
1 

Variability of manometric sea level from reanalyses and 

observation-based products over the Arctic and North Atlantic 

Oceans and the Mediterranean Sea 

Andrea Storto1, Giulia Chierici1, Julia Pfeffer2, Anne Barnoud2, Romain Bourdalle-Badie3, Alejandro 

Blazquez4, Davide Cavaliere1, Noémie Lalau2, Benjamin Coupry2, Marie Drevillon3, Sebastien Fourest4, 5 

Gilles Larnicol2, Chunxue Yang1 

1 Institute of Marine Sciences (ISMAR), National Research Council (CNR), Rome, Italy 

2 Magellium, 31520 Ramonville-Saint-Agne, France 

3 Mercator Ocean International (MOI), 31400 Toulouse, France 

4 Laboratory of Space Geophysical and Oceanographic Studies (LEGOS), 31401 Toulouse, France 10 

Correspondence to: Andrea Storto, Institute of Marine Sciences (ISMAR), National Research Council (CNR), via del Fosso 

del Cavaliere 100, I-00133 Roma, Italy; Email: andrea.storto@cnr.it 

Abstract. Regional variations of the mass component of sea level (manometric sea level) are intimately linked with the changes 

in the water cycle, volume transports, and inter-basin exchanges. Here, we investigate the consistency at the regional level of 

the manometric sea level from the Copernicus Marine Service global reanalysis ensemble product (GREP) and compare with 15 

observation-based products, deduced from either gravimetry (GRACE missions) or altimetry and in-situ ocean observations 

(sea level budget approach, SLB), for some climate-relevant diagnostics such as interannual variability, trends, and seasonal 

amplitude. The analysis is performed for three basins (Mediterranean Sea; Arctic, and North Atlantic Oceans), and indicates 

very different characteristics across the three. The Mediterranean Sea exhibits the largest interannual variability, the Arctic 

Ocean the largest trends, and the North Atlantic a nearly linear increase that is well explained by global barystatic sea level 20 

variations. The three datasets show significant consistency at both the seasonal and the interannual time scales, although 

differences in linear trends are sometimes significant (e.g., GRACE overestimates the trend in the Arctic and underestimates 

it in the Mediterranean Sea, compared to the other products). Furthermore, GRACE and GREP prove mutually more consistent 

than in comparison with SLB in most cases. Finally, we analyze the main modes of climate variability affecting the manometric 

sea level variations over the selected ocean basins through regularized regression; the North Pacific Gyre Oscillation, the 25 

Arctic Oscillation, and the Atlantic Multidecadal Oscillation are proven to be the most influential modes for the North Atlantic 

Ocean, Mediterranean Sea, and Arctic Ocean manometric sea level, respectively. 

 

Short summary. The variability of the manometric sea level (i.e., the sea level mass component) in three ocean basins is 

investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in-situ 30 

observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale 

climate modes on the regional manometric sea level variations at both seasonal and interannual time scales. 
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1 Introduction 

Contemporary changes in global sea level at the interannual timescale are driven mostly by two contributions: the changes in 35 

the density-driven variations of sea level, the so-called steric sea level that responds to the expansion and contraction of 

seawater due, mostly, to increasing heat in the oceans (Storto et al., 2019a). The other contributor to global sea level change is 

the ocean mass change, called barystatic sea level (Gregory et al., 2019). Barystatic sea level has been recently found to be 

responsible for the majority (about 60%) of the global sea level changes (Frederikse et al., 2020; Fox-Kemper et al., 2021). 

Recent estimates indicate 2.25 ± 0.16 mm yr
−1

 of sea level rise due to barystatic changes for the recent period (2005-2016; 40 

Amin et al., 2020). Changes in barystatic sea level are due to the loss of mass from glaciers and ice sheets (Greenland and 

Antarctica) and changes in the global water cycle and land water storage. As such, barystatic sea level changes are a 

fundamental proxy of climate change and are expected to increase even more dramatically in the future due to increased ice 

melting, according to future projections (Oppenheimer et al., 2019). 

At the regional scale, local dynamics, and regional hydrology, together with cross-basin exchanges, modulate regional ocean 45 

mass exchanges, called manometric sea level (Gregory et al., 2019). For instance, Camargo et al. (2022) show that regional 

trends in manometric sea level may vary from -0.4 to 3.3 mm yr-1 across the global ocean for the 2003-2016 period. Typically, 

regions characterized by high dynamic variability are characterized by large manometric variations. Strong climate modes of 

variability (e.g., the North Atlantic Oscillation) are also responsible for large deviations in manometric sea level (e.g., Criado-

Aldeanueva et al., 2014; Volkov et al., 2019); fingerprinting techniques can be used to estimate the influence of a specific 50 

climate index on the resulting sea level variability (e.g., Pfeffer et al., 2022). In the Mediterranean Sea, for instance, variations 

are intimately linked to the exchanges with the Atlantic Ocean through the Gibraltar Strait, and variations in the atmospheric 

freshwater input, which are both strongly linked to the North Atlantic variability (e.g., Tsimplis and Josey, 2001). 

Since 2002, methods to observe and analyze manometric and barystatic sea level variations have generally relied on GRACE 

(Gravity Recovery And Climate Experiment; e.g. Tapley et al., 2004) and GRACE-FO (GRACE-Follow On; Landerer et al., 55 

2020) satellite mission measurements of the temporal and spatial variations of the Earth’s gravity field. Barystatic and 

manometric sea level signals can also be inferred from the difference between total sea level, measured by altimetry missions, 

and steric sea level, estimated through in-situ observations (e.g., Horwath et al., 2022). This approach will be referred to as the 

Sea Level Budget (SLB) method in the remainder of this article. 

Alternatively, ocean general circulation model (OGCM) simulations embed the variability of sea level and its components, 60 

although they significantly lack realism (e.g., Kohl et al., 2007). Ocean reanalyses, which combine an ocean model with 

observations through data assimilation (Storto et al., 2019b) are in turn able to provide a good estimation of ocean long-term 

changes (e.g., Storto and Yang, 2024) and associated sea level variability at global and basin scales (e.g., Storto et al., 2017); 

they are thus complementary to gravimetry and sea level budget-based observational counterparts and can be used for several 

investigations (e.g., Peralta-Ferriz et al., 2014; Marcos, 2015; Hughes et al., 2018). A few limitations in the use of reanalyses 65 

exist, though. First, the usual Boussinesq approximation in the OGCMs leads to a zero global steric sea level by construction, 

as the models cannot represent the global expansion and contraction in the constant volume framework. However, the global 

steric sea level can be computed and added to the model sea surface height retrospectively, since it does not have any dynamical 

signature (e.g., Greatbatch, 1994). 

A more critical and long-standing issue in reanalyses regards the barystatic and manometric sea level components. Indeed, 70 

both the use of climatological freshwater input from land and ice and the imbalance of the atmospheric freshwater forcing 

combined with the evaporation and sublimation calculated by the ocean model make barystatic and manometric terms often 

unrealistic. Some reanalyses correct the barystatic sea level with globally uniform offsets, either time-varying or constant. In 

any case, the barystatic signal is generally unrealistic, and the manometric one may be affected by inaccuracies in the 

freshwater input into the oceans. In general, ocean bottom pressure data derived from gravimetry could also be directly 75 
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assimilated into ocean models (see e.g., Köhl et al., 2012). However, this approach was found suboptimal, mostly due to the 

low signal-to-noise ratio of the gravimetry data compared to altimetry data assimilation (e.g., Storto et al., 2011), and their 

issues related to the pre-processing (persistent stripes and land water leakage). More recently, however, ingesting gravimetry 

data (e.g., in ECCOv4r4, ECCO Consortium, 2020) has proven promising to better capture high-frequency sea level variability 

(Schindelegger et al., 2021). Finally, the limited spatial resolution of the models may limit the representativeness of sea level 80 

variations in mesoscale active areas (e.g., Androsov et al., 2020). 

The goal of this paper is manifold. First, we aim to estimate the consistency of manometric sea level from notably different 

approaches, which use numerical ocean models, gravimetry or altimetry, and in-situ observations. These approaches are known 

to contain different sources of uncertainty and none of them is fully trustable, as discussed in detail in this and the next sections. 

Particular attention is devoted to assessing whether the latest generation of the Copernicus Marine Service global reanalyses 85 

can capture the interannual variations of the manometric sea level. Second, we aim at quantifying regional trends and 

amplitudes, to identify the emerging levels and scales of manometric sea level variability depending on the specific basin. 

Finally, we aim to fingerprint the manometric sea level with several climate mode indices, to connect such variations with 

large-scale climate variability.  

The structure of the paper is as follows: we compare regionally (section 3) the manometric sea level from reanalyses with those 90 

coming from satellite gravimetry or the sea level budget approach (described in section 2). The exercise will therefore indicate 

the consistency of the reanalyses and observation-based products for selected metrics. Finally, we summarize and conclude 

(section 4). 

2 Data and Methods 

In this section, we shortly introduce the datasets used in the assessment. We refer to Gregory et al. (2019) for the terminology 95 

and definitions used to characterize the sea level components. 

2.1 Gravimetry-based dataset 

Barystatic and manometric sea level anomalies have been estimated from April 2002 to August 2022 at a monthly timescale 

and with a spatial resolution of 1° using an ensemble of GRACE and GRACE-FO solutions (Product ref. no. 2 in Table 1). 

The GRACE and GRACE-FO ensemble is constituted of 120 solutions, allowing us to estimate the uncertainties associated 100 

with different processing strategies and geophysical corrections needed for ocean applications. The ensemble is based on 

coefficients of the Earth’s gravitational potential anomalies estimated by five different processing centers (CNES, CSR, JPL, 

GFZ, ITSG). A large variety of post-processing corrections are applied to the ensemble, including two geocenter motions 

(Lemoine and Reinquin, 2017; Sun et al., 2016), three oblateness values (C20) of the Earth (Cheng et al., 2013; Lemoine and 

Reinquin, 2017; Loomis et al., 2019), and two Glacial Isostatic Adjustment (GIA) corrections (Peltier et al., 2015, Caron et 105 

al., 2018). To reduce the anisotropic noise, characterized by typical stripes elongated in the North-South direction, 

decorrelation filters, called DDK filters (Kusche et al., 2009), are applied to GRACE solutions (e.g., Horvath et al., 2018), 

using two different orders (DDK3 and DDK6) corresponding to different levels of filtering. The ensemble of 120 solutions 

results from the combination of these five processing centers, two geocenter models, three oblateness models, two GIA 

corrections, and two filters. The ensemble standard deviation provides a measure of uncertainty for both the barystatic and 110 

manometric sea level timeseries. 

2.2 Sea level budget-based dataset 



4 

The estimation of barystatic and manometric sea level changes is extended to the altimetry era (January 1993 - December 

2020) using the sea level budget approach (Product ref. no. 3 in Table 1). The manometric sea level changes are calculated as 

the difference between the geocentric sea level changes based on satellite altimetry and steric sea level changes based on in-115 

situ measurements of the seawater temperature and salinity. The reliability of this dataset is intrinsically linked to the altimetry 

and in-situ observational sampling. Only within the global mean values, i.e. the barystatic sea level, changes are computed as 

the difference between the global mean geocentric sea level changes and thermosteric sea level changes to avoid drifts due to 

Argo salinity measurement errors (Barnoud et al., 2021; Wong et al., 2020); however, regional (manometric) sea level 

estimates include the halosteric contribution in the steric evaluation. 120 

Geocentric sea level changes are estimated using the vDT2021 sea level product provided by the Copernicus Climate Change 

Service (C3S; Legeais et al., 2021). Geocentric sea level changes are corrected for the drifts in Topex-A altimeter (Ablain, 

2017) and Jason-3 microwave radiometer wet tropospheric correction (Barnoud et al., 2023a, 2023b), for the GIA effect, using 

the ensemble mean of 27 GIA models (Prandi et al., 2021) centered on ICE5G-VM2 (Peltier et al., 2004), and for the elastic 

deformation of the solid Earth due to present-day ice melting (Frederikse et al., 2017). The uncertainty of the geocentric sea 125 

level changes is calculated with the uncertainty budget and method detailed in Guérou et al. (2023) for the global mean sea 

level changes and in Prandi et al. (2021) for the local sea level changes. Altimetry data is masked over sea-ice-covered areas 

using the Copernicus Climate Change Service sea-ice product (Lavergne et al., 2019). 

Steric sea level changes are estimated as the sum of the thermosteric and halosteric sea level changes calculated from gridded 

temperature and salinity estimates from three different centers including EN4 (Good et al., 2013), IAP (Cheng et al., 2020) 130 

and Ishii et al. (2006). EN4 provides four datasets with different combinations of corrections for XBT and MBT measurements 

applied, leading to an ensemble of 6 temperature and salinity datasets. From these datasets, we compute the thermosteric and 

halosteric sea level changes due to temperature and salinity variations between 0 and 2000 m depth. The deep ocean 

contribution (i.e., below 2000 m) is considered only in the global barystatic signal and taken as a linear trend of 0.12 ± 0.03 

mm yr-1 (Chang et al., 2019) added to the time-varying steric sea level; for the regional estimates of the manometric sea level, 135 

the deep and abyssal ocean contribution is neglected, as there are no enough data for constraining it at regional level.  

Steric sea level changes are estimated as the ensemble mean of the 6 solutions, and their uncertainties are estimated with the 

covariance matrix of the ensemble. The resulting barystatic and manometric uncertainties are described by the covariance 

matrix obtained by summing the sea level and steric covariance matrices; the sea-ice mask from the altimetry product is 

propagated onto the resulting manometric product. 140 

2.3 The reanalysis dataset 

In this work, we use the Global Reanalysis Ensemble Product (GREP) from the Copernicus Marine Service (Product ref. no. 

1 in Table 1), which is a small-ensemble global reanalysis product, including in turn the four reanalyses i) CGLORS (v7) from 

CMCC; ii) GloSea5 from UKMO; iii) GLORYS2 (V4) from Mercator Ocean, and iv) ORAS5 from ECMWF. All reanalyses 

are performed using the NEMO ocean model (Madec et al., 2017) configured at about 1/4° of horizontal resolution and 75 145 

levels. However, the four reanalyses differ for several issues, which can be summarized in the i) NEMO model version and a 

few selected parametrizations, including specific choice in the use of the ECMWF reanalysis (ERA-Interim and ERA5) 

atmospheric forcing; ii) initial conditions in 1993 at the beginning of the reanalyzed period (1993-2019); iii) the data 

assimilation scheme, and iv) the set of observations assimilated, including their source and pre-processing procedures. Thus, 

GREP can span, to a good extent, the uncertainty linked with model physics and input datasets. We have used monthly mean 150 

data at 1/4° of horizontal resolution for the comparison described in the following section. More details about the four 

reanalyses, together with some in-situ-based validation and assessment of the ensemble standard deviation, are provided by 

Storto et al. (2019c).  
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The estimation approach for GREP follows that of the sea level budget approach (see section 2.2), where the manometric sea 

level is calculated as a difference from the total sea surface height anomaly from the reanalysis, and the steric sea level anomaly, 155 

calculated from the reanalysis output temperature and salinity fields. Thus, we can cross-compare GREP data with GRACE 

and SLB datasets in terms of interannual variability, trend, and seasonal amplitude. 

2.4 Analysis methods 

Basin-averaged timeseries are analyzed in the next section as monthly means to assess the main variability signal over three 

oceanic basins (the Arctic Ocean, defined as the region covering from 67°N in the Atlantic to the Bering Strait; the North 160 

Atlantic Ocean, defined from 0°N to 67°N; the Mediterranean Sea). Timeseries are also analyzed in terms of their interannual 

and seasonal signal, where the interannual signal is the timeseries to which the monthly climatology has been subtracted and 

the seasonal is the residual part. The uncertainty of the timeseries corresponds to that provided by the dataset (which in turn 

uses an ensemble approach to estimate uncertainty as ensemble standard deviation); by construction, GREP, with only four 

members, is known to underestimate the uncertainty of sea level (Storto et al., 2019c). Uncertainty of trends is estimated 165 

through bootstrapping (Efron, 1979) and closely resembles the estimates calculated following Storto et al. (2022). The 

Bootstrapping technique randomly removes part of the timeseries, and thus quantifies the sensitivity of the trend to individual 

years and periods. Explained variance is used to quantify how much of the regional signal is explained by the global barystatic 

signal due to fast barotropic motion. For this analysis, we use only global GRACE and SLB timeseries and show only SLB for 

the sake of clarity (see, e.g. Barnoud et al., 2023b, for a discussion on their comparison), because the GREP barystatic sea 170 

level is either unreliable due to drifts in the freshwater forcing, or it is adjusted to GRACE-derived data and, thus, is not 

independent. Seasonal amplitude is defined by fitting the monthly data to a curve with sinusoidal (seasonal signal) and linear 

(trend signal) terms; the interannual variability is the standard deviation of the detrended and deseasonalized timeseries. 

Percents of manometric sea level trends over the total sea level ones are calculated from the Copernicus Marine Service dataset 

(Product ref. no. 4 in Table 1), over each region. 175 

LASSO regression (Tibshirani, 1997), performed between the normalized manometric sea level and normalized climate 

indices, is a regularization technique for multivariate regression, which is used in this study to rank the influence of the climate 

indices on the basin-averaged manometric sea level, in a way similar to what Pfeffer et al. (2022) proposed. Like the latter and 

previous studies, raw monthly means were used without low-pass filtering the data, which could induce arbitrary preferences 

in the regression within our multi-variate analysis. After performing k-fold cross-validation (with 10 folds) to identify the best 180 

hyperparameters, LASSO regression avoids overfitting the regression, such that absolute values of the regression coefficients 

quantify the impact of a predictor on the manometric sea level. By construction, LASSO minimizes the collinearities across 

the predictors; however, when predictors are strongly correlated, the preference provided by LASSO might be less obvious 

than expected (Tibshirani, 1996). We also verified that other methods (e.g., the R2 hierarchical decomposition from Chevan 

and Sutherland, 1991) provide the same results. For these analyses, the glmnet (Friedman et al., 2010) and relaimpo 185 

(Groemping, 2006) R packages are used. Finally, for the statistical significance of the correlations and their differences, we 

used the psych R package (Revelle, 2023) that implements Steiger’s test for comparing dependent correlations (Steiger, 1980; 

Olkin and Finn, 1995). All statistical significance results are provided at the 99% confidence level. The time series and spatial 

patterns of the climate modes are as in Pfeffer et al. (2022) (see Figures 1, 3, and 4 therein). 

3 Results 190 

We present the results of the assessment, by first analyzing the timeseries and several diagnostics of the basin-averaged 

manometric sea level. Then, the consistency between the manometric sea level products is addressed; finally, the influence of 
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the climate modes of variability on the manometric sea level variability is analyzed. All results presented refer to the 2003-

2019 period, common to the three datasets. 

3.1 Manometric sea level timeseries 195 

The monthly means of the manometric sea level for the three basins considered in this study is shown in Figure 1, while several 

diagnostics (trend, seasonal amplitude, interannual variability, and mean uncertainty) are provided in Table 2, for the three 

datasets considered. 

The three basins (Arctic Ocean, North Atlantic Ocean, and Mediterranean Sea) exhibit different behavior; GRACE, SLB, and 

GREP show, however, qualitatively good consistency in all three seas. The Arctic Ocean has a regular periodicity and a large 200 

seasonal amplitude, with a generally increasing yearly mean signal, except during the first years of the timeseries (2003-2005). 

For both GRACE and GREP, the latest years are the ones with the largest manometric sea level, which is reflected in large 

trends (3.45 ± 0.57 and 2.45 ± 0.44 mm yr-1, respectively) compared to the other seas, while SLB shows a weaker trend.  

Manometric sea level changes at interannual time scales are very different over the Arctic Ocean than the global ocean (Table 

3), meaning that internal dynamics, straits connections, and the sea-ice seasonal cycle significantly modulate the regional 205 

manometric sea level. Seasonal timeseries are more largely explained by the global signal for both datasets (38-48%). 

The North Atlantic manometric sea level signal has a seasonality (10 to 14 mm, depending on the dataset), smaller than the 

other basins, the smallest interannual variability (6.0 to 6.6 mm), and a nearly linearly increasing mean signal that dominates 

the variability. The percent variance explained by the global barystatic sea level is large (71% and 79% for GRACE and SLB, 

respectively, for the interannual signal), meaning that the North Atlantic largely resembles the global signal. Here, the 210 

manometric trend accounts for about 60-80% of the total sea level trend, depending on the specific product used. 

In the Mediterranean Sea, the interannual variability is the largest (more than 20 mm for all datasets) and does not follow the 

global barystatic signal (see the low percent explained variance in Table 3, especially for the interannual signal, no matter 

which dataset is considered). This suggests that the regional water cycle and sea level budget are mostly independent of the 

global one, and this is ascribed to the role of Gibraltar Strait (see e.g., Landerer and Volkov, 2013). Trends in the Mediterranean 215 

Sea are generally lower than in the other basins and explain about 40%, on average, of the total sea level trend from altimetry. 

All the datasets exhibit the largest trends in the western part of the Mediterranean Sea (not shown), although with slightly 

different patterns. Remarkable peaks of the manometric sea level are visible in 2006, 2010, 2011, and 2018; for these events, 

GREP tends to underestimate the maxima compared to the other two datasets, likely due to the use of climatological discharge 

from rivers in the reanalyses, and the low resolution at Gibraltar strait affecting the representation of the Mediterranean inflow. 220 

In terms of the uncertainty (see Table 2 and Figure 1), the GRACE dataset exhibits the largest mean uncertainty (about 30 mm 

in all basins), while the uncertainty of SLB ranges from about 12 mm in the Arctic Ocean and the Mediterranean Sea to about 

21 mm in the North Atlantic Ocean. GREP uncertainty is the lowest, except in the Mediterranean Sea where it is comparable 

to SLB. However, the uncertainty estimates are strongly affected by the ensemble size, which is substantially different across 

the three datasets (see section 2). Besides, common errors, associated for example with spatial under-sampling, which may be 225 

large for the SLB method, will be neglected with the ensemble approach. 

3.2 Consistency between timeseries 

The consistency between the three timeseries is investigated by decomposing the full signal in the interannual and seasonal 

timeseries. The correlation matrix for the three temporal scales and the three basins is shown in Figure 2.  

In the North Atlantic Ocean and the Mediterranean Sea, the largest correlations are generally between SLB and GREP. SLB 230 

and GREP are not independent due to the use of altimetry and in-situ observations in both, so this result likely reflects their 

dependency. At the interannual timescale, the correlation between GRACE and SLB is slightly larger (but the difference is not 
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statistically significant) than that between GRACE and GREP, suggesting that for these regions SLB might capture the year-

to-year variations better than the reanalyses. At the seasonal scale in the Mediterranean Sea, however, the consistency between 

GRACE and GREP is larger than that between GRACE and SLB (with a statistically significant difference), suggesting that 235 

the reanalyses capture the seasonal cycle better than SLB with respect to gravimetry data. For both regions, the high consistency 

of manometric sea level from reanalyses compared to the two observation-based datasets suggests the good reliability of the 

GREP ensemble mean in capturing the sea level variations. 

In the Arctic Ocean, a large consistency is found between GRACE and GREP; the correlations involving SLB are statistically 

significantly lower than the others, at all time scales (full, inter, and seasonal) at the 99% confidence level; this is also visible, 240 

in Figure 1, as fluctuations of the SLB timeseries not reproduced by the other two datasets. On the one hand, the meridional 

transports, sea-ice modeling, and atmospheric forcing, implicit in the reanalysis systems, are known to be able to shape the 

Arctic Ocean interannual variability realistically (see e.g. Mayer et al., 2016; 2019); on the other hand, altimetry and in-situ 

data are poorly sampled in the Arctic Ocean, making more challenging to apply the SLB approach therein. By separating the 

total sea level and the steric sea level contributions for the SLB and GREP methods (not shown), we have found good 245 

consistency for the total sea level inter-annual signal (correlation coefficient equal to 0.69) compared to the steric component 

(0.35); this suggests that the SLB method has problems over the Arctic basin in representing steric sea level variations, due to 

the poor in-situ observational sampling. 

3.3 Influence of climate indices on manometric sea level variations 

Several climate indices are considered predictors for the manometric sea level in the three basins (Arctic Ocean, North Atlantic 250 

Ocean, and Mediterranean Sea). Their acronyms and meanings are listed in the caption of Figure 3. The detailed justification 

for inclusion in the analysis is provided by Han et al. (2017), Cazenave and Moreira (2022), and Pfeffer et al. (2022), among 

many others: through representing well-determined atmospheric circulation regimes and internal climate variability, the indices 

synthesize the water cycle and the atmospheric forcing variability regimes, leading in turn to variations in the regional 

manometric sea level due to changes in oceanic divergence and freshwater forcing. For instance, the El Niño Southern 255 

Oscillation (ENSO) has a prominent role in modifying precipitation patterns, with obvious implications on the manometric sea 

level (e.g., Muis et al., 2018); changes in the North Atlantic Oscillation (NAO) modify atmospheric and oceanic transports in 

North America and Europe, implying changes also in the Mediterranean Sea through modification to exchanges at Gibraltar 

and precipitation patterns (Landerer et al., 2013; Storto et al., 2019a). It is beyond the scope of this study to explain all possible 

modes of co-variability and the interested readers are referred to the specific literature for a broad overview (e.g., Andrew et 260 

al., 2006; Peralta-Ferriz et al., 2014; Merrifield et al., 2018; Volkov et al., 2019; Pfeffer et al., 2022). Raw monthly means of 

manometric sea level are used in this study, to avoid arbitrary filtering affecting the regression results; the climate indices, 

however, are used with filtering as in their standard definition. 

In the Arctic Ocean, the largest influence is found to be due to the Atlantic Multidecadal Oscillation (AMO), with values 

ranging from 25 to 35% depending on the dataset. AMO is known to modulate the sea-ice interannual variations and the Arctic 265 

amplification (Li et al., 2018; Fang et al., 2022), which are both important contributors to the sea level manometric fluctuations, 

due to the increased melting of land ice and disturbances in atmospheric and ocean circulation that jointly influence the 

variability of manometric sea levels (see, e.g., Previdi et al., 2021). IOD, NAO, and NPGO also significantly affect the Arctic 

manometric sea level, although the consensus between the datasets varies, and the influence of the IOD is questionable. The 

Arctic Oscillation is found influential when using the GRACE dataset consistently with previous studies (Peralta-Ferriz et al., 270 

2014), although the other datasets show, in general, other preferences. 

The North Atlantic manometric sea level is characterized by the largest impact of NPGO, consistently across all the datasets. 

While NPGO well explains variations in the eastern North Pacific Ocean (Di Lorenzo et al., 2008), its impact on the North 

Atlantic manometric sea level likely depends on its global and large-scale influence (Iglesias et al., 2018; Litzow et al., 2020; 
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Pfeffer et al., 2022), which in turn drives to large extent the North Atlantic manometric sea level variability (see Table 3). 275 

NPGO accounts for more than 25% of the North Atlantic manometric sea level variability, peaking at more than 40% for the 

SLB dataset. Significant impact in the North Atlantic manometric sea level is also given by variations described by the PDO, 

AMO, and IOD, although for the latter small consistency is found across the datasets. 

Finally, in the Mediterranean Sea, the largest influence is provided by the Arctic Oscillation (AO), which explains more than 

30% of the manometric sea level covariations for all datasets. AO is an expression of the North Atlantic variability, strictly 280 

linked to the NAO and closely linked to the North European wind circulation (e.g., Ambaum et al., 2001); while these are 

strictly connected, the regularization technique used here clearly indicates AO as a better predictor than NAO for the regional 

manometric sea level; however, this might be an artifact of the LASSO minimization that chooses only one among strongly 

correlated predictors. Other influential climate modes of variability are linked to the North Pacific variability, namely the PDO 

and NPGO. 285 

4. Summary and Discussion 

In this study, we have focused on the basin-averaged manometric sea level for a few regional basins (Arctic Ocean, North 

Atlantic Ocean, Mediterranean Sea) and from different datasets, to investigate the consistency, the emerging climate signals, 

the differences between the basin characteristics, and the link with the main large-scale modes of variability. These three basins 

were chosen as part of the focus of the EU Copernicus Marine Service and are large enough to be resolved at basin scale by 290 

the observing and modeling systems used herein, unlike other smaller basins. 

To the authors’ knowledge, it is the first time that different datasets of manometric sea level from reanalyses, gravimetry, and 

altimetry minus in-situ data, are compared at the regional level to infer their strengths and weaknesses. The three basins (Arctic 

Ocean, North Atlantic Ocean, Mediterranean Sea) exhibit inherently different features, with the Mediterranean Sea showing, 

on average over the three products, the largest interannual variability, and the smallest trends; the Arctic Ocean shows large 295 

seasonal amplitude and the largest trend, and the North Atlantic Ocean a quasi-linear trend, which is very well explained by 

the global barystatic signal. The three products are found in reasonable agreement, with all pairs significantly correlated at 

both interannual and seasonal time scales. There are, however, non-negligible differences in the quantitative assessment; for 

instance, GRACE leads to a large trend in the Arctic basin (3.45 ± 0.57 mm yr-1), which is not reproduced by either GREP or 

SLB and needs to be investigated in more detail; or a trend in the Mediterranean Sea smaller than the others. 300 

In the Arctic Ocean, altimetry minus in-situ (SLB) is generally less in agreement with the other datasets based on correlation 

scores; this seems to be due to the poor in-situ observation sampling, on which the SLB approach is based (see the PUM, Table 

1), which could be alleviated in reanalyses, to some extent, by the atmospheric forcing information and the meridional 

exchanges. In the Mediterranean Sea, seasonal scale agreement is also the largest between GRACE and GREP, suggesting in 

turn that the Copernicus Marine Service global reanalyses can capture the manometric sea level variability in the studied 305 

regions. 

Finally, a fingerprinting technique based on regularization in regression is used to quantify the influence of several large-scale 

climate modes of variability on the basin-averaged manometric sea level. In most cases, we found consistency in the results 

using the three different datasets. The analysis indicates the NPGO (North Pacific Gyre Oscillation), AO (Arctic Oscillation), 

and AMO (Atlantic Multidecadal Oscillation) to be the most influential modes for the North Atlantic Ocean, Mediterranean 310 

Sea, and Arctic Ocean, respectively. This is the combined result of the barystatic sea level signature, cross-basin exchanges, 

and teleconnection patterns, as explained in detail in previous studies (Landerer and Volkov, 2013; Iglesias et al., 2018; Fang 

et al., 2022). These results are useful as a reference for further fingerprinting technique applications and as a possible tool for 

statistical prediction of manometric variations. 
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The results provide a summary of the manometric sea level variability within the three basins investigated here and guide users 315 

in the choice of the specific product, depending on the region of interest. The overarching conclusions are that reanalyses when 

an ensemble mean of different systems is adopted, provide good performances in all basins; SLB performance is the most 

affected by observational sampling, and thus should be avoided in regions with poorly developed networks; gravimetry data 

provide realistic sub-seasonal and interannual variability, although long-term trends are less consistent than other datasets and 

the monthly uncertainty is the largest. 320 

Further studies are needed to understand the different behavior of the datasets for certain aspects (e.g., the over-estimation of 

the Arctic Ocean manometric sea level trend by GRACE, or its under-estimation in the Mediterranean Sea), namely whether 

this is due to some intrinsic limitations of the data processing, or the different processes implied by the measurement 

techniques. 

 325 
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 570 

Product 

Ref. No 

Product ID & Type Data Access Documentation 

1 GLOBAL_REANALYSIS_PH

Y_001_031 (GREP), numerical 

models 

 

 

EU Copernicus Marine 

Service Product (2022a) 

 

QUID (Quality Information 

Document): Desportes et al. 

(2022) 

 

PUM (Product User Manual): 

Gounou et al. (2022)  

2 Barystatic and manometric 

from satellite gravimetry 

(LEGOS - MAGELLIUM)  

Aviso Odatis webpage, 

2023: doi: 

10.24400/527896/a01-

2023.011 

PUM (Product User Manual): 

https://www.aviso.altimetry.fr/

fileadmin/documents/data/prod

ucts/indic/WAMBOR-DT-

009-

MAG_CopernicusMarine_Ser

viceEvolution_PUM_v2.0.pdf 

3 Barystatic and manometric 

from sea level budget (LEGOS 

- MAGELLIUM)  

Aviso Odatis webpage, 

2023: 

10.24400/527896/a01-

2023.012 

PUM (Product User Manual): 

https://www.aviso.altimetry.fr/

fileadmin/documents/data/prod

ucts/indic/WAMBOR-DT-

009-

MAG_CopernicusMarine_Ser

viceEvolution_PUM_v2.0.pdf 

4 SEALEVEL_GLO_PHY_L4_

MY_008_047, L4 reprocessed 

altimetry observations  

EU Copernicus Marine 

Service Product (2022b) 

QUID (Quality Information 

Document): Pujol et al. (2023) 

 

PUM (Product User Manual): 

Pujol (2022)  

 

Table 1. Product Table 

 

 

 575 

  

https://doi.org/10.24400/527896/a01-2023.011
https://doi.org/10.24400/527896/a01-2023.011
https://doi.org/10.24400/527896/a01-2023.012
https://doi.org/10.24400/527896/a01-2023.012
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Region 

Trend Seasonal amplitude Interannual variability Average uncertainty 

GRAC

E 

SLB GREP GRAC

E 

SLB GREP GRAC

E 

SLB GREP GRAC

E 

SLB GREP 

Arctic  

Ocean 

3.45 

+/- 

0.57 

1.09 

+/- 

0.44 

2.45 

+/- 

0.44 

29.0 26.0 28.7 20.9 22.2 17.6 29.0 12.9 8.5 

North Atlantic 

Ocean 

2.67 

+/- 

0.23 

3.24 

+/- 

0.16 

1.81 

+/- 

0.18 

14.2 10.7 14.4 6.0 6.6 6.1 29.9 20.8 8.0 

Mediterranean 

Sea 

0.87 

+/- 

0.65 

2.44 

+/- 

0.50 

1.93 

+/- 

0.46 

31.5 25.5 30.0 27.8 29.2 20.0 31.8 11.8 13.1 

 

Table 2. Manometric sea level diagnostics for the three basins considered in this study, calculated from the three 

datasets GREP (ensemble mean), GRACE, and SLB. The trend is calculated as a linear fit, with uncertainty found 580 

through bootstrapping. Seasonal amplitude and interannual variability are defined according to section 2.4. Average 

uncertainty is calculated from the gridpoint values. For GREP, it is given by the ensemble standard deviation. 

 

Region 

Monthly timeseries Interannual timescale Seasonal  timescale 

GRACE SLB GRACE SLB GRACE SLB 

Arctic Ocean 35% 11% 25% 11% 48% 38% 

North Atlantic Ocean 56% 80% 71% 79% 34% 85% 

Mediterranean Sea 4% 19% 1% 11% 8% 37% 

 

Table 3. Percent of the regional manometric sea level variance explained by the global barystatic signal, also for the 585 

interannual and seasonal signals. The global barystatic signal is shown in Figure 1 as gray lines. 
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Figure 1. Manometric sea level timeseries for the Arctic, Mediterranean, and North Atlantic basins. Both monthly (thin 

lines) and yearly (thick lines) means are shown for GRACE, SLB, and GREP. The global barystatic sea level (SLB 590 

method) is also added in gray. The North Atlantic Ocean is defined from 0°N to 67°N, and the Arctic Ocean from 67°N 

in the Atlantic Ocean to the Bering Strait. Dashed vertical lines correspond to the yearly uncertainty (for GRACE and 

SLB only; for GREP are not shown for sake of clarity, given their underestimated value due to the small ensemble size).  
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 595 

 

Figure 2. Correlation matrix for the three datasets in the three ocean basins investigated in this study, for both the full, 

the interannual, and the seasonal signals. All values of correlation are statistically significant, at the 99% confidence 

level. Note that the correlation matrix is symmetric, but all terms are shown in any case for the sake of clarity; note 

also that the minimum correlation in the palette is 0.3, whereas as the minimum correlation across all data shown is 600 

0.39. 
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 605 

 

 

Figure 3. Relative importance (defined in the text in section 2.4) of the selected climate indices for the manometric sea 

level in the three basins investigated in this study, using the three datasets GRACE, GREP, and SLB. Also shown is the 

mean of the relative importance over the three datasets (indicated as MEAN). The climate indices acronyms are as 610 

follows: AMO: Atlantic Multidecadal Oscillation; AO: Arctic Oscillation; ENSO: multivariate El Niño Southern 

Oscillation; IOD: Indian Ocean Dipole; NAO: North Atlantic Oscillation; NPGO: North Pacific Gyre Oscillation; PDO: 

Pacific Decadal Oscillation; PNO: Pacific North American Oscillation; QBO: Quasi-Biennial Oscillation; SAM: 

Southern Annular Mode. Vertical bars indicate the regression coefficients’ standard errors. 


