter-lab comparisons, address functional properties of organisms (e.g., calcification, silicification, particulate 221 
organic carbon) and fulfill needs to improve model parameterizations. It is important to establish well defined time 222 
windows for sampling as well as frequency of sampling to capture physical, chemical and biological properties of 223 
the studied system. It is advisable to limit the time of sample storage to minimize observations that might confound 224 
interpretation of results (e.g., reverse weathering during storage). Stock solutions (e.g., nutrient and alkalinity 225 
solutions) must be stored in the appropriate vessels to avoid contamination from leachates coming out of the vessel 226 
itself (e.g., silicate contamination from solutions stored in borosilicate containers). Detection limits and accuracy 227 
and precision should be offered for each protocol. 228 
 229 

 230 
 231 

3.a Sources of alkalinity 232 
As yet, it is unclear what the optimal method or source of alkalinity enhancement may be in order to 233 

simulate the desired chemistry in seawater media. Proposed sources of alkalinity include silicate minerals (olivine, 234 
basalt), brucite, limestone and its derivatives (quicklime and portlandite), NaOH and mine tailings (NASEM, 2021; 235 
Nawaz et al., 2023). Given the slow dissolution kinetics of the minerals, generating alkaline solutions artificially is 236 
acceptable. For example, Gately et al. (2023) simulated alkalinity enhancement via a limestone-inspired solution by 237 
adding Na2CO3 and CaCl2 or its hydrated form (CaCl2H4O2) to seawater. Adding Na2CO3 raises TA and DIC in a 238 
2:1 ratio, with 2 moles of TA added by 2 conservative Na+ ions in Na2CO3, and 1 mole DIC added by CO3

2-. CaCl2 239 
does not raise alkalinity because it adds equal amounts of positive and negative conservative charge to the solution 240 
from Ca2+ and 2 x Cl-. However, it does raise the calcium in solution and therefore the saturation state of the 241 
seawater with respect to CaCO3. 242 
 243 

Many possibilities for solid or liquid alkalinity additions are being considered (see chapter 3). While adding 244 
minerals as precursors of alkalinity can provide a source of potentially beneficial nutrients (e.g., silicate, iron, 245 
magnesium) (Hartmann et al. 2013), the possible toxic effect of metals leached out of minerals, an example being 246 
nickel (Ni) leached from olivine (Montserrat et al., 2017) is of concern. The use of NaOH is currently gaining 247 
attention given that its environmental footprint is perceived as smaller than the mining of alkaline minerals, which 248 
necessitate an expansion of mining operations, transportation, and industrial processing, which are energetically 249 
costly and can lead to air pollution. Additionally, the amount of Na added to seawater is very small relative to the 250 
large background of NaCl in seawater.  251 

 252 
The addition of NaOH and other forms of alkalinity to seawater cause initial spikes in pH and a drop in 253 

aqueous CO2 that can be balanced to a steady state via bubbling with air (Table 1). Determining abiotic and biotic 254 

Natural/artificial seawater

Filter sterilization (e.g., 0.22 um)

+/- nutrient addition

+/- aeration

Type of alkalinity treatments

• Pulverized mineral

• Pre-dissolved mineral

• Dissolved salts

• Liquid alkali

Pre-equilibrated vs non-equilibrated 

seawater with air phase

• Carbonate chemistry

• Flocculation/aggregation

• Biology

Medium preparation Experiment design Sampling and analysis

Best actions to maximize confidence 

• Within study replication and 

pseudo-replication

• Coordinated networks (teams 

sharing progress to decide on best 

protocols)  

Preliminary time series of TA and 

carbonate chemistry

• Define experimental time frames

• Assess TA upper limits 

• Expand the upper limits to address 

impacts at site of deployment

Abrupt vs chronic biology impacts

• Short-term tests (acclimation)

• Long-term experiments 

(adaptation)

Criteria for key parameters

• Inter-lab comparisons

• Functional properties

• Model parameterization

Sampling frequency and timing

• Select time window for sampling

• Identify sampling frequency that 

captures key chemical, physical or 

biological features

Limit storage to minimize artifacts

Identify and report key analytical 

parameters affecting error

• Detection limits

• Measurement accuracy/precision

• Identify any impact of 

experimental design on 

uncertainties 
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responses to the initial spikes in pH and drops in CO2 is an important step in addition to understanding responses 255 
under steady-state conditions. It may be that large manipulations of alkalinity are needed to elicit a measurable and 256 
reproducible response, and the required alkalinity concentrations will be refined with more detailed modeling but, 257 
based on current information, proposed targets for alkalinity manipulations are 3000-4000 μmol kg-1 (Renforth and 258 
Henderson, 2017). ~4000 μmol/kg is the concentration of alkalinity expected at locations in the ocean where 259 
alkalinity is initially added, and ~3000 μmol/kg is the concentration of alkalinity expected once ocean circulation 260 
has dispersed the alkalinity over a larger area (Renforth and Henderson, 2017). Alkalinity thresholds for the 261 
formation of precipitates will need to be determined for each experimental approach and condition. It is however 262 
recommended that researchers consider using alkalinities exceeding the recommended targets, and utilize 263 
intermediate treatments (e.g., 2000, 4000, 7000 μatm/kg seawater) rather than just low/high treatments, in order to 264 
identify potential nonlinear and even parabolic responses. This approach led to important and unexpected outcomes 265 
in ocean acidification research (e.g., Ries et al., 2009). 266 
 267 

3.b Impacts of impurities/metal leachates 268 
An important consideration in OAE studies is the impact of metals leached from dissolving minerals and 269 

their ecotoxicological potential on marine organisms. For example, although some elements (e.g., Fe and Mg) 270 
leached out of minerals could be beneficial micronutrients, the potentially toxic effect of metals such as nickel (Ni) 271 
(Montserrat et al., 2017), leached from olivine, is of concern. Diverse responses have however been reported with 272 
respect to Ni and it appears that some cyanobacteria rely on Ni more than other photosynthetic organisms (see 273 
Dupont et al., 2008, 2010; Ho, 2013). A recent laboratory study testing olivine leachates (containing Si, Ni, Mg, Fe, 274 
Cr and Co) in phytoplankton revealed either positive or neutral physiological short term responses in all treatments 275 
(Hutchins et al., 2023). However, one should consider the role of long-term experiments to examine organismal and 276 
population adaptation of metal exposure as well as potential bioaccumulation and biomagnification impacts in 277 
consumers. 278 

  279 
Another important consideration is the effect of pH on metal speciation as pH and a change in the 280 

concentration of OH– and CO3
2– ions can affect the solubility, adsorption, toxicity, and rates of redox processes of 281 

metals in seawater thus altering the interactions of metals with marine organisms (Millero et al., 2009). When 282 
dissolving minerals in seawater one must consider nonstoichiometry and incomplete dissolution perhaps as a result 283 
of dissolution of impurities, precipitation of secondary minerals, or preferential leaching of elements from the 284 
mineral surface (Brantley, 2008, NASEM, 2021). The formation of secondary precipitates has been observed in 285 
several studies exploring the dissolution of olivine (Fuhr et al., 2022), and limestone derivatives (Moras et al., 2022; 286 
Gately et al., 2023; Hartmann et al., 2023). Using an alkaline solution rather than reactive alkaline particles has been 287 
recommended to reduce carbonate precipitation unless seawater critical supersaturation levels are exceeded 288 
(Hartmann et al., 2023). In addition, runaway CaCO3 precipitation, a condition where more alkalinity is removed 289 
than initially added, reduces the OAE CO2 uptake efficiency. More complex precipitates containing Fe, Si, and P 290 
were observed in a study using a limestone-inspired OAE approach revealing that mineral precipitation caused by 291 
seawater alkalinization can also remove inorganic nutrients from solution (Gately et al., 2023).  292 

 293 
Maintaining alkalinity following OAE is critically dependent on the carbonate saturation state, its temporal 294 

evolution, and particle surface processes (Hartmann et al., 2023). To minimize the loss of alkalinity and maximize 295 
alkalinity enhancement, Hartmann et al (2023) propose the application of an alkaline solution in CO2 equilibrium 296 
with the atmosphere and/or solutions with tested saturation levels to prevent a further increase in supersaturation, 297 
and the precipitation of carbonate `to avoid loss of alkalinity. A separate reservoir where alkaline solutions have 298 
been prepared is desirable for testing upper limits of alkalinity addition and identifying saturation thresholds to 299 
minimize precipitation. 300 
 301 

4. Experimental design 302 
 303 

4.a Experimental replication 304 
Replication is important to determine if results are reproducible although one must consider that when results are so 305 
dependent on precise experimental conditions that replicability is needed for reproducibility, the result may be 306 
unique and potentially less relevant than a phenomenon that can be reproduced by a variety of independent, non-307 
identical approaches (see Casadevall and Fang, 2010). A number of experimental designs can be used to achieve 308 
adequate statistical replication (Fig. 1). For example, simple replication involves experimental units (each of the 309 
replicates) per treatment where all the conditions are manipulated independently but in the same way for that 310 
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treatment and where responses to the treatment are measured [defined by Hurlbert (2009) as the “evaluation unit”] 311 
and each experimental unit can be considered as independent. In temporal replication, multiple measurements are 312 
made through time (temporal trends) on the same experimental unit. Sacrificial replication involves the use of 313 
multiple sampling times per treatment (for example, a time series) and multiple experimental units at the time of 314 
samplin. Each approach has distinct strengths and limitations, and the choice of the approach depends on the 315 
scientific questions and the extent of the risk of error propagation. For example, one might choose sacrificial 316 
replication for certain chemical manipulations that require sampling from vessels with comparable volumes but 317 
choose instead temporal replication for monitoring the evolution of a microbial culture or the physiology of fish over 318 
time under certain alkalinity conditions.  319 

  320 
 321 

 322 

 323 
 324 
Figure 1. Examples of experimental laboratory design with regards to replication. Each treatment, represented by a 325 
colour, contains experimental units contains (replicates). Each experimental unit is treated as an independent 326 
experiment except in the sacrificial replication approach, where each replicate is treated statistically as an 327 
experimental unit. 328 
 329 

4.b Preliminary experiments 330 
In addition to testing the biological responses to abrupt enhanced alkalinity, marine organisms can be 331 

exposed to enhanced alkalinity conditions after equilibration of seawater pCO2 with that in the air-phase following 332 
alkalinity addition. Ideally, aeration should be maintained to ensure O2 levels required by marine animals and also 333 
maintain stable pCO2 levels in the alkalinity perturbation experiments. Depending on the organism tested (a few 334 
organisms do not tolerate aeration in tanks), aeration might or might not remain for the duration of the experiment 335 
(Table 1). The vessels used in OAE experiments might not be traditional tanks used in aquaria, but rather any type 336 
of container adequate for different type of organisms (e.g., culture flasks for bacteria, conical flasks, carboys for 337 
phytoplankton, open tanks for echinoderms and fish) with air lines to introduce aeration in the media. When running 338 
multifactorial experiments (e.g., temperature and alkalinity), designing an analysis plan and concrete experimental 339 
questions to interrogate can help determine the sample size and minimum number of treatments. 340 

 341 
An analog to OAE is the use of lime soda and other alkali to combat acid rain, which has caused deleterious 342 

changes in freshwater ecosystems for more than half a century in northern Europe and North America. To reverse 343 
some of these’ changes a number of governmental and nongovernmental teams have applied lime and other 344 
neutralizing compounds to streams, rivers, lakes, and catchments in the most affected or most ecologically valuable 345 
regions (see Clair and Hindar, 2005). Another example is the effects of seawater buffering mainly by addition of 346 
Na2CO3 addition) utilized by the commercial shellfish industry (e.g., Ragg et al., 2019), which showed a broad 347 
improvement in larval health compared to undersaturated waters. 348 

 349 
  350 

Simple replication

Tim
e

Temporal replication Sacrificial replication

Time



 8 

Standardizing technical details in protocols, sampling, sample processing and analyses are crucial to control 351 
for variation introduced by reagents, sample storage and other factors. The collection and curation of metadata 352 
associated with each sample are critical for data interpretation, inter-lab comparison and drawing conclusions to 353 
move forward with planning field deployments for research purposes. For studies involving more than one level of 354 
biological organization; i.e., grazing experiments, competition experiments, particular attention should be paid to 355 
designing adequate controls. 356 

 357 
The effects of OAE and its interactions with other parameters might differ depending on the duration of the 358 

experiments. Indeed, in ocean acidification studies, compensatory metabolic pathways appear to take longer to 359 
become established, depending on factors such as the exposure history (Calosi et al., 2013) and phase of the life 360 
cycle (Hettinger et al., 2012). In a study testing ocean acidification and warming, biological effects were not 361 
detectable in the short term, but were rather manifested over time (Godbold and Solan, 2013). It was suggested that 362 
species responses to seasonal variations in environmental conditions might explain these differences that, depending 363 
upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing (Godbold and 364 
Solan, 2013). 365 
 366 

4.c Recommended minimum set of variables to report 367 
To improve comparability between future work, we recommend a minimum set of variables with the 368 

understanding that more variables might be added as new results emerge (Table 2). We recommend to measure and 369 
report at least the following variables (shown in bold in Table 2).  370 
• At least alkalinity and one more parameter of the carbonate system must be measured to calculate key carbonate 371 

chemistry parameters including bicarbonate and carbonate ions, CO2, pH and the saturation state of CaCO3 372 
polymorphs. This information is critical to determine chemical alterations in the dissolved inorganic carbon 373 
system as a result of alkalinization. 374 

• Resource availability (e.g., prey, dissolved inorganic nutrients, light) are needed to monitor the growth 375 
conditions.  376 

• Particulate organic carbon (POC), nitrogen (PON), phosphorous (POP) are required to learn about trends in 377 
biomass production and stoichiometry. 378 

• Basic physiological properties (respiration, photosynthesis) should be measured to inform biogeochemical 379 
models and learn about biologically-mediated fluxes of elements. 380 

• Some functional group-specific properties, particularly those involving mineral precipitation (calcification, 381 
silicification) and those with environmental effects (e.g., toxin production) and with climate-relevant impacts 382 
(nitrogen fixation/denitrification) in context specific cases. 383 

• Size of offspring and fecundity rates can be used as indicators of transgenerational plasticity and adaptation to 384 
alkalinization.  385 
 386 
Other variables are important in the exploration of specific questions such as how does seawater alkalinization 387 

affect biodiversity?; how does metal bioavailability change under increased pH?; what is the role of organic 388 
alkalinity in coastal systems? The variables and protocols listed in this chapter is not exhaustive and only provides a 389 
proxy sample largely based on the literature on climate impacts on marine systems and ocean acidification. 390 

 391 
 392 
 393 
 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 

      404 
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     Table 2. Examples of responses to ocean alkalinity enhancement to be measured in experimental 405 
manipulation studies. Knowledge need (M=medium, H=high; measurement mode (MM=manual mode; S=sensor; 406 
SD=sensor in development). A minimum variable set is highlighted in bold. Selected references are provided as 407 
examples of protocols. 408 

 409 
 410 

Type of response Variable Knowledge need Measurement 

mode 

Protocol reference 

Chemical and 

environmental  

Carbonate 

chemistry 

parameters 

{[HCO3
-], [CO3

2-], 

[CO2], pCO2, } 

H MM, S, SD Dickson (2010); 

Bockmon and 

Dickson (2015)  

Dissolved organic 

matter 

M MM Marañón et al. 

(2004); Sharp et al. 

(1995)  

Dissolved 

inorganic nutrients 

H MM Worsfold et al. 

(2013) 

Resource 

availability (prey, 

light) 

H MM, S Lawrence et al. 

(2017) 

Particulate organic 

matter (C, N, P) 

H MM Verardo et al. 

(1990); Hilton et al. 

(1996); Pujo-Pay 

and Raimbault 

(1994); Fu et al. 

(2008) 

Trace metals (in 

solution and in 

aggregates) 

M MM Guo et al. (2022); 

Hutchins et al. 

(2023) 

Biologically and 

biogeochemically 

relevant elements 

(e.g., Si, Mg:Ca) 

M MM Brzezinski (1985); 

de Nooijer et al. 

(2017) 

Physiological Basic physiology 

(respiration, 

photosynthetic, 

growth rates; 

morphometric 

measurements) 

H MM, S Iglesias-Rodriguez 

et al. (2008); Kelly 

et al. (2013); Farrell 

et al. (2009) 

Some functional 

group-specific 

physiology (e.g., 

calcification, 

silicification, 

nitrification/denitri

H MM, S Cohen et al. (2017); 

DeCarlo et al. 

(2019)   
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fication, toxin 

production) 

Physiological stress 

[e.g., heat shock 

proteins, oxidative 

stress-related 

proteins, 

photosynthetic 

stress (shifts in 

quantum yield), 

morphological 

alterations (e.g., cyst 

formation) 

M MM O’Donnell et al. 

(2009); Moya et al. 

(2015); Trimborn et 

al. (2017) 

Incidence of 

pathogens and 

disease 

H MM Asplund et al. 

(2014)  

Reproduction Spawning success M MM Liu et al. (2011)  

Size of offspring M MM Cao et al. (2018); 

Johnson (2022); 

Albright et al. 

(2010)  

Sperm motility M MM Esposito et al. 

(2020); Havenhand 

et al. (2008) 

Epigenetic analysis M MM Li et al. (2018); Lee 

et al. (2022) 

Fecundity M MM Maranhão and 

Marques (2003); 

Thor and Dupont 

(2015) 

Hatching success M MM Saigusa (1992)   

Species interactions Competition for 

resources 

M MM Connell et al. 

(2013); Guo et al. 

(2022) 

Predation and 

species interactions 

M MM Greatorex and 

Knights (2023); 

Bacus and Kelley 

(2023); Mitchell et 

al. (2023) 
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Synergistic/antagoni

stic effects of other 

environmental 

parameters 

M MM, S  Gerhard et al. 

(2023); Khalil et al. 

(2023) 

  411 
 412 
4.d Type of experiments 413 
Laboratory experiments can be designed to both address short term responses and to explore the longer-414 

term adaptation to chronic exposure to enhanced alkalinity conditions. Filtered natural seawater should be used, 415 
when possible, in incubations unless artificial seawater is required (for example, when studying the effect of metal 416 
concentrations).  Short term manipulations involve the use of batch, semi-continuous and continuous incubation 417 
experiments. In batch incubation experiments, all resources are provided at the beginning of the incubation, without 418 
further addition and sampling takes place during a short time period (hours, days, weeks). Only gases and alkali can 419 
be added during the course of the experiment. When biological processes are measured, a phase during the life cycle 420 
(e.g., larva/adult; vegetative cells/gametes) or growth (healthy, exponentially-growing/resource-limited, stationary 421 
growing organisms /senescent organisms) is typically targetted. Sampling is conducted until the nutrients are 422 
consumed and beyond if decaying populations are the focus of the investigation.  423 

 424 
Given that resources (light, nutrients) are the limiting factor in batch incubation experiments, the organisms 425 

are in the exponential growth phase for a limited time period. To expand sampling and replication during the 426 
exponential growth phase, resupply of nutrients using a semi-continuous culturing approach can prevent 427 
food/nutrients from becoming a limiting factor. When the studied organism is phototrophic, one must ensure 428 
subculturing (microbial cultures) or appropriate arrangement or organisms to prevent light limitation. The advantage 429 
of semi-continuous culturing is that it allows investigating trends over extended time periods, increase replication 430 
and higher yield. Generally, the resource is added manually or pumped from the nutrient supply vessel into the 431 
culture vessel during exponential growth or when specific conditions are met (e.g., when a certain biomass 432 
concentration is reached).  433 

 434 
In continuous cultures, the rate of addition of nutrient is controlled to maintain steady state cell growth. 435 

This system is known as chemostat, where typically, a volume of culture medium is added and the same volume is 436 
removed from the growing culture. A challenge with this type of ‘bioreactors’ is that, over long time periods, they 437 
can be more susceptible to microbial contamination and long-term phenotypic and genotypic variance in the cultures 438 
(Reusch, 2013). 439 

 440 
Portable incubation experiments that simulate regional in situ alkalinity deployments are an important step 441 

in understanding seawater alkalinization and its impact on marine organisms prior to field testing. This type of 442 
incubation experiments, which simulate alkalinity additions under diverse local in situ parameters (e.g., temperature, 443 
irradiance, nutrients), can be accomplished using portable incubators onboard research vessels (i.e., deck 444 
incubations) or outdoors, at coastal research facilities (Fig. 2). 445 

 446 
When studying photosynthetic organisms high-quality light filters should be attached to the acrylic tank to 447 

adjust photosynthetically active radiation (PAR) within the incubator (e.g., Fig. 2). To maintain in situ seawater 448 
temperatures, an inflow port can supply seawater to the incubator. Effort should be taken to ensure movement of 449 
seawater quickly through the incubator to maintain a uniform temperature.  450 

 451 
When collecting natural seawater, one must consider how biological interactions (e.g., grazing) could 452 

confound results and filter accordingly.  Unlike laboratory experiment, that allow for seawater-air phase CO2 453 
equilibration, portable incubation experiments require instantaneous alkalinity additions; thus, careful consideration 454 
should be given to the method of alkalinity addition used. When adding liquid alkalinity, e.g., solutions (e.g., 1 M) 455 
of NaOH one must consider that flocculation commonly occurs upon alkalinity addition (Subhas et al., 2022). 456 
Adding pulverized minerals directly to the treatment vessels is another option although this method may yield 457 
incomplete dissolution or slow dissolution  (e.g., Fuhr et al., 2022) with undesirable effects including secondary 458 
precipitation, particle aggregation and detrimental biological impacts (NASEM, 2022). Some researchers have opted 459 
for mimicking mineral dissolution instead (see Gately et al., 2023). As in the traditional laboratory experiments 460 
described above, vessels within the incubator should ideally be aerated during experimentation. In addition to 461 
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chemical and biological parameters, PAR and temperature data should be collected throughout the experimental 462 
timeframe through discrete sampling or semi-continuously using sensors and data loggers. The best practices 463 
outlined in Box 1 should be adhered to when planning portable incubation experiments. Effort should be taken to 464 
position the incubator in a way that avoids confounding factors such as light contamination (e.g., from the ship). 465 
 466 
5. Sampling and analysis 467 
 468 

Technical variability amongst experimental methods ranging from sampling and sample processing can 469 
propagate through the various steps before analysis; for example, chemical analysis and molecular work/sequencing 470 
can be error-prone (e.g., Catlett et al., 2020). The use of blanks every time sampling is conducted is essential for 471 
detecting contamination originating from the experiment itself or from the adjacent environment (e.g., exogenous 472 
sources such as surface contamination, flagellates in droplets through aeration, etc.). When possible, several barriers 473 
to contamination are recommended (e.g., filters at various points of aeration). Additionally, for samples (other than 474 
those preserved for analysis of alkalinity, dissolved inorganic carbon analysis or pH) that are kept for further 475 
analyses, contaminants that grow during shipping or while samples are being stored can sometimes be reduced by 476 
freezing at -80 °C, when possible, or by using the appropriate preservatives when storing at ambient temperature is 477 
required (e.g., ethanol, paraformaldehyde, glutaraldehyde). Attention should be paid to the material of vessels where 478 
samples and solutions are stored; for example, avoid borosilicate bottles to store nutrients or alkalinity solutions as 479 
silicate can be leached into solution.  480 

 481 
Establishing time series prior to the experiment to determine time frames regarding the appropriate length 482 

of the experiment and frequency of sampling is recommended. It is important to establish well defined time 483 
windows for sampling as well as frequency of sampling to capture physical, chemical and biological properties of 484 
the studied system. It is advisable to limit the time of sample storage to minimize observations that might confound 485 
interpretation of results (e.g., reverse weathering during storage) (Subhas et al., 2022). 486 

 487 
5.a Criteria for key parameters 488 
For the most part, laboratory experiments are aimed at elucidating the physiological performance and 489 

biogeochemical responses of organisms (rather than communities) to physical or chemical alterations in the 490 
environment although responses in ecological fitness could be drawn from laboratory experiments (Table 2). 491 
Importantly, environmental change can affect species differently and interactions between species that are sensitive 492 
to environmental change can function as ecological leverage points through which modest changes in abiotic 493 
conditions are amplified into large changes in marine ecosystems (see Kroeker and Sanford, 2022). These 494 
interactions can be measured as competition, predation, and symbiotic relationships (mutualism, commensalism and 495 
parasitism) that can vary along environmental gradients that cause stress (Stachowick, 2001; Bruno et al., 2003; Ma 496 
et al., 2023). 497 

 498 
Criteria for selection of species should include whether the organism is amenable to laboratory 499 

experimentation, the amount of background knowledge on the organism’s physiology and biogeochemistry, 500 
ecological importance of the organism, and local and global impacts. Considerations when selecting organisms 501 
should also include geographic origin (e.g., temperate/tropical/polar) and ecosystem type (e.g., benthic vs pelagic). 502 
Special attention should be paid to those species that (1) significantly impact or respond biogeochemically to 503 
chemical changes caused by alkalinity addition (e.g., possibly calcifiers, photosynthetic organisms); (2) keystone 504 
organisms (e.g., corals, salmon, sea stars, toxin-producing phytoplankton); and (3) organisms/functional groups of 505 
known vulnerability to climate change (corals, urchins). 506 

 507 
Calcium carbonate producing organisms are particularly interesting because of their known sensitivity to 508 

changes in carbonate chemistry and because any alteration in their abundance or calcification rates could have 509 
implications in the CDR potential of alkalinization. Mineralogical composition of carbonate containing organisms 510 
might possibly be affected by alkalinization. For example, recent meta-analysis of studies exploring the effects of 511 
the carbonate chemistry shifts caused by ocean acidification revealed effects on shell state, development and growth 512 
rate (Figuerola et al., 2021). Biomineralization studies should explore species-specific responses driven by 513 
mineralogical composition (calcite, aragonitic, high/low Mg calcite) of their tests, shells and skeletons. 514 
Environmental and biological control on calcification particularly any changes in the Mg content in calcite driven by 515 
the use of brucite and other minerals potentially adding Mg to calcite must be reported as calcite with a high Mg 516 
content is less stable in aqueous solutions (Ries et al., 2016). Empirical studies have shown that the Mg/Ca ratio of 517 
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Mg-calcite producing organisms generally varies proportionally with seawater Mg/Ca (e.g., Ries, 2004; Ries, 2006) 518 
and therefore particular attention should be paid to the Mg content (and solubility) of biomineralized calcite. The 519 
addition to proposed Ca and Mg containing minerals - Ca(OH)2 (slaked lime), Mg(OH)2 (brucite), CaCO3 520 
(limestone) or (Mg,Ca)CO3 (dolomite) - will alter the Mg/Ca ratio of the seawater. An extensive body of literature 521 
reports biogenic and abiotic precipitation of low-Mg calcite when seawater Mg/Ca falls within the calcite stability 522 
field (seawater molar Mg/Ca < 2) and the biogenic and abiogenic precipitation of aragonite and high-Mg calcite 523 
when seawater Mg/Ca falls within the aragonite stability field (seawater molar Mg/Ca > 2) (Ries, 2010).  Thus, 524 
modification of local seawater Mg/Ca ratios by OAE has the potential to favor aragonite and high-Mg calcite 525 
organisms if seawater Mg/Ca is increased, and low-Mg calcite organisms if seawater Mg/Ca is decreased. This is an 526 
important area of future OAE research. 527 
 528 

Central to OAE laboratory experimentation is our ability to measure any possible stress induced by 529 
alkalinization and learn about underlying mechanisms behind acclimation to the chemical alterations of seawater 530 
caused by OAE.  This can be achieved by measuring basic functions (growth rates, size, reproductive success), 531 
sensitivities to alkalinization might be organism-specific and possibly trophic level-specific (e.g., Voigt et al. 2003, 532 
Gilman et al. 2010) although most laboratory experiments do not address the complexity of trophic interactions. 533 
Similarly, measuring adaptation and diversity in acclimation between and within related organisms is a challenge 534 
and the ocean acidification literature revealed how important it is to pay attention to diversity of responses (see 535 
Kroeker et al., 2010). 536 

  537 
Stress is often measured as a reduction in organismal performance or fitness caused by environmental 538 

change (Schulte, 2014). In addition to these general physiological or behavioral responses, markers of stress such as 539 
oxidative stress are often used. For example, it is well established that the production of reactive oxygen species 540 
(ROS) can increase due to environmental stress including ocean acidification (Lesser, 2006; Lushchak, 2011). Many 541 
biomarkers are commonly used for studying oxidative stress in marine organisms (Cailleaud et al., 2007; Vehmaa et 542 
al., 2013) and an increase in ROS and superoxide dismutase and catalase activities have been reported in marine 543 
animals under stress (von Weissenberg et al., 2022). Heat shock proteins (HSPs) are also used as molecular markers 544 
of stress because of their abundance, high sensitivity to stress and being ubiquitously expressed (Gross, 2004). 545 
Among all HSPs, HSP70s are the most studied as a strong up-regulation of HSP70 production has been 546 
demonstrated broadly with the exception of Hydra oligactis (Bosch et al., 1998), and some Antarctic animals (La 547 
Terza et al. 2001; Place and Hofmann, 2005). 548 

 549 
5.b Measurements of nutrient uptake rates 550 
The uptake rate of carbon and other nutrients that results in the observed standing stocks of particulate 551 

matter involve many physiological processes that are sensitive to changes in inorganic carbon chemistry and pH 552 
(Matsumoto et al., 2020). Chemical changes following the addition of alkalinity might alter physiological processes 553 
that represent sources (calcification, respiration) and sinks (photosynthesis) of CO2. One should also pay attention to 554 
the reciprocal interactions between these physiological processes and the chemically altered environment as even 555 
minor changes in biological processes, or in the balance between them, can have implications for the CDR potential 556 
and biodiversity. 557 

One of the most unknown effects of OAE is the fate of biological fixation rates of different elements (e.g., 558 
carbon and N2 fixation rates). Such rates are measured in batch cultures and bioassay (mixed natural community) 559 
incubation experiments (LaRoche et al., 2010). While the objective of culture experiments is to understand the effect 560 
of environmental parameters on the elemental uptake by particular species in a lab, bioassay experiments have to 561 
deal with a rather complex species interaction in the field or after subsampling of mesocosms in a lab (Hutchins et 562 
al., 2007; Paul et al., 2016). Labelled/enriched (~99%) stable isotope tracers is the most used method for rate 563 
estimation these days. The rate calculation is based on isotopic mass balance equation (Montoya et al., 1996):   564 

C or N2 fixation rate = 
[𝑃𝑂𝑀]

𝑡
(
𝐴𝑓−𝐴0
𝐴𝑒−𝐴0

)                 (1) 565 

where, [POM] is the concentration of element of interest (C or N) at the end of the incubation. Likewise, Af 566 
= atom% in POM at the end of incubation, A0= atom% in POM at the start of the incubation, t is time of incubation, 567 
and Ae = isotopic enrichment in the dissolved form after the tracer addition at the start of the incubation 568 
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This equation/method is sensitive to analytical protocols in routine incubations (White et al., 2020), and 569 
might be even more sensitive in OAE incubations due to the issue of gas equilibration in tightly capped bottles. While 570 
the C substrate-based incubations are supposedly straightforward in incubations, N2 gas incubations face the challenge 571 
of under-equilibration leading to underestimation of rates. But OAE incubations can produce larger errors in the C 572 
fixation estimates as well. This is because NaHCO3 is generally used as a C substrate. To estimate 13C isotopic 573 
enrichment after tracer addition (term in equation 1), a DIC value is normally assumed (as it does not change much at 574 
a given region). But OAE is expected to increase (or fluctuate) DIC during the experimental period, and thus a 575 
measured DIC value should be used in the enrichment factor calculation. Likewise, the 14C-method, which is widely 576 
used for marine primary production and calcification rate measurements due to its sensitivity (Nielsen, 1952), also 577 
requires treatment-specific determination of DIC concentrations. Likewise, slow dissolution of N2 gas poses a 578 
challenge to accurately estimating isotopic enrichment factor (Ae), and it is advisable to measure this term. 579 

Although the analytical precision of C and N isotopes is of order of sub permil levels, many times the low reported 580 
rates (<0.1 nmol N L-1 d-1) are questionable (Gradoville et al., 2017).  Therefore, the detection limit of rate 581 
measurements and its proper reporting is a major concern. To overcome this, following the propagation of analytical 582 
and statistical errors in each term of mass balance equation (1), Gradoville et al. (2017) have proposed to report 583 
minimal quantifiable rates (MQR) and the limit of detection (LOD) in triplicate samples. We ought to follow these 584 
protocols in the rates measured in OAE. In addition, we must make sure to sample/filter sufficient water to achieve 585 
35 µg N and 150 µg C in the sample for reliable mass spectrometric measurements. 586 
 587 

  588 
      589 
 590 

  591 

 592 
 593 
 594 
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 595 
  596 

Figure 2. A, B: Portable incubator with blue filters to adjust photosynthetically active radiation (PAR). A scalar 597 
PAR sensor (LI-COR) can be observed within the incubator (A, right side). C: laboratory experiment using aeration 598 
and sacrificial replication. Images were taken by James Gately (A, C) and Sylvia Kim (B). 599 
 600 

6. Conclusions and recommendations 601 
The field of OAE faces a great diversity of challenges given the continuously evolving experimental 602 

approaches and emerging data availability that will undoubtedly provide new information and ideas to optimize best 603 
practice in laboratory experimentation. This chapter highlights the need for attention to the design, sampling, 604 
performance, and analysis of laboratory procedures used in OAE laboratory experiments. The criteria we present to 605 
achieve best practice in laboratory experimentation and design focus on reproducibility, factors affecting CDR 606 
potential and organism health (e.g., alkalinity conditions leading to flocculation, aggregation), establishing suitable 607 
experimental controls, and identifying the appropriate level of biological organization (physiological, molecular) to 608 
study biotic responses to OAE. Key response variables informing on alterations in seawater chemistry following 609 
alkalinization, growth of organisms /biomass buildup/reproductive success, and biogeochemically relevant 610 
properties (e.g., photosynthesis, respiration, calcification) under elevated alkalinity conditions should be measured 611 
and reported. The main recommendations include: 612 

A B

C
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• Ensure reproducibility through appropriate experimental design and replication. 613 
• Determine alkalinity thresholds for the formation of precipitates for each experimental approach and 614 

condition.  615 
• In addition to the proposed alkalinity target values of 3000-4000 μmol kg-1 (Renforth and Henderson, 616 

2017), use concentrations exceeding these recommended values to mimic responses at the site of 617 
deployment/non equilibrium and use intermediate alkalinity levels to identify potential nonlinear responses.  618 

• Establish appropriate experimental design to address questions at specific levels of organization (chemical, 619 
physiological, molecular) and assuming different scenarios (e.g., mimicking impacts at the site of 620 
deployment in a non-equilibrated system versus steady state scenarios in an equilibrated system). 621 

 622 
Given the emerging nature of ocean alkalinity enhancement as a research field, this chapter will evolve to 623 

update guidelines as more results become publicly available. Frequent assessments of knowledge acquired from 624 
emerging and future studies and review of best practices are needed to keep the OAE community engaged and 625 
forward thinking. 626 
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