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Abstract. Monitoring, reporting, and verification (MRV) refers to the multistep process of monitoring the amount of 14 

greenhouse gas removed by a carbon dioxide removal (CDR) activity and reporting the results of the monitoring to a third 15 

party. The third party then verifies the reporting of the results. While MRV is usually conducted in pursuit of certification in a 16 

voluntary or regulated CDR market, this chapter focuses on key recommendations for MRV relevant to ocean alkalinity 17 

enhancement (OAE) research. Early-stage MRV for OAE research may become the foundation on which markets are built. 18 

Therefore, such research carries a special obligation toward comprehensiveness, reproducibility, and transparency. 19 

Observational approaches during field trials should aim to quantify the delivery of alkalinity to seawater and monitor for 20 

secondary precipitation, biotic calcification, and other ecosystem changes that can feed back on sources or sinks of greenhouse 21 

gases where alkalinity is measurably elevated. Observations of resultant shifts in the partial pressure of CO2 (pCO2) and ocean 22 

pH can help determine the efficacy of OAE and are amenable to autonomous monitoring. However, because the ocean is 23 

turbulent and energetic and CO2 equilibration between the ocean and atmosphere can take several months or longer, added 24 

alkalinity will be diluted to perturbation levels undetectable above background variability on timescales relevant for MRV. 25 

Therefore, comprehensive quantification of carbon removal via OAE will be impossible through observational methods alone, 26 

and numerical simulations will be required. The development of fit-for-purpose models, carefully validated against 27 

observational data, will be a critical part of MRV for OAE. 28 
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1 What is MRV? 29 

In this chapter, we consider monitoring, reporting, and verification (MRV) for marine CDR (mCDR), confining our 30 

focus to determining the amount of additional CO2 removed from the atmosphere and the durability of that removal. Investment 31 

in CDR is motivated by an interest in mitigating climate change, so the value of a CDR purchase stems from its correspondence 32 

to genuine removal (Smith et al., 2023). MRV must, therefore, provide estimates of net carbon removal and the uncertainty of 33 

those estimates (Palter et al., 2023). Delivering uncertainty estimates will enable markets to value carbon removal projects 34 

appropriately by applying discount factors scaled in accordance with uncertainty (Carbon Direct and Microsoft, 2023).  35 

While we recognize the importance of determining ecosystem impacts of OAE deployments, assessment of OAE 36 

effects on ecosystems are covered in Eisaman et al. (2023), Iglesias-Rodríguez et al. (2023), Riebesell et al. (2023), and Fennel 37 

et al. (2023) and will not be considered MRV in this guide, unless they impact the efficiency of OAE (e.g., biogenic 38 

calcification). In addition to monitoring carbonate chemistry parameters for MRV (discussed below), assessing ecosystem 39 

impacts would require monitoring other biogeochemical, environmental, or ecological changes that may arise from OAE 40 

application, such as changes in nutrient fluxes, particulate loading, and phytoplankton community structure. In the same vein, 41 

side benefits (e.g., an increase in pH due to OAE) are also not considered MRV for this contribution. Finally, for this guide, 42 

we do not consider life cycle assessment (LCA), which might entail accounting for, e.g., CO2 emissions from manufacturing, 43 

transportation, and deployment. While LCA is extremely important for quantifying the net carbon removed by a CDR strategy, 44 

this contribution focuses on MRV following OAE deployment in the ocean. 45 

To determine the amount and duration of CO2 removal, MRV must deliver an assessment of two interrelated metrics:  46 

1. Additionality: The net quantity of CO2 removal above a counterfactual baseline after OAE has been conducted in the 47 

ocean. Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a 48 

response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR. 49 

2. Durability: The average time over which CO2 is sequestered from the atmosphere by a given deployment. In our 50 

assessment, OAE minimizes concerns in the context of durability as OAE increases the ocean’s buffer capacity and 51 

hence its ability to store CO2 as dissolved inorganic carbon (DIC) on timescales associated with alkalinity cycling in 52 

the ocean— with residence time far exceeding 103 years (Middelburg et al., 2020). Therefore, in our assessment, 53 

storage durability does not require an explicit methodology for quantification, but rather, we can assume that CO2 54 

removed via OAE will be stored mainly as bicarbonate (HCO3-) for > 103 years. For CDR, the depth of where 55 

atmospheric CO2 is stored in the oceans matters when it is stored as dissolved CO2 (as is the case for macroalgae 56 

cultivation or iron fertilization). However, in the case of OAE, CO2 is stored mainly as HCO3-, which cannot be 57 

exchanged with the atmosphere, so surface ocean storage is chemically safe. Keeping alkalinity (and thus HCO3-) in 58 

the surface ocean has benefits for ocean acidification, although these are very minor and heavily depend on whether 59 

alkalinity-enhanced seawater has been equilibrated with atmospheric CO2 (see Fig. 3 in Bach et al., 2019). 60 
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Furthermore, retaining alkalinity (HCO3-) in the surface ocean can enhance durability by limiting interactions with 61 

sediments and thus avoiding substantial loss terms to OAE, such as the risk of inducing secondary CaCO3 62 

precipitation in sediments and the reduction of natural alkalinity release (Fuhr et al., 2022; Moras et al., 2022; Bach, 63 

2023; Hartmann et al., 2023). We acknowledge that there are also loss terms to alkalinity (HCO3-) in the surface 64 

ocean, such as the induction of biotic calcification. However, there is currently no reason to assume the deep ocean 65 

is a much safer place to store atmospheric CO2 as HCO3-. 66 

 67 

Further, as highlighted above, effective MRV systems must deliver estimates of the uncertainty in these metrics. To 68 

quantify these metrics, MRV for OAE must provide quantitative assessments in the context of the following questions: 69 

1. How much alkalinity was effectively added to seawater? The difficulty of answering this question depends on the 70 

technology used for OAE. For example, understanding the dissolution kinetics of mineral particulates is a requirement 71 

to quantify alkalinity additions for crushed-rock feedstocks, but much less of a concern for electrochemical techniques 72 

and alkalinity added in dissolved form.  73 

2. Has there been precipitation or biogenic feedback changing the efficacy of the alkalinity addition? Seawater is mostly 74 

above saturation in the surface ocean with respect to calcium carbonate; thus, the addition of alkalinity has the 75 

potential to induce precipitation of carbonate minerals (Moras et al., 2022), which would reduce the OAE efficiency 76 

(i.e., mole of DIC sequestered per mole of TA added). Abiotic CaCO3 (or MgCO3) precipitation is very slow but 77 

increases when the saturation state increases. Such high saturation states can occur near alkalinity release sites. 78 

Furthermore, calcifying organisms in the ocean, such as coccolithophores, can respond to OAE by modifying their 79 

growth rate or the relative amount of carbonate mineral production (Bach et al., 2019). Finally, enhanced saturation 80 

states could also reduce natural carbonate dissolution; this may have the effect of more effectively transferring 81 

alkalinity (in particulate form) from the surface ocean to depth or changing natural alkalinity sources from sediments 82 

or coastlines (Bach, 2023). Understanding these feedbacks of OAE via the calcium (magnesium) carbonate cycle is 83 

important for OAE MRV.  84 

3. What is the ensuing perturbation to the air-sea exchange of CO2 resulting from the OAE deployment? Alkalinity shifts 85 

carbonate equilibrium reactions away from aqueous CO2, thereby reducing seawater pCO2; CDR occurs when the 86 

atmosphere equilibrates with the altered surface ocean via air-sea CO2 exchange. A primary goal for MRV is to 87 

quantify this perturbation flux; notably, however, in many envisioned circumstances, the alkalinity addition will be 88 

entrained in the ocean flow, causing the OAE signal to be transported away from the injection site and potentially 89 

away from the sea surface; coupled with the fact that CO2 gas equilibration occurs slowly (Jones et al., 2014), the 90 

ensuing air-sea flux perturbation will occur over large regions in space and time. 91 

 92 

In our assessment, observations alone are unlikely to provide a sufficient basis for quantifying the net carbon removal 93 

accomplished by OAE deployments. MRV for OAE requires the development of quantitative estimates of air-sea CO2 94 



 

 

4 
 

exchange. Since the ocean is constantly moving and because CO2 takes a long time to equilibrate across the air-sea interface, 95 

robust MRV would require intensive observations over large regions in space and time. High-quality carbon markets will 96 

require uncertainty bounds for net carbon removal estimates that would be prohibitively expensive to obtain via investment in 97 

direct observing over such scales, except, perhaps in targeted intensive observational arrays. A further complication with 98 

observations is that assessments of net carbon removals associated with OAE deployments require quantifying air-sea CO2 99 

flux relative to a counterfactual scenario: The air-sea CO2 exchange that would have occurred without OAE intervention. 100 

Observing a counterfactual scenario is impossible in a strict sense, but it could be possible to use observations to assess 101 

counterfactual scenarios by leveraging analogs, such as nearby unperturbed regions, or statistical constructions, such as 102 

predicted seawater pCO2 from empirical models built from historical observations of the carbon system and predictor variables 103 

like temperature, mixed layer depth, and chlorophyll (e.g., Landschützer et al., 2020; Rödenbeck et al., 2022; Sharp et al., 104 

2022).  105 

In practice, comparison with such analogs is a challenging task due to the heterogeneous nature of the ocean air-sea 106 

flux field, as well as the potential for OAE effects to spread over very large spatial and temporal scales. Notably, the 107 

background air-sea CO2 flux field is highly dynamic on local to global scales. The ocean both absorbs and releases a massive 108 

amount of CO2 each year; the net flux amounts to an uptake of about 10 Pg CO2 yr-1—but this net flux is a small residual of 109 

large gross fluxes (about ±330 Pg CO2 yr-1) (Friedlingstein et al., 2022). OAE can increase CO2 flux into the ocean when the 110 

alkalinity enhancement reduces seawater pCO2 below atmospheric CO2. However, OAE can also decrease CO2 flux into the 111 

atmosphere when alkalinity enhancement reduces seawater pCO2 closer to atmospheric pCO2. Both cases will constitute CDR 112 

as it leads to a net increase of DIC in the ocean reservoir (Bach et al., 2023). Geographic patterns of CO2 ingassing and 113 

outgassing are controlled by the ocean’s large-scale and subtropical overturning circulations (e.g., Iudicone et al., 2016), 114 

mesoscale and submesoscale motions (e.g., Nakano et al., 2011; Ford et al., 2023), variations in winds (e.g., Andersson et al., 115 

2013; Nickford et al., 2022), storms (e.g., Nicholson et al., 2022), upwelling dynamics, local inputs from rivers (e.g., Mu et 116 

al., 2023), exchanges with sediments, and biology (e.g., Huang et al., 2023). Outside the tropics, there is pronounced seasonal 117 

variability in air-sea CO2 fluxes mostly driven by phytoplankton blooms that draw down CO2 in the surface ocean during 118 

spring and summer (e.g., Fassbender et al., 2022), and winter mixing that brings carbon-rich waters to the surface. All these 119 

dynamics are subject to variations in the climate and ocean circulation caused by internally fluctuating modes of variability or 120 

external forcing associated with CO2 emissions and other human activities.  121 

Given the complex nature of the ocean biogeochemical system, robust MRV for high-quality carbon removal markets 122 

will presumably depend on model-based approaches when quantifying net CO2 removals. Ocean biogeochemical models 123 

(OBMs) will be a critical tool in this context (see Fennel et al., 2023). These models represent the physical, chemical, and 124 

biological processes affecting the distribution of carbon, alkalinity, and nutrients in the ocean. OBMs represent inorganic and 125 

organic carbon pools, alkalinity, and nutrients as tracers with units of mass per volume (or mass) of seawater. OBMs are based 126 

on ocean general circulation models (OGCMs) that represent the movement of tracers mediated by ocean circulation and 127 

mixing. Biogeochemical tracers, including DIC and TA, have sources and sinks from processes such as biologically mediated 128 
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production and remineralization of organic matter. Boundary fluxes for OBM tracers include riverine inputs, aeolian 129 

deposition, sediment-water exchange, and air-sea gas exchange. Fennel et al. (2023) provide an overview of the most relevant 130 

modeling tools for OAE research with high-level background information, illustrative examples, and references to more in-131 

depth methodological descriptions and further examples. 132 

2. Specificities of MRV for marine CDR 133 

The natural ocean carbon cycle is extremely dynamic on a wide range of temporal and spatial scales, typically 134 

spanning more than ten orders of magnitude (Sarmiento and Gruber, 2006). These scales range from that of the ocean skin, a 135 

thin layer of less than a millimeter in contact with the atmosphere where air-sea CO2 exchange is controlled by molecular 136 

diffusion, to that of the global ocean circulation that typically transports dissolved carbon over more than a thousand years and 137 

10,000 km. As such, the ocean represents a challenging environment for MRV, especially compared to MRV of land-based 138 

CDR techniques. Three specific time scales are to be considered when discussing challenges for MRV of mCDR, and in 139 

particular OAE. 140 

The first time scale relates to natural variability in carbonate chemistry, especially pCO2 and alkalinity, due to 141 

biological, chemical, and physical processes in the ocean. Such variability can be substantial on daily and seasonal time scales. 142 

For example, using in situ observations from 37 stations spanning diverse ocean environments, Torres et al. (2021) showed 143 

that in the open ocean stations, the average seasonal cycle of pCO2 was 49 ± 23 µatm (inter-station mean and standard 144 

deviation), and that diurnal variability could also be as high as 47 ± 18 µatm. Temporal variability at coastal stations where 145 

OAE is likely to be deployed — due to proximity to existing infrastructure, energy supply, and human resources — is 146 

significantly higher, with seasonal variability in pCO2 being 210 ± 76 μatm and diurnal variability reaching 178 ± 82 μatm 147 

(Torres et al., 2021). OAE-induced changes in pCO2 are likely to be lower than the range in natural variability, complicating 148 

MRV. For example, an increase in alkalinity of 10 µmol kg-1 would result in a decrease in pCO2 of around 20 μatm (given 149 

temp =20°C; salinity = 35; initial TA = 2200 µmol kg-1; DIC = 1965 µmol kg-1 and no secondary precipitation or biotic 150 

calcification). Historical carbonate system variability, like the examples given here, can be used in sensitivity studies to assess 151 

the detectability of a given OAE perturbation for different observing systems (Mu et al., 2023). 152 

  The second of these time scales relates to air-sea CO2 equilibrium. This time scale is particularly relevant for OAE as 153 

it determines the time required from an alkalinity-driven shift in surface seawater carbonate equilibria to a new air-sea CO2 154 

equilibrium and the resulting atmospheric carbon uptake. It is well established that the characteristic timescale for air-sea 155 

exchange of CO2 is of the order of 6 months (Sarmiento and Gruber, 2006). But Jones et al. (2014) have shown that the time 156 

to reach air-sea CO2 equilibrium is highly variable at the regional scale, ranging from less than a month to several years, with 157 

especially long values in the northern North Atlantic, the Atlantic subtropical gyres, and the Southern Ocean. This regional 158 

variability is explained by the dependency of the air-sea CO2 equilibrium time scale on the gas transfer velocity, the depth of 159 

the mixed layer, and the baseline carbonate chemistry of seawater. More precisely, this time scale shortens with higher gas 160 
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transfer velocities and Revelle factors, but lengthens with deeper mixed layers and larger ionization fractions (i.e., the ratio 161 

between DIC and dissolved CO2). 162 

The third of these time scales relates to ocean physical processes and alkalinity and carbon transport away from the 163 

injection location. First, horizontal currents, ranging from a few centimeters to a few meters per second, can potentially 164 

transport the OAE signal away from the initial injection site, thus complicating MRV. A simple calculation shows that a mean 165 

flow of 0.5 m s-1 could transport the alkalinity signal more than 100 km from the initial site in six months. Second, vertical 166 

entrainment, mixing, and/or other subduction processes might also transport the OAE signal to depths below the seasonal 167 

mixed layer, potentially hindering atmospheric CO2 uptake and associated MRV. 168 

Lessons learned from mesoscale in situ ocean iron fertilization (OIF) studies can be applied to MRV for OAE, 169 

especially during pilot studies of unenclosed OAE-perturbed patches of surface waters that are upscaled beyond a few km2. 170 

Ocean circulation and mixing will cause a range of effects that are scale-dependent and will influence MRV strategies as it is 171 

used to target pilot studies and, eventually, larger deployments (100 km2 scale). This presupposes that elements of MRV will 172 

be needed at all spatial scales during the development and testing of an mCDR method.  173 

The success of OIF in tracking and the repeated sampling of a coherent patch of perturbed waters over a timescale of 174 

weeks was due to the use of SF6 as an ocean tracer (e.g., Coale et al., 1996), and, in one instance, using a quasi-controlled 175 

volume (e.g., within a mesoscale eddy; Smetacek et al., 2012). For example, the use of SF6 allowed dynamic upper ocean 176 

behavior to be observed during an OIF perturbation, in which the perturbed water was subducted under less dense water in a 177 

few days, leading to the termination of the study (Coale et al., 1998). Subduction is a risk for the MRV of OAE trials being 178 

conducted in nearshore waters, and the use of tracers such as SF6 would be crucial for observing this behavior. 179 

At larger spatial scales (i.e., for perturbations done in waters not bounded by eddies >100 km2), ocean physics imposes 180 

a strain and concurrent rotation of a perturbed patch of ocean; as such, OIF studies revealed the perturbed patch of waters can 181 

‘grow’ in areal extent from 100 km2 to > 1000 km2 via the entrainment of the surrounding ‘control’ seawater (Law et al., 2006). 182 

Such entrainment sets up concentration gradients that lead to fluxes into (in the case of OIF, nutrients are resupplied to the 183 

nutrient-depleted patch) and out of (in the case of OIF, chlorophyll which has accumulated due to OIF, and iron that has been 184 

added) the perturbed waters. Such artifacts may dilute the more alkaline waters in the patch of unenclosed OAE perturbed 185 

waters, which may hinder aspects of MRV such as detection of the OAE signal above a background level, or biological side-186 

effects resulting from OAE. 187 

3. Observation-based techniques for MRV and limitations 188 

OAE depends on multi-step processes to achieve mCDR: First, the intervention raises ocean alkalinity in order to 189 

lower seawater pCO2, and then atmospheric CO2 must equilibrate with the altered waters. These processes point to many of 190 

the variables that would ideally be observed in an OAE MRV scheme. Measurements of total alkalinity (TA) and DIC are 191 

important to quantify the background state of the carbon system, which determines the pCO2 response per unit change in 192 
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alkalinity. Further, measurements of TA might help verify that alkalinity has been added effectively, although signal-to-noise 193 

ratios may be insufficiently strong to enable robust detection and attribution of TA anomalies (Mu et al., 2023). pH is an 194 

important measurement to ensure that the OAE deployment conforms with water quality limits (usually pH < 9) and that the 195 

deployment does not create conditions that induce precipitation. Finally, pCO2 at the ocean’s surface is a key control on gas 196 

exchange and is thus an important measurement target. With extensive measurements of these variables along the Lagrangian 197 

pathway of a perturbed water mass, a carbon budget could theoretically be closed by constraining the time-rate of change and 198 

making inferences about important driving processes such as air-sea gas exchange; such a budget could, in theory, be used to 199 

support quantification of CDR for a given OAE deployment. Though appealing in its comprehensiveness, the reality of 200 

observing all of the parameters needed to quantitatively close a perturbed carbon budget and compare it against an unperturbed 201 

counterfactual is likely impossible in the near to medium-term, even in the context of highly-monitored field trials. The 202 

difficulty is inherent in the fact that the patch of water perturbed by the addition of TA is likely to be turbulently dispersed in 203 

the ocean, and its signal diluted below the limit of detectability by mixing over the time scale required for CO2 equilibration 204 

(He and Tyka, 2023; Mu et al., 2023; Wang et al., 2023).  205 

This leads to the conclusion that MRV via direct observational approaches should not be expected to completely 206 

follow every molecule of additional CO2 resulting from an OAE deployment - as doing so would set an insurmountable barrier 207 

to MRV. Instead, we outline what can feasibly be observed, what questions these observations can answer, and which questions 208 

are left to be addressed in statistical and/or prognostic models with their attendant uncertainties. 209 

Various autonomous sensors hold promise to inform the results of an OAE deployment, both in field trials and for 210 

sampling that might offer constraints on open water applications and data for model validation and/or assimilation. 211 

The most direct measurement relevant to OAE experiments is TA, which would reveal if the initially planned 212 

perturbation was successful. Though autonomous sensors for TA have been in development for several years (Briggs et al., 213 

2017), they are not commercially available at the time of writing, and the laboratory analysis of bottle samples cannot currently 214 

be replaced or even supplemented by sensor-based measurements (see Cyronak et al., 2023). Nevertheless, laboratory analysis 215 

of TA in bottle samples can be compared to “baseline” measurements taken before the alkalinity is added or outside the 216 

expected patch area. The TA in the OAE-influenced patch may also be compared to a predicted counterfactual TA constructed 217 

from regression methods built with historical salinity (and other available) data, like the Locally Interpolated Alkalinity 218 

Regression (LIAR) method (Carter et al., 2018). 219 

In contrast to TA, to determine the ocean uptake of CO2, there are effective equilibrator-based autonomous pCO2 220 

systems (e.g., ASVCO2™, MAPCO2) capable of measuring pCO2 with a nominal accuracy of 2 𝜇atm (R. Wanninkhof, 221 

Personal Communication), although they are restricted to the top few meters of the surface ocean due to the fact that 222 

equilibrators cannot be submerged. There are also in situ pCO2 sensors that rely on equilibrating seawater pCO2 with air 223 

through a membrane (e.g., Pro-Oceanus CO2-Pro™ CV, CONTROS HydroC® CO2) or a pH-sensitive dye (e.g., SAMI-pH), 224 

followed by infrared detection or colorimetric spectroscopy. Due to fluctuations in the pressure of equilibration and calibration 225 

issues, the real-world accuracy of these instruments is ~5 µatm (R. Wanninkhof, Personal Communication). The existence of 226 
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autonomous pCO2 sensors is potentially important because while it is difficult to detect changes in the carbon inventory of the 227 

ocean with measurements of DIC, it can be done with measurements of pCO2 (Wanninkhof et al., 2013). These pCO2 sensors 228 

can be deployed on moorings (MAPCO2, ProCV) and autonomous surface vehicles like Wave Glider (ASVCO2) (Chavez et 229 

al., 2018) and Saildrone (Sabine et al., 2020; Sutton et al., 2021; Nickford et al., 2022). These sensors have the advantage of 230 

being able to collect measurements continuously in harsh weather and with much reduced involvement from skilled analysts 231 

relative to field surveys with bottle collection. Most analysis focuses on collecting and analyzing calibration samples and 232 

performing quality control on data. 233 

Sensors that measure pH on autonomous profiling floats, gliders, or moored platforms could provide additional data 234 

useful for MRV. Unfortunately, as demonstrated by Wimart-Rousseau et al. (2023), pH sensors on profiling floats have 235 

relatively large uncertainties that may compromise their usefulness for MRV. Moreover, these uncertainties are largest near 236 

the ocean’s surface, where they would be most useful in the MRV context, as knowledge of the surface ocean disequilibrium 237 

is needed for CDR. Uncertainties in pH of 0.01 roughly translate to a pCO2 uncertainty of 10 µatm (Wimart-Rousseau et al., 238 

2023), but even achieving such accurate pH measurements will require significant advances in sensor accuracy and/or post-239 

processing data analysis tools to correct surface pH data. 240 

Another MRV-relevant aspect of OAE that is well suited for sensor measurements is the reduction of OAE efficiency 241 

via OAE-induced precipitation of carbonates (see Schulz et al., 2023 for further context). For example, marine calcifiers, such 242 

as coccolithophores, may benefit from high alkalinity and pH conditions, thus reducing OAE efficiency (Bach et al., 2019), 243 

but this effect is still uncertain (Gately et al., 2023). Autonomous optical sensors for particulate inorganic carbon (PIC) based 244 

on the birefringence of calcite and aragonite have been in development for several decades (James, 2009; Bishop et al., 2022). 245 

Since the deployment of the first prototype on a profiling float in 2003, this optical PIC sensor has been re-engineered several 246 

times, and the most recent versions require further re-engineering to correct for thermal and pressure effects, as well as 247 

misalignment effects of the linear polarizers (Bishop et al., 2022). A new autonomous PIC measurement concept was recently 248 

proposed by Neukermans and Fournier (2022), which may overcome the aforementioned issues. Such PIC sensors are currently 249 

under development and are expected to cover a PIC concentration range of 0.5 to 500 µgC L-1 (Neukermans et al., 2023). 250 

These PIC sensors are intended for use on autonomous platforms such as floats profiling up to 2000 m deep, autonomous 251 

moorings, tethered buoys, or Saildrones. Such PIC sensors would thus enable careful autonomous monitoring of PIC 252 

concentration in the epi- and mesopelagic ocean, as well as in shallow shelf seas. In addition, ocean color satellites can be used 253 

to obtain global maps of coccolithophore PIC concentration in the surface ocean at daily frequency using a variety of remote 254 

sensing algorithms (see Balch and Mitchell, 2023 for a review of remote sensing PIC algorithms and limitations). Both remote 255 

sensing and in situ observations of PIC concentration can contribute to assessing secondary precipitation and OAE efficiency.  256 

Other more remote tail risks of OAE include alterations to carbon production and flux, for example, via shifts in 257 

phytoplankton community structure (Ferderer et al., 2022) or alterations in the availability of high-density biominerals such as 258 

opal or calcite, which may ballast POC flux to the deep ocean (Armstrong et al., 2001; Klaas and Archer, 2002). Ballasting of 259 

POC flux by coccolithophore calcite and the resulting increase in the sinking velocity of POC aggregates has been confirmed 260 
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in many experimental studies and may be an important mechanism in some ocean regions. This potential secondary effect of 261 

OAE on POC flux could be monitored from autonomous profiling floats equipped with a PIC sensor (Neukermans et al., 2023). 262 

Wind speed should be measured since it is the most common correlate for air-sea gas exchange, and there are wind 263 

speed/gas exchange parameterizations that predict gas transfer velocities well in the open ocean (e.g., Ho et al., 2006). 264 

Therefore, in these settings, measurements of wind speeds are sufficient to characterize air-sea gas exchange. However, since 265 

gas transfer velocities as a function of wind speed differ between the open and coastal oceans (e.g., Dobashi and Ho, 2023), 266 

depending on the OAE deployment location, 3He/SF6 tracer release experiments might have to be performed to determine this 267 

relationship (see Wanninkhof et al., 1993). While it is likely unfeasible to couple every individual OAE operation with a 268 
3He/SF6 dual tracer release during the deployment phase, during the testing phase, such experiments will be useful for 269 

calibrating and evaluating models that will most likely be used to determine the efficiency and efficacy of CO2 equilibration. 270 

4. Model-based techniques for MRV and limitations 271 

OBMs can be used to explicitly represent the effects of OAE by conducting numerical experiments in which the 272 

model is provided with forcing data that represents alkalinity additions. Developing and validating models in the region/scale 273 

of OAE deployment should be a priority to enable functional frameworks for MRV (see Fennel et al., 2023). 274 

A model integrated forward in time with the alkalinity additions will simulate the transport of the associated mass of 275 

alkalinity and its ensuing effect on biogeochemical processes, including air-sea gas exchange. These simulations can be used 276 

to evaluate net carbon removal by comparing integrations that include the OAE signal to others in which that forcing is not 277 

present — i.e., the baseline counterfactual condition or “control.” If an ensemble of integrations is performed, the variation of 278 

net carbon removal across the ensemble can be used to assess uncertainty. Notably, there are different potential sources of 279 

uncertainty: If intrinsic variability in ocean dynamics is considered the dominant source of uncertainty, an initial condition 280 

ensemble could provide an appropriate representation of uncertainty. If model structure, in contrast, is the dominant source of 281 

uncertainty, alternative approaches to ensemble construction could be employed, including perturbing parameters or using 282 

multiple models (see Fennel et al., 2023 for further discussion). Explicit simulation of OAE deployments can be compared to 283 

observations, including measurements from background observing systems, as well as bespoke data collection efforts 284 

associated with the OAE project. In some cases, explicit data assimilation (DA) procedures may be applied (see Fennel et al., 285 

2023), potentially reducing model-data misfits and improving confidence in the model simulations. One challenge of applying 286 

DA to MRV is estimating additionality, which requires information about both the actual temporal evolution of the system and 287 

the counterfactual condition, i.e., the state of the system that would have occurred in the absence of the CDR intervention. The 288 

counterfactual condition is impossible to observe directly, and to the extent that observations contain an imprint of the CDR, 289 

DA cannot be used to generate explicit estimates of the baseline state. This raises conceptual issues because simulations 290 

conducted with and without DA are not directly comparable; thus, a difference between DA-constrained and free-running 291 

models cannot provide a valid estimate of additionality. Further research is needed to understand and address these problems. 292 
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Potential solutions may rely on the assumption that CDR signals are very small relative to the background variability and, thus, 293 

essentially negligible in the context of the constraints on model solutions imposed by DA. Further, if the CDR interventions 294 

can be assumed to have negligible impact on physical variables (e.g., temperature, salinity, currents, etc.), it may be possible 295 

to use DA selectively on just these variables. 296 

4.1 Modelling alkalinity addition 297 

For the effects of OAE to be properly simulated, models must be supplied with the correct amount of alkalinity applied 298 

as forcing. Alkalinity additions, if performed over hours to days, are likely to occur on scales much smaller than the ensuing 299 

anomaly generated in air-sea CO2 exchange, typically occurring over months to years (see Section 2). For this reason, MRV 300 

frameworks must invoke a separation of concerns, wherein near-field (i.e., within a few km of the source) processes are treated 301 

differently than the broader regional effects. Explicit modeling of near-field dynamics is likely to require different modeling 302 

frameworks (e.g., McGillicuddy, 2016) than those simulating the full expression of the OAE effects in the ocean—however, 303 

it is not necessarily a requirement to simulate near-field dynamics in the context of MRV. Near-field processes must be 304 

constrained by direct observations, and/or their dynamics must be accurately captured in verified parameterizations applied to 305 

models too coarse to simulate the local effects explicitly (e.g., Fox-Kemper et al., 2019). Notably, different OAE technologies 306 

and feedstocks present different challenges in this regard (see Eisaman et al., 2023). Electrochemical techniques, which might 307 

produce, for instance, an alkalinity-enhanced stream from an outfall pipe, are different from crushed-rock particulates where 308 

dissolution kinetics come into play. Moreover, as discussed in Fennel et al. (2023), ancillary constituents (e.g. iron or nickel) 309 

associated with rock-derived feedstocks may induce biological responses with impacts on the total efficacy of the OAE process.  310 

4.2 Representing OAE effects 311 

To provide a suitable basis for MRV applied to OAE deployments, models must meet several requirements and 312 

provide a sufficiently accurate representation of alkalinity additions. First, models must provide a reasonable representation of 313 

ocean circulation and mixing; these processes are critical to determining the residence time of added alkalinity in the surface 314 

mixed layer, where gas exchange with the atmosphere is possible. Given that the equilibration time scale for CO2 via gas 315 

exchange is long, the residence time of alkalinity-enhanced water parcels at the ocean surface is likely a primary control on 316 

the efficiency of uptake (He and Tyka, 2023). Second, the models must accurately capture the surface ocean pCO2 anomaly 317 

induced by alkalinity additions. This implies having a correct representation of the carbon system thermodynamics (see Fennel 318 

et al., 2023). Further, since the change in pCO2 depends on the background DIC:TA ratio (Hinrichs et al., 2023), it is important 319 

that the model has a good representation of the mean state prior to perturbation (Planchat et al., 2023). Third, presuming an 320 

accurate representation of the change in pCO2 and the transport of alkalinity following injection, the model must be able to 321 

simulate the gas transfer of CO2 with sufficient accuracy. Notably, the gas transfer velocity is highly uncertain, particularly in 322 

coastal environments where many OAE deployments are likely to occur (e.g., Dobashi and Ho, 2023). If surface water 323 

residence times are much longer than the gas equilibration timescale, uncertainty in the gas transfer velocity may not contribute 324 
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substantially to the overall uncertainty—but in intermediate regimes where the two timescales are comparable, uncertainty in 325 

the gas transfer velocity may be an important consideration. Finally, a comprehensive assessment of OAE efficacy will depend 326 

on accurate characterization of feedbacks in the biological system. If there are changes in the natural distribution of 327 

calcification or organic carbon export, this term should be quantified—or its potential magnitude and impact on overall carbon 328 

transfer should be assessed as a component of the uncertainty budget. At present, further empirical research is required to 329 

enable modeling systems to treat this aspect of OAE effects robustly (Fennel et al., 2023). 330 

5. The way forward for MRV of OAE  331 

There is much work to be done to establish how to optimize monitoring OAE with respect to which observations are 332 

needed and at what spatial and temporal resolution and duration. Nevertheless, early field trials should all monitor the initial 333 

increase in alkalinity (i.e., both measured and modeled). Baseline alkalinity measurements should be made so that the range 334 

of concentration within its natural variability is known before the deployment of alkalinity. Furthermore, if the enhancement 335 

is done via the dissolution of pulverized rocks, the dissolution rate needs to be known under in situ conditions. Knowledge of 336 

this rate includes the dependency on various factors such as temperature, salinity, etc. but also to what extent minerals become 337 

buried in sediments and how this change in exposure affects dissolution. If the enhancement is done via electrochemistry, the 338 

dosing rate of the solution (e.g., Mg(OH)2, NaOH) should be quantified and reported with complete information about the 339 

measurement methods and a thorough accounting of their uncertainties.  340 

Furthermore, any potential secondary precipitation caused by the alkalinity enhancement (e.g., if alkalinity is added 341 

too quickly, brucite precipitation could occur) should be monitored. Monitoring of secondary precipitation is particularly 342 

critical in the non-equilibrated state (i.e., before atmospheric CO2 influx has occurred) and when the alkalinity-perturbed patch 343 

is in close contact with sediments since the risk for secondary precipitation is particularly high under these circumstances (see 344 

Eisaman et al., 2023; Schulz et al., 2023). 345 

Finally, the drawdown of CO2 in the ocean due to alkalinity addition should be measured. Given the potential natural 346 

variability in pCO2, especially in coastal regions, monitoring of pCO2 should also be done before the OAE deployment. 347 

Considering the spatial and time scales discussed above, these measurements will need to be complemented by modeling 348 

approaches. 349 

MRV of CO2 influx after the application of OAE will likely depend on fit-for-purpose modeling (see Fennel et al., 350 

2023). Exceptions to this may apply if the deployment is made in an enclosed area where the water is confined, or the 351 

deployment is made in a heavily instrumented and surveyed area of the ocean. Models used to constrain atmospheric CO2 352 

influx must be calibrated and evaluated with observations. Since CO2 influx is due to physical and chemical processes, the 353 

following observational data to improve the modeling framework includes (but is not restricted to):  354 

● Observations of ocean currents from acoustic Doppler current profilers (ADCPs), Lagrangian floats or tracers like 355 

SF6, and remote sensing;  356 
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● Observations of air-sea gas exchange from 3He/SF6 tracer release experiments;  357 

● Temperature and salinity profile measurements; 358 

● Measurements of carbonate chemistry parameters (i.e., TA, pH, pCO2, and DIC). 359 

While it appears that OBMs will ultimately provide a critical foundation for robust ocean MRV frameworks, they are 360 

not currently ready to serve in this capacity (Fennel et al., 2023). These models represent complicated systems; Ocean General 361 

Circulation Models (OGCMs) are based on fundamental governing equations, but solving these equations numerically requires 362 

approximations (e.g., Fox-Kemper et al. 2019). Ocean ecosystems comprise diverse groups of organisms with differing 363 

physiological capacities and complex interactions. There are no generally accepted governing equations for these systems; 364 

rather, models are built on the basis of empirically determined relationships and theory or hypothesis (e.g., Planchat et al., 365 

2023). For OBMs to provide a credible basis to support ocean MRV, they must be based on broadly accepted theory or well-366 

constrained parameterizations, and they must be explicitly validated relative to the quantification of gas exchange anomalies 367 

arising as a result of perturbations in alkalinity. Models have not yet been robustly validated in the context of these explicit 368 

requirements.  369 

We note that at this point, we have yet to develop the best modeling tools for OAE MRV (and likely MRV for mCDR 370 

in general). A rigorous research and development program to establish OBMs as fit-for-purpose, credible tools for MRV are 371 

needed. However, there is currently a major problem with basing MRV on models. OBMs are run on high-performance 372 

computing architectures, and because they are big calculations, they are very computationally expensive (and therefore 373 

financially expensive). It is unlikely that technological innovation will dramatically reduce this computational cost in the next 374 

5-10 years, during which time we will be required to deliver a functional framework for MRV. Therefore, we suggest 375 

combining direct model simulations with advanced statistical approaches to overcome the computational challenges. First, we 376 

must establish that models can provide credible representations of key CDR processes by ensuring that model output agrees 377 

with available observations. Then, we can leverage these models to generate datasets from which to derive robust statistical 378 

approximations, including through the application of techniques derived from artificial intelligence and machine learning. For 379 

instance, well-calibrated models could be used to produce training data for machine learning algorithms to predict the CDR 380 

efficiency of OAE deployments in different locations at different times, i.e., as a function of initial environmental conditions 381 

such as water temperature, carbonate chemistry, mixed layer depth such as suggested in Bach et al. (2023). 382 

Conducting explicit OAE modeling experiments coupled with field trials are important research milestones necessary 383 

to identify the long-term approach to robust MRV. It is likely that the models that can effectively support field trials will use 384 

regional OGCMs that are capable of high-fidelity simulations of ocean flows at scales commensurate with those driving the 385 

initial dispersion of OAE signal on timescales of weeks to months. Unless alkalinity is continuously applied at a level 386 

measurable by long-duration observing platforms, the OAE signals are likely to be diluted and less easily tracked with 387 

observations. Critically, it is important to demonstrate that the models provide simulations consistent with the carbonate 388 

chemistry and deliberate tracer observations.  389 
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Models that compare well to observations can be deemed credible for assessing OAE effects. However, fully explicit 390 

mechanistic calculations are computationally intensive and thus unlikely to provide a scalable framework for conducting MRV 391 

under the scenario of widespread OAE deployments. On this basis, it is important that research on OAE field trials aims toward 392 

building trust in models to develop approaches to MRV that can be accomplished at a reduced computational cost.  393 

6. Key recommendations for MRV of OAE  394 

Early-stage MRV research for OAE may become the foundation on which regulated markets are built. Therefore, 395 

such research carries a special obligation toward comprehensiveness, reproducibility, and transparency. To fulfill these 396 

obligations, we suggest the following overarching best practice guidelines: 397 

● Field trials should be co-designed with modelers and observationalists to enable the iterative process of model 398 

validation and improvement and dynamically informed data interpretation. In some scenarios, co-design may entail 399 

the development of formal Observing System Simulation Experiments, and data-assimilating state estimates (Fennel 400 

et al., 2023). 401 

● MRV techniques and results should be well-documented and archived publicly and promptly, without restriction (e.g., 402 

Planetary Technologies, 2023). Ideally, a central registry of OAE experiments would adhere to FAIR (Findable, 403 

Accessible, Interoperable, and Reproducible) data standards (Wilkinson et al., 2016). Researchers should eschew any 404 

practice that withholds MRV innovation from the community to “build a moat” in support of a commercial mCDR 405 

approach. 406 

● Early field trials are recommended to be as comprehensive as possible, monitoring for obvious, first-order risks like 407 

secondary precipitation and more remote tail risks like alterations to export production via shifts in phytoplankton 408 

community structure and mineral ballasting. 409 

● Model evaluation against observations should be tailored to the key processes in question. Fennel et al. (2023) argue 410 

that models may be used for a long list of purposes, including, for example, simulating ecosystem effects and 411 

sediment-water exchanges. Early MRV efforts can expose model skill and deficiencies in simulating these processes 412 

if the relevant observations are prioritized.  413 

● An uncertainty budget should be quantified that includes both known uncertainties (e.g., measurement and mapping 414 

errors) and expert estimates of presently unmeasurable risks. A comprehensive assessment of the poorly constrained 415 

uncertainties will point to key research areas in the future. 416 

 417 
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