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Abstract. Monitoring, reporting, and verification (MRV) refers to the multistep process of monitoring the amount of 15 

greenhouse gas removed by a carbon dioxide removal (CDR) activity and reporting the results of the monitoring to a third 16 

party. The third party then verifies the reporting of the results. While MRV is usually conducted in pursuit of certification in a 17 

voluntary or regulated CDR market, this chapter focuses on key recommendations for MRV relevant to ocean alkalinity 18 

enhancement (OAE) research. Early-stage MRV for OAE research may become the foundation on which markets are built. 19 

Therefore, such research carries a special obligation toward comprehensiveness, reproducibility, and transparency. 20 

Observational approaches during field trials should aim to quantify the delivery of alkalinity to seawater and monitor for 21 

secondary precipitation, biotic calcification, and other ecosystem changes that can feed back on sources or sinks of greenhouse 22 

gases where alkalinity is measurably elevated. Observations of resultant shifts in the partial pressure of CO2 (pCO2) and ocean 23 

pH can help determine the efficacy of OAE and are amenable to autonomous monitoring. However, because the ocean is 24 

turbulent and energetic and CO2 equilibration between the ocean and atmosphere can take several months or longer, added 25 

alkalinity will be diluted to perturbation levels undetectable above background variability on timescales relevant for MRV. 26 

Therefore, comprehensive quantification of carbon removal via OAE will be impossible through observational methods alone, 27 

and numerical simulations will be required. The development of fit-for-purpose models, carefully validated against 28 

observational data, will be a critical part of MRV for OAE. 29 
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1 What is MRV? 30 

In this chapter, we consider monitoring, reporting, and verification (MRV) for marine CDR (mCDR), confining our 31 

focus to determining the amount of additional CO2 removed from the atmosphere and the durability of that removal. Investment 32 

in CDR is motivated by an interest in mitigating climate change, so the value of a CDR purchase stems from its correspondence 33 

to genuine removal (Smith et al., 2023). MRV must, therefore, provide estimates of net carbon removal and the uncertainty of 34 

those estimates (e.g., Palter et al., 2023). Delivering uncertainty estimates will enable markets to value carbon removal projects 35 

appropriately by applying discount factors scaled in accordance with uncertainty (e.g., Carbon Direct and Microsoft, 2023).  36 

While we recognize the importance of determining ecosystem impacts of OAE deployments, assessment of OAE 37 

effects on ecosystems are covered in Eisaman et al. (2023, this Guide), Iglesias-Rodríguez et al. (2023, this Guide), Riebesell 38 

et al. (2023, this Guide), and Fennel et al. (2023, this Guide) and will not be considered MRV in this guide, unless they impact 39 

the efficiency of OAE (e.g., biogenic calcification). In addition to monitoring carbonate chemistry parameters for MRV 40 

(discussed below), assessing ecosystem impacts would require monitoring other biogeochemical, environmental, or ecological 41 

changes that may arise from OAE application, such as changes in nutrient fluxes, particulate loading, and phytoplankton 42 

community structure. In the same vein, side benefits (e.g., an increase in pH due to OAE) are also not considered MRV for 43 

this contribution. Finally, for this guide, we do not consider life cycle assessment (LCA), which might entail accounting for, 44 

e.g., CO2 emissions from manufacturing, transportation, and deployment. While LCA is extremely important for quantifying 45 

the net carbon removed by a CDR strategy, this contribution focuses on MRV following OAE deployment in the ocean. 46 

To determine the amount and duration of CO2 removal, MRV must deliver an assessment of two interrelated metrics:  47 

1. Additionality: The net quantity of CO2 removal above a counterfactual baseline after OAE has been conducted in the 48 

ocean. Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a 49 

response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR. 50 

2. Durability: The average time over which CO2 is sequestered from the atmosphere by a given deployment. We have 51 

minimal concerns about OAE in the context of durability as OAE increases the ocean’s buffer capacity and hence its 52 

ability to store CO2 as dissolved inorganic carbon (DIC) on timescales associated with alkalinity cycling in the ocean 53 

— with residence time far exceeding 103 years (Middelburg et al., 2020). Therefore, storage durability does not 54 

require an explicit methodology for quantification, but rather, we can assume that CO2 removed via OAE will be 55 

stored mainly as bicarbonate (HCO3-) for > 103 years. For CDR, the depth of where atmospheric CO2 is stored in the 56 

oceans matters when it is stored as dissolved CO2 (as is the case for macroalgae cultivation or iron fertilization). 57 

However, in the case of OAE, CO2 is stored mainly as HCO3-, which cannot be exchanged with the atmosphere, so 58 

surface ocean storage is chemically safe. Keeping alkalinity (and thus HCO3-) in the surface ocean has benefits for 59 

ocean acidification, although these are very minor and heavily depend on whether alkalinity-enhanced seawater has 60 

been equilibrated with atmospheric CO2 (see Fig. 3 in Bach et al., 2019). Furthermore, retaining alkalinity (HCO3-) 61 
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in the surface ocean can enhance durability by limiting interactions with sediments and thus avoiding substantial loss 62 

terms to OAE, such as the risk of inducing secondary CaCO3 precipitation in sediments and the reduction of natural 63 

alkalinity release (Fuhr et al., 2022; Moras et al., 2022; Bach, 2023; Hartmann et al., 2023). We acknowledge that 64 

there are potential ways to lose alkalinity (HCO3-) in the surface ocean, such as via the induction of biotic calcification. 65 

However, there is currently no reason to assume the deep ocean is a much safer place to store atmospheric CO2 as 66 

HCO3-. 67 

 68 

Further, as highlighted above, effective MRV systems must deliver estimates of the uncertainty in these metrics. To 69 

quantify these metrics, MRV for OAE must provide quantitative assessments in the context of the following questions: 70 

1. How much alkalinity was effectively added to seawater? The difficulty of answering this question depends on the 71 

technology used for OAE. For example, understanding the dissolution kinetics of mineral particulates is a requirement 72 

to quantify alkalinity additions for crushed-rock feedstocks, but much less of a concern for electrochemical techniques 73 

and alkalinity added in dissolved form.  74 

2. Has there been precipitation or biogenic feedback changing the efficacy of the alkalinity addition? Seawater is mostly 75 

above saturation in the surface ocean with respect to calcium carbonate; thus, the addition of alkalinity has the 76 

potential to induce precipitation of carbonate minerals (Moras et al., 2022), which would reduce the OAE efficiency 77 

(i.e., mole of DIC sequestered per mole of TA added). Abiotic CaCO3 (or MgCO3) precipitation is very slow but 78 

increases when the saturation state increases. Such high saturation states can occur near alkalinity release sites. 79 

Furthermore, calcifying organisms in the ocean, such as coccolithophores, can respond to OAE by modifying their 80 

growth rate or the relative amount of carbonate mineral production (Bach et al., 2019). Finally, enhanced saturation 81 

states could also reduce natural carbonate dissolution; this may have the effect of more effectively transferring 82 

alkalinity (in particulate form) from the surface ocean to depth or changing natural alkalinity sources from sediments 83 

or coastlines (Bach, 2023). Understanding these feedbacks of OAE via the calcium (magnesium) carbonate cycle is 84 

important for OAE MRV.  85 

3. What is the ensuing perturbation to the air-sea exchange of CO2 resulting from the OAE deployment? Alkalinity shifts 86 

carbonate equilibrium reactions away from aqueous CO2, thereby reducing seawater pCO2; CDR occurs when the 87 

atmosphere equilibrates with the altered surface ocean via air-sea CO2 exchange. A primary goal for MRV is to 88 

quantify this perturbation flux; notably, however, in many envisioned circumstances, the alkalinity addition will be 89 

entrained in the ocean flow, causing the OAE signal to be transported away from the injection site and potentially 90 

away from the sea surface; coupled with the fact that CO2 gas equilibration occurs slowly (Jones et al., 2014), the 91 

ensuing air-sea flux perturbation will occur over large regions in space and time. 92 

 93 

In our assessment, observations alone are unlikely to provide a sufficient basis for quantifying the net carbon removal 94 

accomplished by OAE deployments. MRV for OAE requires the development of quantitative estimates of air-sea CO2 95 
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exchange. Since the ocean is constantly moving and because CO2 takes a long time to equilibrate across the air-sea interface, 96 

robust MRV would require intensive observations over large areas and over long time periods. High-quality carbon markets 97 

will require uncertainty bounds for net carbon removal estimates that would be prohibitively expensive to obtain via investment 98 

in direct observing over such scales, except, perhaps in targeted intensive observational arrays. A further complication with 99 

observations is that assessments of net carbon removals associated with OAE deployments require quantifying air-sea CO2 100 

flux relative to a counterfactual scenario: The air-sea CO2 exchange that would have occurred without OAE intervention. 101 

Observing a counterfactual scenario is impossible in a strict sense, but it could be possible to use observations to assess 102 

counterfactual scenarios by leveraging analogs, such as nearby unperturbed regions, or statistical constructions, such as 103 

predicted seawater pCO2 from empirical models built from historical observations of the carbon system and predictor variables 104 

like temperature, mixed layer depth, and chlorophyll (e.g., Landschützer et al., 2020; Rödenbeck et al., 2022; Sharp et al., 105 

2022).  106 

In practice, comparison with such analogs is a challenging task due to the heterogeneous nature of the ocean air-sea 107 

CO2 flux field, as well as the potential for OAE effects to spread over very large spatial and temporal scales. Notably, the 108 

background air-sea CO2 flux field is highly dynamic on local to global scales. The ocean both absorbs and releases a massive 109 

amount of CO2 each year; the net flux amounts to an uptake of about 10 Pg CO2 yr-1—but this net flux is a small residual of 110 

large gross fluxes (about ±330 Pg CO2 yr-1) (Friedlingstein et al., 2022). OAE can increase CO2 flux into the ocean when the 111 

alkalinity enhancement reduces seawater pCO2 below atmospheric CO2. However, OAE can also decrease CO2 flux into the 112 

atmosphere when alkalinity enhancement reduces seawater pCO2 closer to atmospheric pCO2. Both cases will constitute CDR 113 

as it leads to a net increase of DIC in the ocean reservoir (Bach et al., 2023). Geographic patterns of CO2 ingassing and 114 

outgassing are controlled by the ocean’s large-scale and subtropical overturning circulations (e.g., Iudicone et al., 2016), 115 

mesoscale and submesoscale motions (e.g., Nakano et al., 2011; Ford et al., 2023), variations in winds (e.g., Andersson et al., 116 

2013; Nickford et al., 2022), storms (e.g., Nicholson et al., 2022), upwelling dynamics, local inputs from rivers (e.g., Mu et 117 

al., 2023), exchanges with sediments, and biology (e.g., Huang et al., 2023). Outside the tropics, there is pronounced seasonal 118 

variability in air-sea CO2 fluxes mostly driven by phytoplankton blooms that draw down CO2 in the surface ocean during 119 

spring and summer (e.g., Fassbender et al., 2022), and winter mixing that brings carbon-rich waters to the surface. All these 120 

dynamics are subject to variations in the climate and ocean circulation caused by internally fluctuating modes of variability or 121 

external forcing associated with CO2 emissions and other human activities.  122 

Given the complex nature of the ocean biogeochemical system, robust MRV for high-quality carbon removal markets 123 

will presumably depend on model-based approaches when quantifying net CO2 removals. Ocean biogeochemical models 124 

(OBMs) will be a critical tool in this context (see Fennel et al., 2023, this Guide). These models represent the physical, 125 

chemical, and biological processes affecting the distribution of carbon, alkalinity, and nutrients in the ocean. OBMs represent 126 

inorganic and organic carbon pools, alkalinity, and nutrients as tracers with units of mass per volume (or mass) of seawater. 127 

OBMs are based on ocean general circulation models (OGCMs) that represent the movement of tracers mediated by ocean 128 

circulation and mixing. Biogeochemical tracers, including DIC and TA, have sources and sinks from processes such as 129 
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biologically mediated production and remineralization of organic matter. Boundary fluxes for OBM tracers include riverine 130 

inputs, aeolian deposition, sediment-water exchange, and air-sea gas exchange. Fennel et al. (2023, this Guide) provide an 131 

overview of the most relevant modeling tools for OAE research with high-level background information, illustrative examples, 132 

and references to more in-depth methodological descriptions and further examples. 133 

2. Specificities of MRV for marine CDR 134 

The natural ocean carbon cycle is extremely dynamic on a wide range of temporal and spatial scales, typically 135 

spanning more than ten orders of magnitude (Sarmiento and Gruber, 2006). These scales range from that of the ocean skin, a 136 

thin layer of less than a millimeter in contact with the atmosphere where air-sea CO2 exchange is controlled by molecular 137 

diffusion, to that of the global ocean circulation that typically transports dissolved carbon over more than a thousand years and 138 

10,000 km. As such, the ocean represents a challenging environment for MRV, especially compared to MRV of land-based 139 

CDR techniques. Three specific time scales are to be considered when discussing challenges for MRV of mCDR, and in 140 

particular OAE. 141 

The first time scale relates to natural variability in carbonate chemistry, especially pCO2 and alkalinity, due to 142 

biological, chemical, and physical processes in the ocean. Such variability can be substantial on daily and seasonal time scales. 143 

For example, using in situ observations from 37 stations spanning diverse ocean environments, Torres et al. (2021) showed 144 

that in the open ocean stations, the average seasonal cycle of pCO2 was 49 ± 23 µatm (inter-station mean and standard 145 

deviation), and that diurnal variability could also be as high as 47 ± 18 µatm. Temporal variability at coastal stations where 146 

OAE is likely to be deployed — due to proximity to existing infrastructure, energy supply, and human resources — is 147 

significantly higher, with seasonal variability in pCO2 being 210 ± 76 μatm and diurnal variability reaching 178 ± 82 μatm 148 

(Torres et al., 2021). OAE-induced changes in pCO2 are likely to be lower than the range in natural variability, complicating 149 

MRV. For example, an increase in alkalinity of 10 µmol kg-1 would result in a decrease in pCO2 of around 20 μatm (given 150 

temp =20°C; salinity = 35; initial TA = 2200 µmol kg-1; DIC = 1965 µmol kg-1 and no secondary precipitation or biotic 151 

calcification). Historical carbonate system variability, like the examples given here, can be used in sensitivity studies to assess 152 

the detectability of a given OAE perturbation for different observing systems (Mu et al., 2023). 153 

  The second of these time scales relates to air-sea CO2 equilibrium. This time scale is particularly relevant for OAE as 154 

it determines the time required from an alkalinity-driven shift in surface seawater carbonate equilibria to a new air-sea CO2 155 

equilibrium and the resulting atmospheric carbon uptake. It is well established that the characteristic timescale for air-sea 156 

exchange of CO2 is of the order of 6 months (Sarmiento and Gruber, 2006). But Jones et al. (2014) have shown that the time 157 

to reach air-sea CO2 equilibrium is highly variable at the regional scale, ranging from less than a month to several years, with 158 

especially long values in the northern North Atlantic, the Atlantic subtropical gyres, and the Southern Ocean. This regional 159 

variability is explained by the dependency of the air-sea CO2 equilibrium time scale on the gas transfer velocity, the depth of 160 

the mixed layer, and the baseline carbonate chemistry of seawater. More precisely, this time scale shortens with higher gas 161 
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transfer velocities and Revelle factors, but lengthens with deeper mixed layers and larger ionization fractions (i.e., the ratio 162 

between DIC and dissolved CO2). 163 

The third of these time scales relates to ocean physical processes and alkalinity and carbon transport away from the 164 

injection location. First, horizontal currents, ranging from a few centimeters to a few meters per second, can potentially 165 

transport the OAE signal away from the initial injection site, thus complicating MRV. A simple calculation shows that a mean 166 

flow of 0.5 m s-1 could transport the alkalinity signal more than 100 km from the initial site in six months. Second, vertical 167 

entrainment, mixing, and/or other subduction processes might also transport the OAE signal to depths below the seasonal 168 

mixed layer, potentially hindering atmospheric CO2 uptake and associated MRV. 169 

Lessons learned from mesoscale in situ ocean iron fertilization (OIF) studies can be applied to MRV for OAE, 170 

especially during pilot studies of unenclosed OAE-perturbed patches of surface waters that are upscaled beyond a few km2. 171 

Ocean circulation and mixing will cause a range of effects that are scale-dependent and will influence MRV strategies as it is 172 

used to target pilot studies and, eventually, larger deployments (100 km2 scale). This presupposes that elements of MRV will 173 

be needed at all spatial scales during the development and testing of an mCDR method.  174 

The success of OIF in tracking and the repeated sampling of a coherent patch of perturbed waters over a timescale of 175 

weeks was due to the use of SF6 as an ocean tracer (e.g., Coale et al., 1996), and, in one instance, using a quasi-controlled 176 

volume within a mesoscale eddy (Smetacek et al., 2012). For example, the use of SF6 allowed dynamic upper ocean behavior 177 

to be observed during an OIF perturbation, in which the perturbed water was subducted under less dense water in a few days, 178 

leading to the termination of the study (Coale et al., 1998). Subduction is a risk for the MRV of OAE trials being conducted 179 

in nearshore waters, and the use of tracers such as SF6 would be crucial for observing this behavior. 180 

At larger spatial scales (i.e., for perturbations done in waters not bounded by eddies >100 km2), ocean physics imposes 181 

a strain and concurrent rotation of a perturbed patch of ocean; as such, OIF studies revealed the perturbed patch of waters can 182 

‘grow’ in areal extent from 100 km2 to > 1000 km2 via the entrainment of the surrounding ‘control’ seawater (Law et al., 2006). 183 

Such entrainment sets up concentration gradients that lead to fluxes into (in the case of OIF, nutrients are resupplied to the 184 

nutrient-depleted patch) and out of (in the case of OIF, chlorophyll which has accumulated due to OIF, and iron that has been 185 

added) the perturbed waters. Such artifacts may dilute the more alkaline waters in the patch of unenclosed OAE perturbed 186 

waters, which may hinder aspects of MRV such as detection of the OAE signal above a background level, or biological side-187 

effects resulting from OAE. 188 

3. Observation-based techniques for MRV and limitations 189 

OAE depends on multi-step processes to achieve mCDR: First, the intervention raises ocean alkalinity in order to 190 

lower seawater pCO2, and then atmospheric CO2 must equilibrate with the altered waters. These processes point to many of 191 

the variables that would ideally be observed in an OAE MRV scheme. Measurements of total alkalinity (TA) and DIC are 192 

important to quantify the background state of the carbon system, which determines the pCO2 response per unit change in 193 
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alkalinity. Further, measurements of TA might help verify that alkalinity has been added effectively, although signal-to-noise 194 

ratios may be insufficiently strong to enable robust detection and attribution of TA anomalies (Mu et al., 2023). pH is an 195 

important measurement to ensure that the OAE deployment conforms with water quality limits (usually pH < 9) and that the 196 

deployment does not create conditions that induce precipitation. Finally, pCO2 at the ocean’s surface is a key control on air-197 

sea CO2 exchange and is thus an important measurement target. With extensive measurements of these variables along the 198 

Lagrangian pathway of a perturbed water mass, a carbon budget could theoretically be closed by constraining the time-rate of 199 

change and making inferences about important driving processes such as air-sea gas exchange; such a budget could, in theory, 200 

be used to support quantification of CDR for a given OAE deployment. Though appealing in its comprehensiveness, the reality 201 

of observing all of the parameters needed to quantitatively close a perturbed carbon budget and compare it against an 202 

unperturbed counterfactual is likely impossible in the near to medium-term, even in the context of highly-monitored field trials. 203 

The difficulty is inherent in the fact that the patch of water perturbed by the addition of TA is likely to be turbulently dispersed 204 

in the ocean, and its signal diluted below the limit of detectability by mixing over the time scale required for CO2 equilibration 205 

(He and Tyka, 2023; Mu et al., 2023; Wang et al., 2023).  206 

This leads to the conclusion that MRV via direct observational approaches should not be expected to completely 207 

follow every molecule of additional CO2 resulting from an OAE deployment - as doing so would set an insurmountable barrier 208 

to MRV. Instead, we outline what can feasibly be observed, what questions these observations can answer, and which questions 209 

are left to be addressed in statistical and/or prognostic models with their attendant uncertainties. 210 

Various autonomous sensors hold promise to inform the results of an OAE deployment, both in field trials and for 211 

sampling that might offer constraints on open water applications and data for model validation and/or assimilation. 212 

The most direct measurement relevant to OAE experiments is TA, which would reveal if the initially planned 213 

perturbation was successful. Though autonomous sensors for TA have been in development for several years (Briggs et al., 214 

2017), they are not commercially available at the time of writing, and the laboratory analysis of bottle samples cannot currently 215 

be replaced or even supplemented by sensor-based measurements (see Cyronak et al., 2023, this Guide). Nevertheless, 216 

laboratory analysis of TA in bottle samples can be compared to “baseline” measurements taken before the alkalinity is added 217 

or outside the expected patch area. It is worth noting that measuring a TA increase near the OAE deployment point may be 218 

possible, but once the OAE-perturbed water has dispersed in the ocean flow, the signal-to-noise ratio will likely be too low to 219 

make any accurate quantification. This is also the case for attempting to quantify CDR using DIC, as discussed below. The 220 

TA in the OAE-influenced patch may also be compared to a predicted counterfactual TA constructed from regression methods 221 

built with historical salinity (and other available) data, like the Locally Interpolated Alkalinity Regression (LIAR) method 222 

(Carter et al., 2018). 223 

In contrast to TA, to determine the ocean uptake of CO2, there are effective equilibrator-based autonomous pCO2 224 

systems (e.g., ASVCO2™, MAPCO2) capable of measuring pCO2 with a nominal accuracy of 2 µatm (R. Wanninkhof, 225 

Personal Communication), although they are restricted to the top few meters of the surface ocean due to the fact that 226 

equilibrators cannot be submerged. There are also in situ pCO2 sensors that rely on equilibrating seawater pCO2 with air 227 
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through a membrane (e.g., Pro-Oceanus CO2-Pro™ CV, CONTROS HydroC® CO2) or a pH-sensitive dye (e.g., SAMI-pH), 228 

followed by infrared detection or colorimetric spectroscopy. Due to fluctuations in the pressure of equilibration and calibration 229 

issues, the real-world accuracy of these instruments is ~5 µatm (R. Wanninkhof, Personal Communication). The existence of 230 

autonomous pCO2 sensors is potentially important because while it is difficult to detect changes in the carbon inventory of the 231 

ocean with measurements of DIC, it can be done with measurements of pCO2 (Wanninkhof et al., 2013). These pCO2 sensors 232 

can be deployed on moorings (MAPCO2, ProCV) and autonomous surface vehicles like Wave Glider (ASVCO2) (Chavez et 233 

al., 2018) and Saildrone (Sabine et al., 2020; Sutton et al., 2021; Nickford et al., 2022). These sensors have the advantage of 234 

being able to collect measurements continuously in harsh weather and with much reduced involvement from skilled analysts 235 

relative to field surveys with bottle collection. Most analysis focuses on collecting and analyzing calibration samples and 236 

performing quality control on data. 237 

Sensors that measure pH on autonomous profiling floats, gliders, or moored platforms could provide additional data 238 

useful for MRV. Unfortunately, as demonstrated by Wimart-Rousseau et al. (2023), pH sensors on profiling floats have 239 

relatively large uncertainties that may compromise their usefulness for MRV of field deployments. Moreover, these 240 

uncertainties are largest near the ocean’s surface, where they would be most useful in the MRV context, as knowledge of the 241 

surface ocean disequilibrium is needed for CDR. Uncertainties in pH of 0.01 roughly translate to a pCO2 uncertainty of 10 242 

µatm (Wimart-Rousseau et al., 2023), but even achieving such accurate pH measurements will require significant advances in 243 

sensor accuracy and/or post-processing data analysis tools to correct surface pH data. Nevertheless, a fleet of pH-measuring 244 

profiling floats can provide observational data critical for model evaluation and for quantifying baseline carbonate chemistry 245 

in the ocean. 246 

Another MRV-relevant aspect of OAE that is well suited for sensor measurements is the reduction of OAE efficiency 247 

via OAE-induced precipitation of carbonates (see Schulz et al., 2023 for further context). For example, marine calcifiers, such 248 

as coccolithophores, may benefit from high alkalinity and pH conditions, thus reducing OAE efficiency (Bach et al., 2019), 249 

but this effect is still uncertain (Gately et al., 2023). Autonomous optical sensors for particulate inorganic carbon (PIC) based 250 

on the birefringence of calcite and aragonite have been in development for several decades (James, 2009; Bishop et al., 2022). 251 

Since the deployment of the first prototype on a profiling float in 2003, this optical PIC sensor has been re-engineered several 252 

times, and the most recent versions require further re-engineering to correct for thermal and pressure effects, as well as 253 

misalignment effects of the linear polarizers (Bishop et al., 2022). A new autonomous PIC measurement concept was recently 254 

proposed by Neukermans and Fournier (2022), which may overcome the aforementioned issues. Such PIC sensors are currently 255 

under development and are expected to cover a PIC concentration range of 0.5 to 500 µgC L-1 (Neukermans et al., 2023). 256 

These PIC sensors are intended for use on autonomous platforms such as floats profiling up to 2000 m deep, autonomous 257 

moorings, tethered buoys, or Saildrones. Such PIC sensors would thus enable careful autonomous monitoring of PIC 258 

concentration in the epi- and mesopelagic ocean, as well as in shallow shelf seas. In addition, ocean color satellites can be used 259 

to obtain global maps of coccolithophore PIC concentration in the surface ocean at daily frequency using a variety of remote 260 
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sensing algorithms (see Balch and Mitchell, 2023 for a review of remote sensing PIC algorithms and limitations). Both remote 261 

sensing and in situ observations of PIC concentration can contribute to assessing secondary precipitation and OAE efficiency.  262 

Other more remote tail risks of OAE include alterations to carbon production and flux, for example, via shifts in 263 

phytoplankton community structure (Ferderer et al., 2022) or alterations in the availability of high-density biominerals such as 264 

opal or calcite, which may ballast POC flux to the deep ocean (Armstrong et al., 2001; Klaas and Archer, 2002). Ballasting of 265 

POC flux by coccolithophore calcite and the resulting increase in the sinking velocity of POC aggregates has been confirmed 266 

in many experimental studies and may be an important mechanism in some ocean regions. This potential secondary effect of 267 

OAE on POC flux could be monitored from autonomous profiling floats equipped with a PIC sensor (Neukermans et al., 2023). 268 

Wind speed should be measured since it is the most common correlate for air-sea gas exchange, and there are wind 269 

speed/gas exchange parameterizations that predict gas transfer velocities well in the open ocean (e.g., Ho et al., 2006). 270 

Therefore, in these settings, measurements of wind speeds are sufficient to characterize air-sea gas exchange. However, since 271 

gas transfer velocities as a function of wind speed differ between the open and coastal oceans (e.g., Dobashi and Ho, 2023), 272 

depending on the OAE deployment location, 3He/SF6 tracer release experiments might have to be performed to determine this 273 

relationship (see Wanninkhof et al., 1993). While it is likely unfeasible to couple every individual OAE operation with a 274 
3He/SF6 dual tracer release during the deployment phase, during the testing phase, such experiments will be useful for 275 

calibrating and evaluating models that will most likely be used to determine the efficiency and efficacy of CO2 equilibration. 276 

4. Model-based techniques for MRV and limitations 277 

OBMs can be used to explicitly represent the effects of OAE by conducting numerical experiments in which the 278 

model is provided with forcing data that represents alkalinity additions. Developing and validating models in the region/scale 279 

of OAE deployment should be a priority to enable functional frameworks for MRV (see Fennel et al., 2023, this Guide). 280 

A model integrated forward in time with the alkalinity additions will simulate the transport of the associated mass of 281 

alkalinity and its ensuing effect on biogeochemical processes, including air-sea gas exchange. These simulations can be used 282 

to evaluate net carbon removal by comparing integrations that include the OAE signal to others in which that forcing is not 283 

present — i.e., the baseline counterfactual condition or “control.” If an ensemble of integrations is performed, the variation of 284 

net carbon removal across the ensemble can be used to assess uncertainty. Notably, there are different potential sources of 285 

uncertainty: If intrinsic variability in ocean dynamics is considered the dominant source of uncertainty, an initial condition 286 

ensemble could provide an appropriate representation of uncertainty. If model structure, in contrast, is the dominant source of 287 

uncertainty, alternative approaches to ensemble construction could be employed, including perturbing parameters or using 288 

multiple models (see Fennel et al., 2023, this Guide for further discussion). Explicit simulation of OAE deployments can be 289 

compared to observations, including measurements from background observing systems, as well as bespoke data collection 290 

efforts associated with the OAE project. In some cases, explicit data assimilation (DA) procedures may be applied (see Fennel 291 

et al., 2023, this Guide), potentially reducing model-data misfits and improving confidence in the model simulations. One 292 
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challenge of applying DA to MRV is estimating additionality, which requires information about both the actual temporal 293 

evolution of the system and the counterfactual condition, i.e., the state of the system that would have occurred in the absence 294 

of the CDR intervention. The counterfactual condition is impossible to observe directly, and to the extent that observations 295 

contain an imprint of the CDR, DA cannot be used to generate explicit estimates of the baseline state. This raises conceptual 296 

issues because simulations conducted with and without DA are not directly comparable; thus, a difference between DA-297 

constrained and free-running models cannot provide a valid estimate of additionality. Further research is needed to understand 298 

and address these problems. Potential solutions may rely on the assumption that CDR signals are very small relative to the 299 

background variability and, thus, essentially negligible in the context of the constraints on model solutions imposed by DA. 300 

Further, if the CDR interventions can be assumed to have negligible impact on physical variables (e.g., temperature, salinity, 301 

currents, etc.), it may be possible to use DA selectively on just these variables. 302 

4.1 Modelling alkalinity addition 303 

For the effects of OAE to be properly simulated, models must be supplied with the correct amount of alkalinity applied 304 

as forcing. Alkalinity additions, if performed over hours to days, are likely to occur on scales much smaller than the ensuing 305 

anomaly generated in air-sea CO2 exchange, typically occurring over months to years (see Section 2). For this reason, MRV 306 

frameworks must invoke a separation of concerns, wherein near-field (i.e., within a few km of the source) processes are treated 307 

differently than the broader regional effects. Explicit modeling of near-field dynamics is likely to require different modeling 308 

frameworks (e.g., McGillicuddy, 2016) than those simulating the full expression of the OAE effects in the ocean—however, 309 

it is not necessarily a requirement to simulate near-field dynamics in the context of MRV. Near-field processes must be 310 

constrained by direct observations, and/or their dynamics must be accurately captured in verified parameterizations applied to 311 

models too coarse to simulate the local effects explicitly (e.g., Fox-Kemper et al., 2019). Notably, different OAE technologies 312 

and feedstocks present different challenges in this regard (see Eisaman et al., 2023, this Guide). Electrochemical techniques, 313 

which might produce, for instance, an alkalinity-enhanced stream from an outfall pipe, are different from crushed-rock 314 

particulates where dissolution kinetics come into play. Moreover, as discussed in Fennel et al. (2023, this Guide), ancillary 315 

constituents (e.g., iron or nickel) associated with rock-derived feedstocks may induce biological responses with impacts on the 316 

total efficacy of the OAE process.  317 

4.2 Representing OAE effects 318 

To provide a suitable basis for MRV applied to OAE deployments, models must meet several requirements and 319 

provide a sufficiently accurate representation of alkalinity additions. First, models must provide a reasonable representation of 320 

ocean circulation and mixing; these processes are critical to determining the residence time of added alkalinity in the surface 321 

mixed layer, where gas exchange with the atmosphere is possible. Given that the equilibration time scale for CO2 via gas 322 

exchange is long, the residence time of alkalinity-enhanced water parcels at the ocean surface is likely a primary control on 323 

the efficiency of uptake (He and Tyka, 2023). Second, the models must accurately capture the surface ocean pCO2 anomaly 324 
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induced by alkalinity additions. This implies having a correct representation of the carbon system thermodynamics (see Fennel 325 

et al., 2023, this Guide). Further, since the change in pCO2 depends on the background DIC:TA ratio (Hinrichs et al., 2023), it 326 

is important that the model has a good representation of the mean state prior to perturbation (Planchat et al., 2023). Third, 327 

presuming an accurate representation of the change in pCO2 and the transport of alkalinity following injection, the model must 328 

be able to simulate air-sea CO2 exchange with sufficient accuracy. Notably, the gas transfer velocity is highly uncertain, 329 

particularly in coastal environments where many OAE deployments are likely to occur (e.g., Dobashi and Ho, 2023). If surface 330 

water residence times are much longer than the gas equilibration timescale, uncertainty in the gas transfer velocity may not 331 

contribute substantially to the overall uncertainty—but in intermediate regimes where the two timescales are comparable, 332 

uncertainty in the gas transfer velocity may be an important consideration. Finally, a comprehensive assessment of OAE 333 

efficacy will depend on accurate characterization of feedbacks in the biological system. If there are changes in the natural 334 

distribution of calcification or organic carbon export, this term should be quantified—or its potential magnitude and impact on 335 

overall carbon transfer should be assessed as a component of the uncertainty budget. At present, further empirical research is 336 

required to enable modeling systems to treat this aspect of OAE effects robustly (Fennel et al., 2023, this Guide). 337 

5. The way forward for MRV of OAE  338 

There is much work to be done to establish how to optimize monitoring OAE with respect to which observations are 339 

needed and at what spatial and temporal resolution and duration. Nevertheless, early field trials should all monitor the initial 340 

increase in alkalinity (i.e., both measured and modeled). Baseline alkalinity measurements should be made so that the range 341 

of concentration within its natural variability is known before the deployment of alkalinity. Furthermore, if the enhancement 342 

is done via the dissolution of pulverized rocks, the dissolution rate needs to be known under in situ conditions. Knowledge of 343 

this rate includes the dependency on various factors such as temperature, salinity, etc. but also to what extent minerals become 344 

buried in sediments and how this change in exposure affects dissolution. If the enhancement is done via electrochemistry, the 345 

dosing rate of the solution (e.g., containing Mg(OH)2 or NaOH) should be quantified and reported with complete information 346 

about the measurement methods and a thorough accounting of their uncertainties.  347 

Furthermore, any potential secondary precipitation caused by the alkalinity enhancement (e.g., if alkalinity is added 348 

too quickly, brucite precipitation could occur) should be monitored. Monitoring of secondary precipitation is particularly 349 

critical in the non-equilibrated state (i.e., before atmospheric CO2 influx has occurred) and when the alkalinity-perturbed patch 350 

is in close contact with sediments since the risk for secondary precipitation is particularly high under these circumstances (see 351 

Eisaman et al., 2023, this Guide; Schulz et al., 2023, this Guide). 352 

Finally, the drawdown of CO2 in the ocean due to alkalinity addition should be measured. Given the potential natural 353 

variability in pCO2, especially in coastal regions, monitoring of pCO2 should also be done before the OAE deployment. 354 

Considering the spatial and time scales discussed above, these measurements will need to be complemented by modeling 355 

approaches. 356 
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MRV of CO2 influx after the application of OAE will likely depend on fit-for-purpose modeling (see Fennel et al., 357 

2023, this Guide). Exceptions to this may apply if the deployment is made in an enclosed area where the water is confined, or 358 

the deployment is made in a heavily instrumented and surveyed area of the ocean. Models used to constrain atmospheric CO2 359 

influx must be calibrated and evaluated with observations. Since CO2 influx is due to physical and chemical processes, the 360 

following observational data to improve the modeling framework includes (but is not restricted to):  361 

● Observations of ocean currents from acoustic Doppler current profilers (ADCPs), Lagrangian floats, tracers like SF6, 362 

and remote sensing;  363 

● Observations of air-sea gas exchange from 3He/SF6 tracer release experiments;  364 

● Temperature and salinity profile measurements; 365 

● Measurements of carbonate chemistry parameters (i.e., TA, pH, pCO2, and DIC). 366 

While it appears that OBMs will ultimately provide a critical foundation for robust ocean MRV frameworks, they are 367 

not currently ready to serve in this capacity (Fennel et al., 2023, this Guide). These models represent complicated systems; 368 

Ocean General Circulation Models (OGCMs) are based on fundamental governing equations, but solving these equations 369 

numerically requires approximations (e.g., Fox-Kemper et al. 2019). Ocean ecosystems comprise diverse groups of organisms 370 

with differing physiological capacities and complex interactions. There are no generally accepted governing equations for 371 

these systems; rather, models are built on the basis of empirically determined relationships and theory or hypothesis (e.g., 372 

Planchat et al., 2023). For OBMs to provide a credible basis to support ocean MRV, they must be based on broadly accepted 373 

theory or well-constrained parameterizations, and they must be explicitly validated relative to the quantification of gas 374 

exchange anomalies arising as a result of perturbations in alkalinity. Models have not yet been robustly validated in the context 375 

of these explicit requirements.  376 

We note that at this point, we have yet to develop the best modeling tools for OAE MRV (and likely MRV for mCDR 377 

in general). A rigorous research and development program to establish OBMs as fit-for-purpose, credible tools for MRV is 378 

needed. However, there is currently a major problem with basing MRV on models. OBMs are run on high-performance 379 

computing architectures, and because they are big calculations, they are very computationally expensive (and therefore 380 

financially expensive). It is unlikely that technological innovation will dramatically reduce this computational cost in the next 381 

5-10 years, during which time we will be required to deliver a functional framework for MRV. Therefore, we suggest 382 

combining direct model simulations with advanced statistical approaches to overcome the computational challenges. First, we 383 

must establish that models can provide credible representations of key CDR processes by ensuring that model output agrees 384 

with available observations. Then, we can leverage these models to generate datasets from which to derive robust statistical 385 

approximations, including through the application of techniques derived from artificial intelligence and machine learning. For 386 

instance, well-calibrated models could be used to produce training data for machine learning algorithms to predict the CDR 387 

efficiency of OAE deployments in different locations at different times, i.e., as a function of initial environmental conditions 388 

such as water temperature, carbonate chemistry, mixed layer depth such as suggested in Bach et al. (2023). 389 
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Conducting explicit OAE modeling experiments coupled with field trials are important research milestones necessary 390 

to identify the long-term approach to robust MRV. It is likely that the models that can effectively support field trials will use 391 

regional OGCMs that are capable of high-fidelity simulations of ocean flows at scales commensurate with those driving the 392 

initial dispersion of OAE signal on timescales of weeks to months. Unless alkalinity is continuously applied at a level 393 

measurable by long-duration observing platforms, the OAE signals are likely to be diluted and less easily tracked with 394 

observations. Critically, it is important to demonstrate that the models provide simulations consistent with the carbonate 395 

chemistry and deliberate tracer (e.g., SF6) observations.  396 

Models that compare well to observations can be deemed credible for assessing OAE effects. However, fully explicit 397 

mechanistic calculations are computationally intensive and thus unlikely to provide a scalable framework for conducting MRV 398 

under the scenario of widespread OAE deployments. On this basis, it is important that research on OAE field trials aims toward 399 

building trust in models to develop approaches to MRV that can be accomplished at a reduced computational cost.  400 

6. Key recommendations for MRV of OAE  401 

Early-stage MRV research for OAE may become the foundation on which regulated markets are built. Therefore, 402 

such research carries a special obligation toward comprehensiveness, reproducibility, and transparency. To fulfill these 403 

obligations, we suggest the following overarching best practice guidelines: 404 

● Field trials should be co-designed with modelers and observationalists to enable the iterative process of model 405 

validation and improvement and dynamically informed data interpretation. In some scenarios, co-design may entail 406 

the development of formal Observing System Simulation Experiments, and data-assimilating state estimates (Fennel 407 

et al., 2023, this Guide). 408 

● MRV techniques and results should be well-documented and archived publicly and promptly, without restriction (e.g., 409 

Planetary Technologies, 2023). Ideally, a central registry of OAE experiments would adhere to FAIR (Findable, 410 

Accessible, Interoperable, and Reproducible) data standards (Wilkinson et al., 2016). Researchers should eschew any 411 

practice that withholds MRV innovation from the community to “build a moat” in support of a commercial mCDR 412 

approach. 413 

● Early field trials are recommended to be as comprehensive as possible, monitoring for obvious, first-order risks like 414 

secondary precipitation and more remote tail risks like alterations to export production via shifts in phytoplankton 415 

community structure and mineral ballasting. 416 

● Model evaluation against observations should be tailored to the key processes in question. Fennel et al. (2023, this 417 

Guide) argue that models may be used for a long list of purposes, including, for example, simulating ecosystem effects 418 

and sediment-water exchanges. Early MRV efforts can expose model skill and deficiencies in simulating these 419 

processes if the relevant observations are prioritized.  420 
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● An uncertainty budget should be quantified that includes both known uncertainties (e.g., measurement and mapping 421 

errors) and expert estimates of presently unmeasurable risks. A comprehensive assessment of the poorly constrained 422 

uncertainties will point to key research areas in the future. 423 
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