Monitoring, Reporting, and Verification for Ocean Alkalinity 1

Enhancement 2

David T. Hol12 Laurent Bopp3, Jaime B. Palter4, Matthew C. Long25, Philip W. Boyd6, Griet 3

4

Neukermans⁷, Lennart T. Bach⁶ ¹Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA 5

²[C]Worthy, LLC, Boulder, CO 80302, USA 6

7 ³LMD/IPSL, Ecole normale supérieure - PSL, CNRS, Sorbonne Université, Ecole Polytechnique, 75005 Paris, France

Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA 8

9 Oceanography Section, Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, 10 USA

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia 11

12 MarSens Research Group, Department of Biology, Ghent University, 9000 Gent, Belgium

13 Correspondence to: David T. Ho (ho@hawaii.edu)

14 Abstract. Monitoring, reporting, and verification (MRV) refers to the multistep process of monitoring the amount of 15 greenhouse gas removed by a carbon dioxide removal (CDR) activity and reporting the results of the monitoring to a third 16 party. The third party then verifies the reporting of the results. While MRV is usually conducted in pursuit of certification in a 17 voluntary or regulated CDR market, this chapter focuses on key recommendations for MRV relevant to ocean alkalinity 18 enhancement (OAE) research. Early-stage MRV for OAE research may become the foundation on which markets are built. 19 Therefore, such research carries a special obligation toward comprehensiveness, reproducibility, and transparency. 20 Observational approaches during field trials should aim to quantify the delivery of alkalinity to seawater and monitor for 21 secondary precipitation, biotic calcification, and other ecosystem changes that can feed back on sources or sinks of greenhouse 22 gases where alkalinity is measurably elevated. Observations of resultant shifts in the partial pressure of CO₂ (pCO₂) and ocean 23 pH can help determine the efficacy of OAE and are amenable to autonomous monitoring. However, because the ocean is 24 turbulent and energetic and CO2 equilibration between the ocean and atmosphere can take several months or longer, added 25 alkalinity will be diluted to perturbation levels undetectable above background variability on timescales relevant for MRV. 26 Therefore, comprehensive quantification of carbon removal via OAE will be impossible through observational methods alone, 27 and numerical simulations will be required. The development of fit-for-purpose models, carefully validated against 28 observational data, will be a critical part of MRV for OAE.

Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Style Definition: Bullets: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

Deleted	: Bopp ²
Deleted	: Palter ³
Deleted	: Long ⁴
Deleted	: Boyd ⁵
Format	ted: Superscript
Format	ted: Space Before: 9 pt
Deleted	: Neukermans ⁶ , ¶
Deleted	: Bach ⁵
Format	ted: Space Before: 0 pt
Deleted	² Département de Géosciences
Deleted	³ Graduate
Deleted	⁴ Oceanography
Deleted	⁵ Institute
Deleted	: ⁶ Department
Deleted	: Reporting
Deleted	: Verification
Deleted	Carbon Dioxide Removal
Deleted	: we argue that

Deleted: ocean	
Formatted: Font: Italic	

Deleted: research

46 1 What is MRV?

47	In this chapter, we consider monitoring, reporting, and verification (MRV) for marine CDR (mCDR), confining our
48	focus to determining the amount of additional CO2 removed from the atmosphere and the durability of that removal. Investment
49	in CDR is motivated by an interest in mitigating climate change, so the value of a CDR purchase stems from its correspondence
50	to genuine removal (Smith et al., 2023). MRV must, therefore, provide estimates of net carbon removal and the uncertainty of
51	those estimates, (Palter et al., 2023). Delivering uncertainty estimates will enable markets to value carbon removal projects
52	appropriately by applying discount factors scaled in accordance with uncertainty (Carbon Direct and Microsoft, 2023).
53	While we recognize the importance of determining ecosystem impacts of OAE deployments, assessment of OAE
54	effects on ecosystems are covered in Eisaman et al, (2023), Iglesias-Rodríguez et al. (2023), Riebesell et al. (2023), and Fennel
55	et al. (2023) and will not be considered MRV in this guide, unless they impact the efficiency of OAE (e.g., biogenic
56	calcification). In addition to monitoring carbonate chemistry parameters for MRV (discussed below), assessing ecosystem
57	impacts would require monitoring other biogeochemical, environmental, or ecological changes that may arise from OAE
58	application, such as changes in nutrient fluxes, particulate loading, and phytoplankton community structure. In the same vein,
59	side benefits (e.g., an increase in pH due to OAE) are also not considered MRV for this contribution. Finally, for this guide,
60	we do not consider life cycle assessment (LCA), which might entail accounting for, e.g., CO2 emissions from manufacturing,
61	transportation, and deployment. While LCA is extremely important for quantifying the net carbon removed by a CDR strategy,
62	this contribution focuses on MRV following OAE deployment in the ocean.
0	
63	To determine the amount and duration of CO ₂ removal, MRV must deliver an assessment of two interrelated metrics:
63 64	<u>To determine the amount and duration of CO₂ removal, MRV must deliver an assessment of two interrelated metrics:</u> 1. Additionality: The net quantity of CO ₂ removal above a counterfactual baseline after OAE has been conducted in the*
64	1. Additionality: The net quantity of CO ₂ removal above a counterfactual baseline after OAE has been conducted in the*
64 65	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in thesocean. Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a
64 65 66	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the* ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a</u> response in biogenic calcification that <u>could reduce the ability of alkalinity addition to induce CDR.</u>
64 65 66 67	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the* ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR.</u> Durability: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our
64 65 66 67 68	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the* ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR.</u> Durability: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our <u>assessment.</u> OAE <u>minimizes</u> concerns in the context of durability <u>as</u> OAE increases the ocean's buffer capacity and
64 65 66 67 68 69	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the* ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that <u>could reduce the ability of alkalinity addition to induce CDR.</u></u> <u>Durability</u>: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our assessment. OAE <u>minimizes</u> concerns in the context of durability <u>as</u> OAE increases the ocean's buffer capacity and hence its ability to store CO₂ as <u>dissolved inorganic carbon (DIC)</u> on timescales associated with alkalinity cycling in
64 65 66 67 68 69 70	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR.</u> Durability: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our assessment, OAE minimizes concerns in the context of durability as OAE increases the ocean's buffer capacity and hence its ability to store CO₂ as <u>dissolved inorganic carbon (DIC)</u> on timescales associated with alkalinity cycling in the ocean—<u>with residence time far exceeding 10³</u> years (Middelburg et al., 2020). Therefore, in our assessment,
64 65 66 67 68 69 70 71	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR.</u> Durability: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our assessment, OAE minimizes concerns in the context of durability as OAE increases the ocean's buffer capacity and hence its ability to store CO₂ as <u>dissolved inorganic carbon (DIC)</u> on timescales associated with alkalinity cycling in the ocean—with residence time far exceeding 10³ years (Middelburg et al., 2020). Therefore, in our assessment, storage durability does not require an explicit methodology for quantification, but rather, we can assume that CO₂
 64 65 66 67 68 69 70 71 72 	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the* ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR.</u> Durability: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our assessment, OAE minimizes concerns in the context of durability as OAE increases the ocean's buffer capacity and hence its ability to store CO₂ as dissolved inorganic carbon (DIC) on timescales associated with alkalinity cycling in the ocean—with residence time far exceeding 10³ years (Middelburg et al., 2020). Therefore, in our assessment, storage durability does not require an explicit methodology for quantification, but rather, we can assume that CO₂ removed via OAE will be stored mainly as bicarbonate (HCO₃) for > 10³ years. For CDR, the depth of where
 64 65 66 67 68 69 70 71 72 73 	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the* ocean. <u>Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR.</u> Durability: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our assessment, OAE <u>minimizes</u> concerns in the context of durability as OAE increases the ocean's buffer capacity and hence its ability to store CO₂ as <u>dissolved inorganic carbon (</u>DIC) on timescales associated with alkalinity cycling in the ocean—with residence time far exceeding 10³ years (Middelburg et al., 2020). Therefore, in our assessment, storage durability does not require an explicit methodology for quantification, but rather, we can assume that CO₂ removed via OAE will be stored mainly as bicarbonate (HCO₃) for > 10³ years. For CDR, the depth of where atmospheric CO₂ is stored in the oceans matters when it is stored as dissolved CO₂ (as is the case for macroalgae
64 65 66 67 68 69 70 71 72 73 74	 Additionality: The net quantity of CO₂ removal above a counterfactual baseline after OAE has been conducted in the ocean. Additionality should include assessments of phenomena such as precipitation-induced loss of alkalinity or a response in biogenic calcification that could reduce the ability of alkalinity addition to induce CDR. Durability: The average time over which CO₂ is sequestered from the atmosphere by a given deployment. In our assessment, OAE minimizes concerns in the context of durability as OAE increases the ocean's buffer capacity and hence its ability to store CO₂ as <u>dissolved inorganic carbon (DIC)</u> on timescales associated with alkalinity cycling in the ocean with residence time far exceeding 10³ years (Middelburg et al., 2020). Therefore, in our assessment, storage durability does not require an explicit methodology for quantification, but rather, we can assume that CO₂ removed via OAE will be stored mainly as bicarbonate (HCO₃⁻) for > 10³ years. For CDR, the depth of where atmospheric CO₂ is stored in the oceans matters when it is stored as dissolved CO₂ (as is the case for macroalgae cultivation or iron fertilization). However, in the case of OAE, CO₂ is stored mainly as HCO₃⁻, which cannot be

Formatt	ed: Font color: Black	
Formatt	ed ([1]
Deleted:	: Monitoring	
	ocean-based	\rightarrow
Deleted:	mainly entails	\rightarrow
Deleted:	•	\rightarrow
Deleted:	I.	\rightarrow
Deleted:	accurate	
Deleted:	I.	
Deleted:	through the application of	
Deleted:	I.	
Deleted:	Assessment	
Deleted:	Subhas	
Deleted:	-,	
Deleted:	, this volume)	
Deleted:	, this volume	
Deleted:	chapter	
Deleted:	directly impact radiative forcing such as the fluxe	[2]
Deleted:	should	
Deleted:	be	
Deleted:	L.	
Deleted:	the purpose of	
Deleted:	chapter	
Deleted:	to quantify	
Deleted:	the focus of	
Deleted:	chapter is	
Deleted:	three	
Formatt	ed ([3]
Delete	ed: ¶ ([4]
Formatt	ed ([5]
Delete	ed: reduces	
Delete	ed: impacts	
Formatt	ed ([6]
Delete	ed: length of	
Delete	ed: presents few	
	ed: and leakage.	
Delete	ed: which are on the order of 10 ⁵	
Delete		
Delete	ed: we can assume that CO2 removed via OAE with	[7]

	A	4	-	Formatted: Font color: Black
22		Furthermore, retaining alkalinity (HCO3 ⁻) in the surface ocean can enhance durability by limiting interactions with		Formatted: Normal, Line spacing: Multiple 1.15 li, No
23		sediments and thus avoiding substantial loss terms to OAE, such as the risk of inducing secondary $CaCO_3$		widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No
24		precipitation in sediments and the reduction of natural alkalinity release (Fuhr et al., 2022; Moras et al., 2022; Bach,		border)
25		2023; Hartmann et al., 2023). We acknowledge that there are also loss terms to alkalinity (HCO3') in the surface		
26		ocean, such as the induction of biotic calcification. However, there is currently no reason to assume the deep ocean		
27		is a much safer place to store atmospheric CO_2 as HCO_2^{-} .		
28			S	Formatted: Font color: Auto
29		Further, as highlighted above, effective MRV systems must deliver estimates of the uncertainty in these metrics. To		Formatted: No bullets or numbering
30	quantifi	y these metrics, MRV for OAE must provide quantitative assessments in the context of the following questions:		
31		How much alkalinity was effectively added to seawater? The difficulty of answering this question depends on the*		Formettade Outline numbered + Level 1 + Numberian
1	1.	technology used for OAE. For example, understanding the dissolution kinetics of mineral particulates is a requirement		Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at:
32				0.25" + Indent at: 0.5"
33		to quantify alkalinity additions for crushed-rock feedstocks, but much less of a concern for electrochemical techniques		
34		and alkalinity added in dissolved form.		
35	2.	Has there been precipitation or biogenic feedback changing the efficacy of the alkalinity addition? Seawater is mostly		Deleted: mitigating
36		above saturation in the surface ocean with respect to calcium carbonate, thus, the addition of alkalinity has the		Deleted: ,
37		potential to induce precipitation of carbonate, minerals (Moras et al., 2022), which would reduce the OAE efficiency		Deleted: ,
38		(i.e., mole of DIC sequestered per mole of TA added). Abiotic CaCO3 (or MgCO3) precipitation is very slow but		Deleted:) but increase the storage durability because CO ₂
39		increases, when the saturation state increases. Such high saturation states can occur near alkalinity release sites.		stored as CaCO ₃ is potentially locked away from the atmosphere for even longer than CO ₂ converted to bicarbonate.
40		Furthermore, calcifying organisms in the ocean, such as coccolithophores, can respond to OAE by modifying their		Deleted: exponentially
41		growth rate or the relative amount of carbonate mineral production, (Bach et al., 2019). Finally, enhanced saturation		Deleted: have the potential to
42		states could also reduce natural carbonate dissolution; this may have the effect of more effectively transferring		Deleted: rate of
43		alkalinity (in particulate form) from the surface ocean to depth or changing natural alkalinity sources from sediments		Deleted:
44		or coastlines (Bach, 2023). Understanding these feedbacks of OAE via the calcium (magnesium) carbonate cycle is	M/C	Deleted: surface ocean
				Deleted: and therefore
45	2	important for OAE MRV.		Deleted: transfer
46	3.	What is the ensuing perturbation to the air-sea exchange of CO ₂ resulting from the OAE deployment? Alkalinity shifts		Deleted: , thereby enhancing a Deleted: sink.
47		carbonate equilibrium reactions away from aqueous CO ₂ , thereby <u>reducing seawater pCO₂; CDR occurs when the</u>	\sim	Formatted: Font color: Auto
48		atmosphere equilibrates with the altered surface ocean via air-sea CO2 exchange. A primary goal for MRV is to		Deleted: generating a reduction in
49		quantify this perturbation flux; notably, however, in many envisioned circumstances, the alkalinity addition will be		
50		entrained in the ocean flow, causing the OAE signal to be transported away from the injection site and potentially		
51		away from the sea surface; coupled with the fact that CO_2 gas equilibration occurs slowly _(Jones et al., 2014) , the		Deleted: ,
52		ensuing air-sea flux perturbation will occur over large regions in space and time.		
53	v			Deleted: Observations
54		In our assessment, observations alone are unlikely to provide a sufficient basis for guantifying the net carbon removal		Deleted: assessing
55	accomm	lished by OAE deployments. MRV for OAE requires the development of quantitative estimates of air-sea CO2		

75 exchange. Since the ocean is constantly moving and because CO2 takes a long time to equilibrate across the air-sea interface, 76 robust MRV would require intensive observations over large regions in space and time. High-quality carbon markets will 77 require uncertainty bounds for net carbon removal estimates that would be prohibitively expensive to obtain via investment in 78 direct observing over such scales, except, perhaps in targeted intensive observational arrays. A further complication with 79 observations is that assessments of net carbon removals associated with OAE deployments require quantifying air-sea CO2 80 flux relative to a counterfactual scenario: The air-sea CO2 exchange that would have occurred without OAE intervention. 81 Observing a counterfactual scenario is impossible in a strict sense, but it could be possible to use observations to assess 82 counterfactual scenarios by leveraging analogs, such as nearby unperturbed regions, or statistical constructions, such as 83 predicted seawater pCO₂ from empirical models built from historical observations of the carbon system and predictor variables 84 like temperature, mixed layer depth, and chlorophyll (e.g., Landschützer et al., 2020; Rödenbeck et al., 2022; Sharp et al., 85 2022).

86 In practice, comparison with such analogs is a challenging task due to the heterogeneous nature of the ocean air-sea 87 flux field, as well as the potential for OAE effects to spread over very large spatial and temporal scales. Notably, the 88 background air-sea CO2 flux field is highly dynamic on local to global scales. The ocean both absorbs and releases a massive 89 amount of CO₂ each year; the net flux amounts to an uptake of about 10 Pg CO₂ yr⁻¹—but this net flux is a small residual of 90 large gross fluxes (about ±330 Pg CO₂ yr¹) (Friedlingstein et al., 2022). OAE can increase CO₂ flux into the ocean when the 91 alkalinity enhancement reduces seawater pCO₂ below atmospheric CO₂. However, OAE can also decrease CO₂ flux into the 92 atmosphere when alkalinity enhancement reduces seawater pCO2 closer to atmospheric pCO2. Both cases will constitute CDR 93 as it leads to a net increase of DIC in the ocean reservoir (Bach et al., 2023). Geographic patterns of CO2 ingassing and 94 outgassing are controlled by the ocean's large-scale and subtropical overturning circulations (e.g., Iudicone et al., 2016), 95 mesoscale and submesoscale motions (e.g., Nakano et al., 2011; Ford et al., 2023), variations in winds (e.g., Andersson et al., 96 2013; Nickford et al., 2022), storms (e.g., Nicholson et al., 2022), upwelling dynamics, local inputs from rivers (e.g., Mu et 97 al., 2023), exchanges with sediments, and biology (e.g., Huang et al., 2023). Outside the tropics, there is pronounced seasonal 98 variability in air-sea CO₂ fluxes mostly driven by phytoplankton blooms that draw down CO₂ in the surface ocean during 99 spring and summer (e.g., Fassbender et al., 2022), and winter mixing that brings carbon-rich waters to the surface. All these 00 dynamics are subject to variations in the climate and ocean circulation caused by internally fluctuating modes of variability or :01 external forcing associated with CO2 emissions and other human activities. :02 Given the complex nature of the ocean biogeochemical system, robust MRV for high-quality carbon removal markets

will presumably depend on model-based approaches when quantifying net CO₂ removals. Ocean biogeochemical models (OBMs) will be a critical tool in this context (see Fennel et al., 2023). These models represent the physical, chemical, and biological processes affecting the distribution of carbon, alkalinity, and nutrients in the ocean. OBMs represent inorganic and organic carbon pools, alkalinity, and nutrients as tracers, with units of mass per volume (or mass) of seawater. OBMs are based on ocean general circulation models (<u>OGCMs</u>) that represent the movement of tracers mediated by ocean circulation and mixing. Biogeochemical tracers, including DIC and TA, have sources and sinks from processes such as biologically mediated

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border) Deleted: -Deleted: observation Deleted: research Deleted: quantification of Deleted: to-Deleted: transfer Deleted: in the absence of Deleted: different Deleted: other Deleted: long-term climatological means. Deleted: identifying

Formatted: Font color: Black

Deleted:).	
Deleted: stimulate of	either an
Deleted: in	
Deleted: CO2 uptak	e or a reduction in
Deleted: outgassin	g—either
Deleted: carbon rer	noval.
Deleted: circulation	ì ,
Deleted: ,	
Deleted: ,	
Deleted: ,	
Deleted: , or	
Deleted:	
Deleted: of	
Deleted: induced by	y the annual cycles of heating accompanied

Deleted: "	
Deleted: " that have	
Deleted: OGCM	
Deleted: -	

38 production and remineralization of organic matter. Boundary fluxes for OBM tracers include riverine inputs, aeolian 39 deposition, sediment-water exchange, and air-sea gas exchange. Fennel et al. (2023) provide an overview of the most relevant 40 modeling tools for OAE research with high-level background information, illustrative examples, and references to more in-41 depth methodological descriptions and further examples.

42 2. Specificities of <u>MRV</u> for marine CDR

The natural ocean carbon cycle is extremely dynamic on a wide range of temporal and spatial scales, typically spanning more than <u>ten</u> orders of magnitude (Sarmiento and Gruber, 2006). These scales range from that of the ocean skin, a thin layer of less than a millimeter in contact with the atmosphere where air-sea CO₂ exchange is controlled by molecular diffusion, to that of the global ocean circulation that typically transports dissolved carbon over more than a thousand years and 10,000 km. As such, the ocean represents a challenging environment for MRV, especially compared to MRV of land-based CDR techniques. Three specific time scales are to be considered when discussing challenges for MRV of mCDR, and in particular OAE.

:50 The first time scale relates to natural variability in carbonate chemistry, especially pCO_2 and alkalinity, due to :51 biological, chemical, and physical processes in the ocean. Such variability can be substantial on daily and seasonal time scales. 52 For example, using in situ observations from 37 stations spanning diverse ocean environments, Torres et al. (2021) showed :53 that in the open ocean stations, the average seasonal cycle of pCO_2 was $49 \pm 23 \mu atm_e$ (inter-station mean and standard 54 deviation), and that diurnal variability could also be as high as 47 ± 18 µatm. Temporal variability at coastal stations where 55 OAE is likely to be deployed — due to proximity to existing infrastructure, energy supply, and human resources — is significantly higher, with seasonal variability in pCO_2 being $210 \pm 76 \mu$ atm, and diurnal variability reaching $178 \pm 82 \mu$ atm, 56 :57 (Torres et al., 2021). OAE-induced changes in pCO2 are likely to be lower than the range in natural variability, complicating :58 MRV. For example, an increase in alkalinity of 10 µmol kg⁻¹ would result in a decrease in pCO₂ of around 20 µatm (given :59 temp =20°C; salinity = 35; initial TA = 2200 µmol kg⁻¹; DIC = 1965 µmol kg⁻¹ and no secondary precipitation or biotic 60 calcification). Historical carbonate system variability, like the examples given here, can be used in sensitivity studies to assess 61 the detectability of a given OAE perturbation for different observing systems (Mu et al., 2023). :62 The second of these time scales relates to air-sea CO2 equilibrium. This time scale is particularly relevant for OAE as

it determines the time required from an alkalinity-driven shift in surface seawater carbonate <u>equilibria</u> to a new air-sea CO₂ equilibrium and the resulting atmospheric carbon uptake. It is well established that the characteristic timescale for air-sea exchange of CO₂ is of the order of 6 months (Sarmiento and Gruber, 2006). But Jones et al. (2014) have shown that <u>the time</u> to reach air-sea CO₂ equilibrium is highly variable at the regional scale, ranging from less than a month to <u>several</u> years, with especially long values in the northern North Atlantic, the Atlantic subtropical gyres, and the Southern Ocean. This regional variability is explained by the dependency of the air-sea CO₂ equilibrium time scale on the gas transfer velocity, the depth of the mixed layer, and the <u>baseline</u> carbonate chemistry of seawater. More precisely, this time scale <u>shortens</u> with <u>higher</u> gas Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Deleted: , this volume) provides

Deleted: Ocean CDR	
Deleted: MRV	

Deleted: 10

Deleted: very Deleted: to carry out

Deleted: total
Formatted: Indent: First line: 0.5"
Deleted: .
Formatted: Font: Italic
Deleted: ,

(Deleted:	of particular relevance
(Deleted:	equilibrium
(Deleted:	this
(Deleted:	scale
~(Deleted:	almost 2
λ	Deleted:	initial
-(Deleted:	is negatively correlated
(Deleted	the

transfer <u>velocities</u> and Revelle <u>factors</u>, but <u>lengthens</u> with <u>deeper mixed layers</u> and <u>larger</u> ionization <u>fractions</u> (i.e., the ratio
 between DIC and dissolved CO₂).

The third of these time scales relates to ocean physical processes and alkalinity and carbon transport away from the injection location. First, horizontal currents, ranging from a few centimeters to a few meters per second, can potentially transport the OAE signal away from the initial injection site, thus complicating MRV. A simple calculation shows that a mean flow of 0.5 m_es⁻¹ could transport the alkalinity signal more than 100 km from the initial site, in six months. Second, vertical entrainment, mixing, and/or other subduction processes might also transport the OAE signal to depths below the seasonal mixed layer, potentially hindering atmospheric CO₂ uptake and associated MRV.

Lessons learned <u>from mesoscale in situ ocean iron fertilization (OIF)</u> studies <u>can be applied to MRV for OAE</u>
especially during pilot studies of unenclosed OAE-perturbed patches of surface waters that are upscaled beyond a few km².
Ocean circulation and mixing will cause a range of effects that are scale₂dependent and will influence MRV <u>strategies as it is</u>
used to target pilot studies and, eventually, larger deployments (100 km² scale). This presupposes that elements of MRV will
be needed at all spatial scales during the development and testing of an mCDR method.

The success of OIF in tracking and the repeated sampling of a coherent patch of perturbed waters over a timescale of
 weeks was due to the use of SF₆ as an ocean tracer (e.g., Coale et al., 1996), and, in one instance, using a quasi-controlled
 volume (e.g., within a mesoscale eddy; Smetacek et al., 2012). For example, the use of SF₆ allowed dynamic upper ocean
 behavior to be observed during an OIF perturbation, in which the perturbed water was subducted under less dense water in a
 few days, leading to the termination of the study (Coale et al., 1998). Subduction is a risk for the MRV of OAE trials being
 conducted in nearshore waters, and the use of tracers such as SF₆ would be crucial for observing this behavior.
 At larger spatial scales (i.e., for perturbations done in waters not bounded by eddies ≥100 km²), ocean physics imposes

a strain and concurrent rotation of a perturbed patch of ocean<u>t as such. OIF studies revealed</u> the perturbed patch of waters <u>can</u>
'grow' in areal extent from 100 km² to > 1000 km² via the entrainment of the surrounding 'control' seawater (Law et al., 2006).
Such entrainment sets up concentration gradients <u>that lead to fluxes</u> into (in the case of OIF, nutrients are resupplied to the nutrient-<u>depleted</u> patch) and out of (in the case of OIF, chlorophyll which has accumulated <u>due to OIF</u>, and iron <u>that has been</u> added) the perturbed waters. <u>Such artifacts may dilute the more alkaline waters in the patch of <u>unenclosed OAE perturbed</u> waters, which may hinder aspects of MRV such as detection of the OAE signal above a background level, or biological <u>side-</u> / effects resulting from OAE.
</u>

16 3. Observation-based techniques for MRV and limitations

17 OAE depends on <u>multi-step processes</u> to achieve mCDR: First, the intervention raises ocean alkalinity in order to

- 18 lower seawater pCO₂, and then atmospheric CO₂ must equilibrate with the altered waters. These processes point to many of
- 19 the variables that would ideally be observed in an OAE MRV scheme. Measurements of total alkalinity (TA) and DIC are

20 important to quantify the background state of the carbon system, which determines the pCO₂ response per unit change in

(Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

 Deleted:
 velocity...elocities and Revelle buffer factor...actors, but

 positively correlated...engthens with the depth of the...eeper mixed
 layer...ayers and the...arger ionization fraction

Deleted: have the potential to... can potentially transport the OAE signal away from the initial injection site, and ...hus complicate...omplicating MRV. A simple calculation using...hows that a mean flow of 0.5 ml..s shows a potential⁻¹ could transport of the alkalinity signal over a typical 6-month time ...ore than 100 km km away ...rom the initial site...in six months. Second, vertical entrainment and... mixing, and/or other subduction processes might also transport the OAE signal to depth (...[9])

Deleted: during Ocean Iron Fertilization (OIF) ...rom mesoscale in situ ocean iron fertilization (OIF) studies are applicable...an be applied to MKP for OAE... especially during pilot studies of unenclosed OAE-perturbed patches of surface waters that are upscaled beyond a few km². Ocean circulation and mixing will cause a range of effects that are scale ...dependent and will influence MRV across a range of approaches from pilot studies (of a f(....f10))

Deleted: Pilot studies following or ...he success of OIF in tracking and the perturbed area are often done in ...epeated sampling of a coherent patch of perturbed waters over a timescale of weeks was due to the use of SF₆ as an ocean tracer (e.g., Coale et al., 1996), and, in one instance, using a quasi-controlled volume (e.g., within a.n...mesoscale eddy; Smetacek et al..., 2012) or using a tracer such as SF₆ (e.g., Coale et al. 1996),..... For example, in the context of M (Measurement), ...he use of SF₆ in an OIF perturbation a....llowed dynamic upper ocean behavior to be observed during an OIF perturbation, in which the perturbed waters were...ater was subducted under less dense waters...ater in a few days, leading to the termination of the study (Coale et al. (....f11)

Deleted: (>...i.e., for perturbations done in waters not bounded by eddies >100 km³), ocean physics imposes a strain and concurrent rotation of a perturbed patch of ocean leading to ... as such, OIF studies revealed the perturbed patch of waters to ... an 'grow' in areal extent from 100 km² to > 1000 km² via the entrainment of the surrounding 'control' seawater (Law et al., 2006). Such entrainment sets up concentration gradients that lead to fluxes into (in the case of OIF, nutrients are resupplied to the nutrient-deplete...epleted patch) and out of (in the case of OIF, chlorophyll which has accumulated due to OIF, and iron which...hat has been added) the perturbed waters. In the case of OIF, these represent major...uch artifacts since the patch is transformed into a chemostat due to loss of chlorophyll and concurrent nutrient enrichment. Chemostats are used in phytoplankton lab cultures to maintain a steady state of bior(...[12])

Deleted: (at least) a two-stage process...ulti-step processes to achieve mCDR: First, the intervention raises ocean total ...lkalinity (TA)

Deleted: This two-stage process points to many of the variables that would ideally be observed in an OAE MRV scheme, namely TA and pCO₂ at the ocean's surface and DIC throughout the perturbed volume.

Formatted: Font: Italic

	• • • • • • • • • • • • • • • • • • •		Formatted: Font color: Black
-84	alkalinity. Further, measurements of TA might help verify that alkalinity has been added effectively, although signal-to-noise		Formatted: Normal, Line spacing: Multiple 1.15 li, No
-85	ratios may be insufficiently strong to enable robust detection and attribution of TA anomalies (Mu et al., 2023). pH is an		widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No
-86		l	border)
·87	deployment does not create conditions that induce precipitation. Finally, pCO2 at the ocean's surface is a key control on gas		
-88	exchange and is thus an important measurement target. With extensive measurements of these variables along the Lagrangian		
-89	pathway of a perturbed water mass, a carbon budget could theoretically be closed by constraining the time-rate of change and		
-90	making inferences about important driving processes such as air-sea gas exchange; such a budget could, in theory, be used to		
-91	support quantification of CDR for a given OAE deployment. Though appealing in its comprehensiveness, the reality of		Deleted: quantified
-92	observing all of the parameters needed to quantitatively close a perturbed carbon budget and compare it against an unperturbed		
.93	counterfactual is likely impossible in the near to medium-term, even in the context of highly-monitored field trials. The		
.94	difficulty is inherent in the fact that the patch of water perturbed by the addition of TA is likely to be turbulently dispersed in		
.95	the ocean, and its signal diluted below the limit of detectability by mixing over the time scale required for CO_2 equilibration		
-96	(He and Tyka, 2023; Mu et al., 2023; Wang et al., <u>2023</u>).		Deleted: 2022
.97	This leads to the conclusion that MRV via direct observational approaches should not be expected to completely		
-98	follow every molecule of additional CO2 resulting from an OAE deployment - as doing so would set an insurmountable barrier		
.99	to MRV. Instead, we outline what can feasibly be observed, what questions these observations can answer, and which questions		
00	are left to be addressed in statistical and/or prognostic models with their attendant uncertainties.		
01	Various autonomous sensors hold promise to inform the results of an OAE deployment, both in field trials and for		Deleted: A variety of
02	sampling that might offer constraints on open water applications and data for model validation and/or assimilation.		
03	The most direct measurement relevant to OAE experiments is TA, which would reveal if the initially planned		
04	perturbation was successful. Though autonomous sensors for TA have been in development for several years (Briggs et al.,		Deleted: were
05	2017), they are not commercially available at the time of writing, and the laboratory analysis of bottle samples cannot currently		
06	be replaced or even supplemented by sensor-based measurements (see Cyronak et al., 2023). Nevertheless, laboratory analysis		Deleted: Albright et al., 2023, this volume).
07	of TA in bottle samples can be compared to "baseline" measurements taken before the alkalinity is added or outside the		
08	expected patch area. The TA in the OAE-influenced patch may also be compared to a predicted counterfactual TA constructed		
09	from regression methods built with historical salinity (and other available) data, like the Locally Interpolated Alkalinity		
10	Regression (LIAR) method (Carter et al., 2018).		
11	In contrast to TA, to determine the ocean uptake of CO2, there are effective equilibrator-based autonomous pCO2		Deleted: sensors
12	systems (e.g., ASVCO2 TM , MAPCO2) capable of measuring pCO2 with a nominal accuracy of 2 µatm _* (R. Wanninkhof,		Deleted: ,
13	Personal Communication), although they are restricted to the top few meters of the surface ocean due to the fact that		Deleted: upper
14	equilibrators cannot be submerged. There are also in situ pCO2 sensors that rely on equilibrating seawater pCO2 with air	(Deleted: (~50 m). This
15	through a membrane (e.g., Pro-Oceanus CO2-Pro™ CV, CONTROS HydroC [®] CO ₂) or a pH-sensitive dye (e.g., SAMI-pH),		
16	followed by infrared detection or colorimetric spectroscopy. Due to fluctuations in the pressure of equilibration and calibration		
17	issues, the real-world accuracy of these instruments is ~5 µatm (R. Wanninkhof, Personal Communication). The existence of		
I	7		

		Sec. 1
27	autonomous pCO2 sensors is potentially important because while it is difficult to detect changes in the carbon inventory of the	
28	ocean with measurements of DIC, it can be done with measurements of pCO ₂ (Wanninkhof et al ₂ , 2013). These pCO ₂ sensors	
29	can be deployed on moorings (MAPCO2, ProCV) and autonomous surface vehicles like Wave Glider (ASVCO2) (Chavez et	
30	al., 2018) and Saildrone (Sabine et al., 2020; Sutton et al., 2021; Nickford et al., 2022). These sensors have the advantage of	
31	being able to collect measurements continuously in harsh weather and with much reduced involvement from skilled analysts	
32	relative to field surveys with bottle collection. Most analysis focuses on collecting and analyzing calibration samples and	1,-
33	performing quality control on data,	/_
34	Sensors that measure pH on autonomous profiling floats, gliders, or moored platforms could provide additional data	\mathbb{N}
35	useful for MRV. Unfortunately, as demonstrated by Wimart-Rousseau et al. (2023), pH sensors on profiling floats have	/
36	relatively large uncertainties that may compromise their usefulness for MRV. Moreover, these uncertainties are largest near	
37	the ocean's surface, where they would be most useful in the MRV context, as knowledge of the surface ocean disequilibrium	
38	is needed for CDR. Uncertainties in pH of 0.01 roughly translate to a pCO2 uncertainty of 10 µatm (Wimart-Rousseau et al.,	
39	2023), but even achieving such accurate pH measurements will require significant advances in sensor accuracy and/or post-	
40	processing data analysis tools to correct surface pH data.	
41	Another MRV-relevant aspect of OAE that is well suited for sensor measurements is the reduction of OAE efficiency	
42	via OAE-induced precipitation of carbonates (see Schulz et al., 2023, for further context). For example, marine calcifiers, such	
43	as coccolithophores, may benefit from high alkalinity and pH conditions, thus reducing OAE efficiency (Bach et al., 2019).	
44	but this effect is still uncertain (Gately et al., 2023). Autonomous optical sensors for particulate inorganic carbon (PIC) based	
45	on the birefringence of calcite and aragonite have been in development for several decades (James, 2009; Bishop et al, 2022).	
46	Since the deployment of the first prototype on a profiling float in 2003, this optical PIC sensor has been re-engineered several	$\mathcal{A}_{\mathbf{r}}$
47	times, and the most recent versions require further re-engineering to correct for thermal and pressure effects, as well as	
48	misalignment effects of the linear polarizers (Bishop et al., 2022). A new autonomous PIC measurement concept was recently	. //
49	proposed by Neukermans and Fournier (2022), which may overcome the aforementioned issues. Such PIC sensors are currently	/_
50	under development and are expected to cover a PIC concentration range of 0.5 to 500 µgC L-1 (Neukermans et al., 2023).	/.
51	These PIC sensors are intended for use on autonomous platforms such as floats profiling up to 2000 m deep, autonomous	
52	moorings, tethered buoys, or Saildrones. Such PIC sensors would thus enable careful autonomous monitoring of PIC	
53	concentration in the epi- and mesopelagic ocean, as well as in shallow shelf seas. In addition, ocean color satellites can be used	
54	to obtain global maps of coccolithophore PIC, concentration in the surface ocean at daily frequency using a variety of remote	
55	sensing algorithms (see Balch and Mitchell, 2023 for a review of remote sensing PIC algorithms and limitations). Both remote	
56	sensing and in situ observations of PIC concentration can contribute to assessing secondary precipitation and OAE efficiency.	
57	Other more remote tail risks of OAE include alterations to carbon production and flux, for example, via shifts in	
58	phytoplankton community structure (Ferderer et al., 2022) or alterations in the availability of high-density biominerals such as	
59	opal or calcite, which may ballast POC flux to the deep ocean (Armstrong et al., 2001; Klaas and Archer, 2002). Ballasting of	

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)
Deleted: .
Deleted: .
Deleted: sea state
Deleted: little
Deleted: of a
Deleted: analyst. The MAPCO2
Deleted: ASVCO2 were designed at NOAA-PMEL
Deleted: there are also SAMI and ProOceanus systems (see Albright et al., 2023, this volume, for more details).
Formatted: Font: Not Italic

Formatted: Font color: Black

D	eleted: , this volume
D	eleted: proliferate under
D	eleted:).
D	eleted: coccolithophore
D	eleted: intrinsic
D	eleted: also
D	eleted: by
D	eleted: . (2009,
D	eleted: the
D	eleted: was
D	eleted: effect
D	eleted:)
D	eleted: is expected to
in	eleted: designed to operate on autonomous platforms operating the epi- and mesopelagic ocean, such as profiling floats and aoys, in open ocean environments to
D	eleted:), enabling
D	eleted: .

88	in many experimental studies and may be an important mechanism in some ocean regions. This potential secondary effect of	
89	OAE on POC flux could be monitored from autonomous profiling floats equipped with a PIC sensor (Neukermans et al., 2023).	
90	Wind speed should be measured since it is the most common correlate for air-sea gas exchange, and there are wind	
91	speed/gas exchange parameterizations that predict gas transfer velocities well in the open ocean (e.g., Ho et al., 2006).	
92	Therefore, in these settings, measurements of wind speeds are sufficient to characterize air-sea gas exchange. However, since	
93	gas transfer velocities as a function of wind speed differ between the open and coastal oceans, (e.g., Dobashi and Ho, 2023),	
94	depending on the OAE deployment location, ³ He/SF ₆ tracer release experiments might have to be performed to determine this	
95	relationship (see Wanninkhof et al., 1993). While it is likely unfeasible to couple every individual OAE operation with a	
96	³ He/SF ₆ dual tracer release during the deployment phase, during the testing phase, such experiments will be useful for	
97	calibrating and evaluating models that will most likely be used to determine the efficiency and efficacy of CO2 equilibration.	1
1		1
98	4. Model-based techniques for MRV and limitations	
:99 L:00	OBMs can be used to explicitly represent the effects of OAE by conducting numerical experiments in which the	
00	model is provided with forcing data that represents alkalinity additions. <u>Developing and validating models in the region/scale</u>	
01	of OAE deployment should be a priority to enable <u>functional</u> frameworks for MRV _v (see Fennel et al., 2023).	
i02	A model integrated forward in time with the alkalinity additions will simulate the transport of the associated mass of	
03	alkalinity and its ensuing effect on biogeochemical processes, including <u>air-sea</u> gas exchange. These simulations can be used	
i04	to evaluate net carbon removal by comparing integrations that include the OAE signal to others in which that forcing is not	
05	present — i.e., the baseline counterfactual condition or "control." If an ensemble of integrations is performed, the variation of	
06	net carbon removal across the ensemble can be used to assess uncertainty. Notably, there are different potential sources of	
07	uncertainty: If intrinsic variability in ocean dynamics is considered the dominant source of uncertainty, an initial condition	
08	ensemble could provide an appropriate representation of uncertainty. If model structure, in contrast, is the dominant source of	
09	uncertainty, alternative approaches to ensemble construction could be employed, including perturbing parameters or using	
10	multiple models (see Fennel et al., 2023 for further discussion). Explicit simulation of OAE deployments can be compared to	
611	observations, including measurements from background observing systems, as well as bespoke data collection efforts	
12	associated with the OAE project. In some cases, explicit data assimilation (DA) procedures may be applied (see Fennel et al.,	
13	2023), potentially reducing model-data misfits and improving confidence in the model simulations. One challenge of applying	
14	DA to MRV is estimating additionality, which requires information about both the actual temporal evolution of the system and	
15	the counterfactual condition, i.e., the state of the system that would have occurred in the absence of the CDR intervention. The	
16	counterfactual condition is impossible to observe directly, and to the extent that observations contain an imprint of the CDR,	
17	DA cannot be used to generate explicit estimates of the baseline state. This raises conceptual issues because simulations	
18	conducted with and without DA are not directly comparable; thus, a difference between DA-constrained and free-running	
19	models cannot provide a valid estimate of additionality. Further research is needed to understand and address these problems.	

۸. 88

Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Deleted:	. Since

Deleted: ,

Deleted: e.g.	

Deleted: e.g.,	
Deleted: The	
Deleted: data	
Deleted: also	
Deleted: validating	

Deleted: Currently, fit-for-purpose models are not available,
Deleted: developing such
Deleted: function
Deleted:

Deleted: procedures may be applied (see Fennel et al., 2023, this volume), thereby potentially improving confidence in the model simulations and providing a means of both reducing and quantifying uncertainty....

35	Potential solutions ma	y rely on	the assump	otion that C	CDR sig	gnals are vei	ry small rel	ative to the	background	variability	and,	thus
2.5	D ((1 1 1 ()	1	41	c a	<u>. ממר</u>	1	11 1	1 A A	1 1 1	1 1 114	1	-1

36 essentially negligible in the context of the constraints on model solutions imposed by DA. Further, if the CDR interventions

can be assumed to have negligible impact on physical variables (e.g., temperature, salinity, currents, etc.), it may be possible

38 to use DA selectively on just these variables.

39 4.1 Modelling alkalinity addition

40 For the effects of OAE to be properly simulated, models must be supplied with the correct amount of alkalinity applied 41 as forcing. Alkalinity additions, if performed over hours to days, are likely to occur on scales nuch smaller than the ensuing 42 anomaly generated in air-sea CO2 exchange, typically occurring over months to years (see Section 2). For this reason, MRV 43 frameworks must invoke a separation of concerns, wherein near-field (i.e., within a few km of the source) processes are treated 44 differently than the broader regional effects. Explicit modeling of near-field dynamics is likely to require different modeling 45 frameworks (e.g., McGillicuddy, 2016) than those simulating the full expression of the OAE effects in the ocean-however, 46 it is not necessarily a requirement to simulate near-field dynamics in the context of MRV. Near-field processes must be 47 constrained by direct observations, and/or their dynamics must be accurately captured in verified parameterizations applied to 48 models too coarse to simulate the local effects explicitly (e.g., Fox-Kemper et al., 2019). Notably, different OAE technologies 49 and feedstocks present different challenges in this regard (see Eisaman et al., 2023). Electrochemical techniques, which might 50 produce, for instance, an alkalinity-enhanced stream from an outfall pipe, are different from crushed-rock particulates where 51 dissolution kinetics come into play. Moreover, as discussed in Fennel et al. (2023), ancillary constituents (e.g. iron or nickel) 52 associated with rock-derived feedstocks may induce biological responses with impacts on the total efficacy of the OAE process.

4.2 Representing OAE effects

54 \underline{To} provide a suitable basis for MRV applied to OAE deployments, models must meet several requirements and 55 provide a sufficiently accurate representation of alkalinity additions. First, models must provide a reasonable representation of ocean circulation and mixing; these processes are critical to determining the residence time of added alkalinity in the surface 56 57 mixed layer, where gas exchange with the atmosphere is possible. Given that the equilibration time scale for CO₂ via gas i58 exchange is long, the residence time of alkalinity-enhanced water parcels at the ocean surface is likely a primary control on 59 the efficiency of uptake (He and Tyka, 2023). Second, the models must accurately capture the surface ocean pCO_2 anomaly 60 induced by alkalinity additions. This implies having a correct representation of the carbon system thermodynamics (see Fennel 61 et al., 2023). Further, since the change in pCO2 depends on the background DIC:TA ratio (Hinrichs et al., 2023), it is important 62 that the model has a good representation of the mean state prior to perturbation, (Planchat et al., 2023). Third, presuming an accurate representation of the change in pCO2 and the transport of alkalinity following injection, the model must be able to 63 64 simulate the gas transfer of CO2 with sufficient accuracy. Notably, the gas transfer velocity is highly uncertain, particularly in 65 coastal environments where many OAE deployments are likely to occur, (e.g., Dobashi and Ho, 2023). If surface water 66 residence times are much longer than the gas equilibration timescale, uncertainty in the gas transfer velocity may not contribute

10

Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

(Deleted: Adding
(Deleted: to models
(Deleted: In order for
(Deleted: that are
	Deleted: .

Oeleted:

Deleted:

Deleted: , this volume

Deleted: In order to

Deleted: in addition to providing

leted:
leted: &
leted: 2022
eted: , this volume
leted: .
leted: .
leted: exchange
leted: .
leted: exchange

substantially to the overall uncertainty—but in intermediate regimes where the two timescales are comparable, uncertainty in the gas<u>transfer</u> velocity may be an important consideration. Finally, a comprehensive assessment of OAE efficacy will depend on accurate characterization of <u>feedbacks</u> in the biological system. If there are changes in the natural distribution of calcification or organic carbon export, this<u>term should be quantified</u>—or its potential magnitude and impact on overall carbon transfer<u>should be</u> assessed as a component of the uncertainty budget. At present, further empirical research is required to enable modeling systems to treat this aspect of OAE effects robustly<u>(Fennel et al., 2023)</u>.

92 5. The way forward for MRV of OAE,

'16

'17

93 There is much work to be done to establish how to optimize monitoring OAE with respect to which observations are 94 needed and at what spatial and temporal resolution and duration. Nevertheless, early field trials should all monitor, the initial 95 increase in alkalinity (i.e., both measured and modeled). Baseline alkalinity measurements should be made so that the range 96 of concentration within its natural variability is known before the deployment of alkalinity. Furthermore, if the enhancement 97 is done via the dissolution of pulverized rocks, the dissolution rate needs to be known under in situ conditions. Knowledge of 98 this rate includes the dependency on various factors such as temperature, salinity, etc. but also to what extent minerals become 99 buried in sediments and how this change in exposure affects dissolution. If the enhancement is done via electrochemistry, the '00' dosing rate of the solution (e.g., Mg(OH)2, NaOH) should be quantified and reported with complete information about the '01 measurement methods and a thorough accounting of their uncertainties.

Furthermore, any potential secondary precipitation caused by the alkalinity enhancement (e.g., if alkalinity is added too quickly, brucite precipitation could occur) should be monitored. Monitoring of secondary precipitation is particularly critical in the non-equilibrated state (i.e., before atmospheric CO₂ influx has occurred) and when the alkalinity-perturbed patch is in close contact with sediments since the risk for secondary precipitation is particularly high under these circumstances (see Eisaman et al., 2023; Schulz et al., 2023).

07Finally, the drawdown of $\underline{CO_2}$ in the ocean due to alkalinity addition should be measured. Given the potential natural08variability in pCO₂, especially in coastal regions, monitoring of pCO₂ should <u>also</u> be done before the OAE deployment.09Considering the spatial and time scales discussed above, these measurements will need to be complemented by modeling10approaches.

MRV of CO₂ influx after the application of OAE will likely depend on fit-for-purpose modeling (see Fennel et al., 2023). Exceptions to this may apply if the deployment is made in an enclosed area where the water is confined, or the deployment is made in a heavily instrumented and surveyed area of the ocean. Models used to constrain atmospheric CO₂ influx <u>must</u> be calibrated and <u>evaluated</u> with observations. Since CO₂ influx is due to physical and chemical processes, the following observational data to improve the modeling framework includes (but is not restricted to):

Observations of ocean currents from acoustic Doppler current profilers (ADCPs), Lagrangian floats or tracers like
 <u>SF6</u>, and remote sensing;

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Deleted: exchange

(Deleted: feedback

Deleted: "leakage"

Deleted:

Deleted: 4.3 Defining the baseline counterfactual

Identifying an appropriate framework to define counterfactual scenarios involves somewhat nuanced judgment and depends on knowledge of the nature of OAE-induced feedback. In the simplest case, it may be possible to ignore feedback between OAE and the ocean's physical state, including patterns in circulation and mixing. In the absence of physical feedback, the control state would have identical circulation dynamics (at least in a statistical sense). It is important to understand, therefore, whether there is feedback between OAE and the ocean's physical state. Some potential mechanisms for such feedback are easy to imagine. For example, if OAE changes the distribution of primary [... [14]

Deleted: on

Deleted:	MRV
Moved do	own [1]: Early-stage MRV research for OAE may
Moved do	Dwn [2]: 2016). Researchers should eschew any
Deleted:	To fulfill these obligations, best practices includ [15]
Deleted:	Early field trials are recommended to be as ([16]
Deleted:	for both obvious, first-order risks like secondary [17]
Deleted:	should be tailored to the key processes in questic [18]
Moved do	Dwn [3]: that models may be used for a long list of
Deleted:	
Moved do	Dwn [4]: measurement and mapping errors) and expert
Deleted:	An honest assessment of the poorly constrained ([19]
Deleted:	should be monitored
Deleted:	If the enhancement is done via the dissolution of [20]
Deleted:	minerals. Furthermore
Deleted:	and the precise amount of added alkalinity need ([21]
Deleted:	Chapter 2
Deleted:	pCO ₂
Deleted:	
Deleted:	
Deleted:	, this volume
Deleted:	will need to
Deleted:	validated
Deleted:	observations of ocean currents from ADCPs, La

- Observations of air-sea gas exchange from ³He/SF₆ tracer release experiments;
 - Temperature and salinity profile measurements;

42

:43

• Measurements of carbonate chemistry parameters (i.e., TA, pH, pCO₂, and DIC).

44 While it appears that OBMs will ultimately provide a critical foundation for robust ocean MRV frameworks, they are :45 not currently ready to serve in this capacity (Fennel et al., 2023). These models represent complicated systems; Ocean General :46 Circulation Models (OGCMs) are based on fundamental governing equations, but solving these equations numerically requires :47 approximations, (e.g., Fox-Kemper et al. 2019). Ocean ecosystems comprise diverse groups of organisms with differing 48 physiological capacities and complex interactions. There are no generally accepted governing equations for these systems; :49 rather, models are built on the basis of empirically determined relationships and theory or hypothesis, (e.g., Planchat et al., 50 2023). For OBMs to provide a credible basis to support ocean MRV, they must be based on broadly accepted theory or well-51 constrained parameterizations, and they must be explicitly validated relative to the quantification of gas exchange anomalies :52 arising as a result of perturbations in alkalinity. Models have not yet been robustly validated in the context of these explicit :53 requirements.

54 We note that at this point, we have yet to develop the best modeling tools for OAE MRV (and likely MRV for mCDR :55 in general). A rigorous research and development program to establish OBMs as fit-for-purpose, credible tools for MRV are 56 needed. However, there is currently a major problem with basing MRV on models. OBMs are run on high-performance 57 computing architectures, and because they are big calculations, they are very computationally expensive, (and therefore 58 financially expensive). It is unlikely that technological innovation will dramatically reduce this computational cost in the next :59 5-10 years, during which time we will be required to deliver a functional framework for MRV. Therefore, we suggest 60 combining direct model simulations with advanced statistical approaches to overcome the computational challenges. First, we 61 must establish that models can provide credible representations of key CDR processes by ensuring that model output agrees 62 with available observations. Then, we can leverage these models to generate datasets from which to derive robust statistical 63 approximations, including through the application of techniques derived from artificial intelligence and machine learning. For 64 instance, well-calibrated models could be used to produce training data for machine learning algorithms to predict the CDR 65 efficiency of OAE deployments in different locations at different times, i.e. 66 such as water temperature, carbonate chemistry, mixed layer depth such as suggested in Bach et al. (2023).

0/	Conducting expirit OAE modeling experiments coupled with field trials are important research milestones necessary
68	to identify the long-term approach to robust MRV. It is likely that the models that can effectively support field trials will use
69	regional OGCMs that are capable of high-fidelity simulations of ocean flows at scales commensurate with those driving the
70	initial dispersion of OAE signal on timescales of weeks to months. Unless alkalinity is continuously applied at a level
71	measurable by long-duration observing platforms, the OAE signals are likely to be diluted and less easily tracked with
72	observations. Critically, it is important to demonstrate that the models provide simulations consistent with the carbonate
73	chemistry and deliberate tracer observations.

Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

_
_

Deleted:	is
Deleted:	
Deleted:	are
Deleted:	while models are required for MRV,
Deleted:	first need to
Deleted:	a.We
Deleted:	then
Deleted:	AI
Deleted:	f.
Deleted:	
(Deleted:	Beyond this initial period

Deleted: that are

	<u>ــــــــــــــــــــــــــــــــــــ</u>		Formatted: Font color: Black
91	Models that compare well to observations can be deemed credible for assessing OAE effects. However, fully, explicit	\sim	Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No
92	mechanistic calculations are computationally intensive and thus unlikely to provide a scalable framework for conducting MRV		border), Left: (No border), Right: (No border), Between : (No
93	under the scenario of widespread OAE deployments. On this basis, it is important that research on OAE field trials aims toward	\mathbb{V}	border) Deleted: -
94	building trust in models to develop approaches to MRV that can be accomplished at a reduced computational cost.	\sim	Deleted: -
95	6. Key recommendations for MRV of OAE		
96	Early-stage MRV research for OAE may become the foundation on which regulated markets are built. Therefore,		Moved (insertion) [1]
97	such research carries a special obligation toward comprehensiveness, reproducibility, and transparency. To fulfill these		
98	obligations, we suggest the following overarching best practice guidelines:		
99	• Field trials should be co-designed with modelers and observationalists to enable the iterative process of model		
00	validation and improvement and dynamically informed data interpretation. In some scenarios, co-design may entail		
01	the development of formal Observing System Simulation Experiments, and data-assimilating state estimates (Fennel		
02	<u>et al., 2023).</u>		
03	•MRV techniques and results should be well-documented and archived publicly and promptly, without restriction (e.g.,	(Formatted: Outline numbered + Level: 1 + Numbering
04	Planetary Technologies, 2023). Ideally, a central registry of OAE experiments would adhere to FAIR (Findable,	C	Style: Bullet + Aligned at: 0.25" + Indent at: 0.5"
05	Accessible, Interoperable, and Reproducible) data standards (Wilkinson et al. 2016). Researchers should eschew any		Moved (insertion) [2]
06	practice that withholds MRV innovation from the community to "build a moat" in support of a commercial mCDR		
07	approach.		
08	• Early field trials are recommended to be as comprehensive as possible, monitoring for obvious, first-order risks like		
09	secondary precipitation and more remote tail risks like alterations to export production via shifts in phytoplankton		
10	community structure and mineral ballasting.		
11	• Model evaluation against observations should be tailored to the key processes in question. Fennel et al. (2023) argue		Moved (insertion) [3]
12	that models may be used for a long list of purposes, including, for example, simulating ecosystem effects and	\neg	Formatted: Outline numbered + Level: 1 + Numbering Style: Bullet + Aligned at: 0.25" + Indent at: 0.5"
13	sediment-water exchanges. Early MRV efforts can expose model skill and deficiencies in simulating these processes	C	Style. Bullet + Aligheu al. 0.25 + Indent al. 0.5
14	if the relevant observations are prioritized.		
15	• An uncertainty budget should be quantified that includes both known uncertainties (e.g., measurement and mapping		Moved (insertion) [4]
16	errors) and expert estimates of presently unmeasurable risks. A comprehensive assessment of the poorly constrained		
17	uncertainties will point to key research areas in the future.		
18			

21	Competing interests
----	---------------------

22 DTH and MCL are Co-Founders as well as Director of Science and Executive Director, respectively, of [C]Worthy, LLC, a

23 non-profit research organization focused on building open-source tools to support MRV for marine CDR. DTH is also a

24 Science Advisor at Carbon Direct, Inc., an end-to-end carbon management company. LTB is a scientific advisor to Submarine,

a start-up service provider for MRV of marine CDR.

26 Acknowledgments

127 This is a contribution to the "Guide for Best Practices on Ocean Alkalinity Enhancement Research," We thank our funders the

28 ClimateWorks Foundation and the Prince Albert II of Monaco Foundation. PWB was supported by the Australian Research

- 29 Council (ARC) through a Laureate (FL160100131). LTB was supported by the ARC through Future Fellowship
- 130 (FT200100846) and by the Carbon-to-Sea Initiative. GN has received funding from the European Research Council (ERC)
- under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 853516 CarbOcean),
- 132 UGent's Industrial Research Fund (F2020/IOF-StarTT/088), and Special Research Fund (BOF/STA/202002/011). Thanks are

also due to the Villefranche Oceanographic Laboratory for supporting the lead authors' meeting in January 2023.

Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Deleted: The contact author has declared that none of the authors has any competing interests

Deleted: "

	<u>۸</u>	Section	Formatted: Font color: Black)
37	References	1	Formatted	([23])
138 139	Andersson, A. J., L. A. Krug, N. R. Bates, and S. C. Doney (2013), Sea-air CO ₂ flux in the North Atlantic subtropical gyre:		Formatted: Font: Bold, Font color: Black	
40	Andersson, A. J., L. A. Krug, N. R. Bales, and S. C. Doney (2015), Sea-air CO ₂ flux in the North Atlantic subtropical gyre: Role and influence of Sub-Tropical Mode Water formation, <i>Deep Sea Res. II</i> , 91, 57-70,	//	Formatted	[24])
41	https://doi.org/https://doi.org/10.1016/j.dsr2.2013.02.022.		Deleted: Anderson, W. G., Gnanadesikan, A.,	
42	Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham (2001), A new, mechanistic model for organic carbon		Deleted: Anderson, W. G., Ghanadesikan, A.,	Hanberg, R [25])
43	fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep Sea Res. II, 49(1), 219-236,			
44	https://doi.org/https://doi.org/10.1016/S0967-0645(01)00101-1.			
45	Bach, L. T. (2023), The additionality problem of Ocean Alkalinity Enhancement, Biogeosciences Discuss., 2023, 1-25,	1	Formatted: Font color: Black)
46	https://doi.org/10.5194/bg-2023-122.		Formatted	([26])
47	Bach, L. T., S. J. Gill, R. E. M. Rickaby, S. Gore, and P. Renforth (2019), CO ₂ Removal With Enhanced Weathering and	1	Formatted	([27])
48 49	Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems, <i>Frontiers in Climate</i> , 1(7), https://doi.org/10.3389/fclim.2019.00007,	1	Deleted: 1	<u> </u>
50	Bach, L. T., D. T. Ho, P. W. Boyd, and M. D. Tyka (2023), Toward a consensus framework to evaluate air-sea CO ₂		Formatted: Font color: Black	
51	equilibration for marine CO ₂ removal, <i>Limnology And Oceanography Letters</i> , https://doi.org/10.1002/lol2.10330,	Comment		
52	Balch, W. M., and C. Mitchell (2023), Remote sensing algorithms for particulate inorganic carbon (PIC) and the global cycle	Sec. 1	Deleted: https://doi.org/10.1002/lol2.10330.	2
153	of PIC, Earth-Science Reviews, 239, 104363, https://doi.org/https://doi.org/10.1016/j.earscirev.2023.104363.		Formatted: Font color: Black)
54	Bishop, J. K. B., V. J. Amaral, P. J. Lam, T. J. Wood, JM. Lee, A. Laubach, A. Barnard, A. Derr, and C. Orrico (2022),		Deleted: 1	([28])
55	Transmitted Cross-Polarized Light Detection of Particulate Inorganic Carbon Concentrations and Fluxes in the Ocean Water	and the second s	Formatted: Font color: Black	
56	Column: Ships to ARGO Floats, Frontiers in Remote Sensing, 3, https://doi.org/10.3389/frsen.2022.837938,	. \	Formatted	([29])
157 158	Briggs, E. M., S. Sandoval, A. Erten, Y. Takeshita, A. C. Kummel, and T. R. Martz (2017), Solid State Sensor for Simultaneous			
158 159	Measurement of Total Alkalinity and pH of Seawater, <u>ACS Sensors</u> <u>2(9)</u> , <u>1302-1309</u> , <u>https://doi.org/10.1021/acssensors.7b00305</u>	M/N	Deleted: https://doi.org/10.3389/frsen.2022.83	\rightarrow
60	Carbon Direct and Microsoft (2023), Criteria for high-quality carbon dioxide removal. [Accessed: 26 September 2023].	M	Formatted	([30])
61	Carter, B. R., R. A. Feely, N. L. Williams, A. G. Dickson, M. B. Fong, and Y. Takeshita (2018), Updated methods for global	M/	Formatted: Font color: Black)
62	locally interpolated estimation of alkalinity, pH, and nitrate, Limnology and Oceanography: Methods, 16(2), 119-131,		Deleted: 1	
63	https://doi.org/10.1002/lom3.10232.		Formatted	[31]
64	Chavez, F. P., J. Sevadjian, C. Wahl, J. Friederich, and G. E. Friederich (2018), Measurements of pCO ₂ and pH from an		Moved (insertion) [5]	<u> </u>
65	autonomous surface vehicle in a coastal upwelling system, <u>Deep Sea Res. II, 151, 137-146</u> ,			
66	https://doi.org/10.1016/j.dsr2.2017.01.001		Moved (insertion) [6]	
67	Coale, K. H., K. S. Johnson, S. E. Fitzwater, S. P. G. Blain, T. P. Stanton, and T. L. Coley (1998), IronEx-I, an in situ iron-		Deleted: 1)
168 169	enrichment experiment: Experimental design, implementation and results, <u>Deep Sea Res. II, 45(6), 919-945</u> , https://doi.org/10.1016/S0967-0645(98)00019-8,		Formatted: Font color: Black)
70	Coale, K. H., K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. Tanner, F. P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F.		Formatted: Font color: Black	
71	Millero, P. Steinberg, P. Nightingale, D. Cooper, W. P. Cochlan, M. R. Landry, J. Constantinou, G. Rollwagen, A. Trasvina,	Π	Moved down [7]: Coale, K. H., K. S. Johnso	n, S. E. Fitzwater.
72	and R. Kudela (1996), A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the		Deleted: https://doi.org/10.1038/383495a0.	
73	equatorial Pacific Ocean, Nature, 383(6600), 495-501, https://doi.org/10.1038/383495a0.			([33])
74	Cyronak, T., R. Albright, and L. Bach (2023), Field experiments in ocean alkalinity enhancement research, in Guide to Best		Formatted	([32])
75	Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23), edited by A. Oschlies, A. Stevenson, L. Bach, K.		Formatted	[34]
י76 י77	Fennel, R. Rickaby, T. Satterfield, R. Webb and JP. Gattuso, Copernicus Publications, State Planet, https://doi.org/:10XXXXX.		Deleted: https://doi.org/10.1016/j.dsr2.2017.0	1.001.
78	$\frac{XXXXX}{D}$ Dobashi, R., and D. T. Ho (2023), Air-sea gas exchange in a seagrass ecosystem – results from a ³ He/SF ₆ tracer release		Formatted: Font color: Black	
179	experiment, <i>Biogeosciences</i> , 20(6), 1075-1087, https://doi.org/10.5194/bg-20-1075-2023.		Deleted:	
80	Eisaman, M. D., S. Geilert, P. Renforth, L. Bastianini, J. Campbell, A. W. Dale, S. Foteinis, P. Grasse, O. Hawrot, C. R.		Formatted	
81	Löscher, G. H. Rau, and J. Rønning (2023), Assessing technical aspects of ocean alkalinity enhancement approaches, in Guide			([35])
182	to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23), edited by A. Oschlies, A. Stevenson, L. Bach,		Deleted: https://doi.org/10.1016/S0967-0645(50,00019-8.
183	K. Fennel, R. Rickaby, T. Satterfield, R. Webb and JP. Gattuso, Copernicus Publications, State Planet, https://doi.org/:10		Formatted: Font color: Black	
184	XXXXX.		(Moved (insertion) [7])

Deleted: ¶ Formatted

... [36]

45 Fassbender, A. J., S. Schlunegger, K. B. Rodgers, and J. P. Dunne (2022), Quantifying the Role of Seasonality in the Marine 146 Carbon Cycle Feedback: An ESM2M Case Study, Glob. Biogeochem. Cycle, 36(6), e2021GB007018, 47 https://doi.org/10.1029/2021GB007018. 148 Fennel, K., M. C. Long, C. Algar, B. Carter, D. Keller, A. Laurent, J. P. Mattern, R. Musgrave, A. Oschlies, J. Ostiguy, J. 49 Palter, and D. B. Whitt (2023), Modeling considerations for research on Ocean Alkalinity Enhancement (OAE), in Guide to 150 Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23), edited by A. Oschlies, A. Stevenson, L. Bach, K. Fennel, R. Rickaby, T. Satterfield, R. Webb and J.-P. Gattuso, Copernicus Publications, State Planet, https://doi.org/:10.-151 152 XXXXX. 153 Ferderer, A., Z. Chase, F. Kennedy, K. G. Schulz, and L. T. Bach (2022), Assessing the influence of ocean alkalinity 154 enhancement on a coastal phytoplankton community, Biogeosciences, 19(23), 5375-5399, https://doi.org/10.5194/bg-19-5375-155 2022 156 Ford, D. J., G. H. Tilstone, J. D. Shutler, V. Kitidis, K. L. Sheen, G. Dall'Olmo, and I. B. M. Orselli (2023), Mesoscale Eddies 157 Enhance the Air-Sea CO2 Sink in the South Atlantic Ocean, Geophys. Res. Lett. 50(9), e2022GL102137 158 https://doi.org/https://doi.org/10.1029/2022GL102137. 159 Fox-Kemper, B., A. Adcroft, C. W. Böning, E. P. Chassignet, E. Curchitser, G. Danabasoglu, C. Eden, M. H. England, R. 60 Gerdes, R. J. Greatbatch, S. M. Griffies, R. W. Hallberg, E. Hanert, P. Heimbach, H. T. Hewitt, C. N. Hill, Y. Komuro, S. 161 Legg, J. Le Sommer, S. Masina, S. J. Marsland, S. G. Penny, F. Qiao, T. D. Ringler, A. M. Treguier, H. Tsujino, P. Uotila, 162 and S. G. Yeager (2019), Challenges and Prospects in Ocean Circulation Models, Frontiers in Marine Science, 6, 163 https://doi.org/10.3389/fmars.2019.00065. Friedlingstein, P., M. O'Sullivan, M. W. Jones, R. M. Andrew, L. Gregor, J. Hauck, C. Le Quéré, I. T. Luijkx, A. Olsen, G. P. 64 165 Peters, W. Peters, J. Pongratz, C. Schwingshackl, S. Sitch, J. G. Canadell, P. Ciais, R. B. Jackson, S. R. Alin, R. Alkama, A. 66 Arneth, V. K. Arora, N. R. Bates, M. Becker, N. Bellouin, H. C. Bittig, L. Bopp, F. Chevallier, L. P. Chini, M. Cronin, W. 67 Evans, S. Falk, R. A. Feely, T. Gasser, M. Gehlen, T. Gkritzalis, L. Gloege, G. Grassi, N. Gruber, Ö. Gürses, I. Harris, M. 68 Hefner, R. A. Houghton, G. C. Hurtt, Y. Iida, T. Ilyina, A. K. Jain, A. Jersild, K. Kadono, E. Kato, D. Kennedy, K. Klein 169 Goldewijk, J. Knauer, J. I. Korsbakken, P. Landschützer, N. Lefèvre, K. Lindsay, J. Liu, Z. Liu, G. Marland, N. Mayot, M. J. 170 McGrath, N. Metzl, N. M. Monacci, D. R. Munro, S. I. Nakaoka, Y. Niwa, K. O'Brien, T. Ono, P. I. Palmer, N. Pan, D. Pierrot, 171 K. Pocock, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, C. Rodriguez, T. M. Rosan, J. Schwinger, R. Séférian, J. 172 D. Shutler, I. Skjelvan, T. Steinhoff, Q. Sun, A. J. Sutton, C. Sweeney, S. Takao, T. Tanhua, P. P. Tans, X. Tian, H. Tian, B. 173 Tilbrook, H. Tsujino, F. Tubiello, G. R. van der Werf, A. P. Walker, R. Wanninkhof, C. Whitehead, A. Willstrand Wranne, R. 174 Wright, W. Yuan, C. Yue, X. Yue, S. Zaehle, J. Zeng, and B. Zheng (2022), Global Carbon Budget 2022, Earth Syst. Sci. 175 Data, 14(11), 4811-4900, https://doi.org/10.5194/essd-14-4811-2022. 176 Fuhr, M., S. Geilert, M. Schmidt, V. Liebetrau, C. Vogt, B. Ledwig, and K. Wallmann (2022), Kinetics of Olivine Weathering in Seawater: An Experimental Study, Frontiers in Climate, 4, https://doi.org/10.3389/fclim.2022.831587. 177 178 Gately, J. A., S. M. Kim, B. Jin, M. A. Brzezinski, and M. D. Iglesias-Rodriguez (2023), Coccolithophores and diatoms 179 resilient to ocean alkalinity enhancement: A glimpse of hope?, Science Advances, 9(24), eadg6066. 180 https://doi.org/10.1126/sciadv.adg6066. 181 Hartmann, J., N. Suitner, C. Lim, J. Schneider, L. Marín-Samper, J. Arístegui, P. Renforth, J. Taucher, and U. Riebesell (2023), 182 Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches - consequences for durability of CO2 storage, 183 Biogeosciences, 20(4), 781-802, https://doi.org/10.5194/bg-20-781-2023. 84 He, J., and M. D. Tyka (2023), Limits and CO₂ equilibration of near-coast alkalinity enhancement, Biogeosciences, 20(1), 27-4 185 43, https://doi.org/10.5194/bg-20-27-2023, Hinrichs, C., P. Köhler, C., Völker, and J., Hauck (2023), Alkalinity biases in CMIP6 Earth System Models and implications 186 for simulated CO2 drawdown via artificial alkalinity enhancement. Biogeosciences Discuss, 2023, 1-21, 187 188 https://doi.org/10.5194/bg-2023-26, 189 Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey, and P. Hill (2006), Measurements of air-sea gas exchange at high 190 wind speeds in the Southern Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, L16611, 91 https://doi.org/10.1029/2006GL026817. 192 Huang, Y., Andrea J. Fassbender, and Seth M. Bushinsky (2023), Biogenic carbon pool production maintains the Southern 193 Ocean carbon sink, Proceedings of the National Academy of Sciences, 120(18), e2217909120,

194 https://doi.org/10.1073/pnas.2217909120.

16

Formatted: Font color: Black

Formatted: Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Moved (insertion) [8]

Formatted: Font: Italic, Font color: Black

Formatted: Font color: Black

Formatted: Font color: Black

Formatted: Font: Italic, Font color: Black

Formatted: Font color: Black

Formatted: Font: Italic, Font color: Black

Formatted: Font color: Black

Formatted: Line spacing: single, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Deleted: https://doi.org/10.5194/bg-20-27-2023.

Formatted: Font color: Black

Deleted: 1

Formatted: Font color: Black Formatted: Font color: Black Deleted: P., Deleted: C., & Deleted: , J. Deleted:). Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Deleted: .

Deleted: https://doi.org/10.5194/bg-2023-26.

Formatted: Font color: Black

Formatted: Font: Italic, Font color: Black

Formatted: Font color: Black

Formatted: Font: Italic, Font color: Black

Formatted: Font color: Black

Formatted: Font color: Black

Deleted: ¶ Jackson,

		Formatted
)5	Iglesias-Rodríguez, M. D., R. E. M. Rickaby, A. Singh, and J. A. Gately (2023), Laboratory experiments in ocean alkalinity	Moved up [6]: G.
)6	enhancement research, in <i>Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23)</i> , edited by A.	Formatted
)7)8	Oschlies, A. Stevenson, L. Bach, K. Fennel, R. Rickaby, T. Satterfield, R. Webb and JP. Gattuso, Copernicus Publications, State Planet, https://doi.org/10XXXXX.	(Deleted: A. (1990), A
)9	Judicone, D., K. B. Rodgers, Y. Plancherel, O. Aumont, T. Ito, R. M. Key, G. Madec, and M. Ishii (2016), The formation of	//>
10	the occan's anthropogenic carbon reservoir, <i>Scientific Reports</i> , 6(1), 35473, https://doi.org/10.1038/srep35473.	Moved up [5]: A.
1	James, K. B. B. (2009), Autonomous Observations of the Ocean Biological Carbon Pump, Oceanography, 22,	Formatted
12	https://doi.org/10.5670/oceanog.2009.48.	Deleted: Oceanographi
13	Jones, D. C., T. Ito, Y. Takano, and WC. Hsu (2014), Spatial and seasonal variability of the air-sea equilibration timescale	Moved up [8]: Res. L
14 15	of carbon dioxide, <i>Glob. Biogeochem. Cycle</i> , 28(11), 1163-1178, https://doi.org/10.1002/2014GB004813, Klaas, C., and D. E. Archer (2002), Association of sinking organic matter with various types of mineral ballast in the deep sea:	Formatted
16	Implications for the rain ratio, <i>Glob. Biogeochem. Cycle</i> , <i>16</i> (4), 63-61-63-14,	Deleted: 32(13), https:
17	https://doi.org/https://doi.org/10.1029/2001GB001765.	Formatted
18	Landschützer, P., G. G. Laruelle, A. Roobaert, and P. Regnier (2020), A uniform pCO ₂ climatology combining open and	Deleted: https://doi.org
19	coastal oceans, Earth Syst. Sci. Data, 12(4), 2537-2553, https://doi.org/10.5194/essd-12-2537-2020.	Formatted
20	Law, C. S., W. R. Crawford, M. J. Smith, P. W. Boyd, C. S. Wong, Y. Nojiri, M. Robert, E. R. Abraham, W. K. Johnson, V.	
21	Forsland, and M. Arychuk (2006), Patch evolution and the biogeochemical impact of entrainment during an iron fertilisation	Deleted:
22 23	experiment in the sub-Arctic Pacific, <i>Deep Sea Res. II</i> , 53(20), 2012-2033, <u>https://doi.org/10.1016/j.dsr2.2006.05.028</u> , McGillicuddy, D. J. (2016), Mechanisms of Physical-Biological-Biological-Biogeochemical Interaction at the Oceanic Mesoscale, <i>Ann</i>	Formatted
24	Rev Mar Sci, 8(1), 125-159, https://doi.org/10.1146/anurev-marine-010814-015606.	Formatted
25	Middelburg, J. J., K. Soetaert, and M. Hagens (2020), Ocean Alkalinity, Buffering and Biogeochemical Processes. Rev.	Formatted
26	Geophys., 58(3), e2019RG000681, https://doi.org/https://doi.org/10.1029/2019RG000681,	Deleted: https://doi.org
27	Moras, C. A., L. T. Bach, T. Cyronak, R. Joannes-Boyau, and K. G. Schulz (2022), Ocean alkalinity enhancement – avoiding	Formatted
28 29	runaway CaCO ₃ precipitation during quick and hydrated lime dissolution, <i>Biogeosciences</i> , 19(15), 3537-3557,	Deleted:
29 30	https://doi.org/10.5194/bg-19-3537-2022. Mu, L., J. B. Palter, and H. Wang (2023), Considerations for hypothetical carbon dioxide removal via alkalinity addition in the	Formatted
31	the Amazon River watershed, <i>Biogeosciences</i> , 20(10), 1963-1977, https://doi.org/10.5194/bg-20-1963-2023,	//>
32	Nakano, H., H. Tsujino, M. Hirabara, T. Yasuda, T. Motoi, M. Ishii, and G. Yamanaka (2011), Uptake mechanism of	Formatted
33	anthropogenic CO ₂ in the Kuroshio Extension region in an ocean general circulation model, Journal of Oceanography, 67(6),	Formatted
34	765-783, https://doi.org/10.1007/s10872-011-0075-7.	Deleted: K., &
35 36	Neukermans, G., L. T. Bach, A. Butterley, Q. Sun, H. Claustre, and G. R. Fournier (2023), Quantitative and mechanistics understanding of the open ocean carbonate pump - perspectives for remote sensing and autonomous in situ observation, <i>Earth</i> -	Formatted
37	Science Reviews, 239, 104359, https://doi.org/https://doi.org/10.1016/j.earscirev.2023.104359,	Deleted: , M.
38	Neukermans, G., and G. R. Fournier (2022), A method to produce a matched pair of polarizing filters and a method and	Deleted:).
39	apparatus to determine the concentration of birefringent particles using a pair of polarizing filters, edited	Deleted:
40	Nicholson, SA., D. B. Whitt, I. Fer, M. D. du Plessis, A. D. Lebéhot, S. Swart, A. J. Sutton, and P. M. S. Monteiro (2022),	Formatted
41 12	Storms drive outgassing of CO ₂ in the subpolar Southern Ocean, <i>Nature Communications</i> , 13(1), 158,	Formatted
42 43	https://doi.org/10.1038/s41467-021-27780-w. Nickford, S., J. B. Palter, K. Donohue, A. J. Fassbender, A. R. Gray, J. Long, A. J. Sutton, N. R. Bates, and Y. Takeshita	Deleted: . https://doi.or
14	(2022), Autonomous Wintertime Observations of Air-Sea Exchange in the Gulf Stream Reveal a Perfect Storm for Ocean CO ₂	
45	Uptake, Geophys. Res. Lett., 49(5), e2021GL096805, https://doi.org/10.1029/2021GL096805.	Formatted
16	Palter, J. B., J. Cross, M. C. Long, P. A. Rafter, and C. E. Reimers (2023), The science we need to assess marine carbon dioxide	Formatted
17	removal, Eos, 104, https://doi.org/10.1029/2023EO230214.	Deleted: 1
48 19	Planchat, A., L. Kwiatkowski, L. Bopp, O. Torres, J. R. Christian, M. Butenschön, T. Lovato, R. Séférian, M. A. Chamberlain, O. Aumont, M. Watanabe, A. Yamamoto, A. Yool, T. Ilyina, H. Tsujino, K. M. Krumhardt, J. Schwinger, J. Tjiputra, J. P.	Formatted
+9 50	Dunne, and C. Stock (2023), The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system	Formatted
51	models and implications for the carbon cycle, <i>Biogeosciences</i> , 20(7), 1195-1257, https://doi.org/10.5194/bg-20-1195-2023.	Deleted: https://doi.org
52	Planetary Technologies (2023), Measurement, Reporting, and Verification (MRV) Protocol for OAE Carbon Removals.	Formatted
53	[Accessed: 1 September, 2023].	Formatted
		>
		Deleted: 1
	17	Formatted
		Formatted
		Formatted
		Deleted: https://doi.org

Formatted	([37]
Formatted	([38]
Moved up [6]: G.	
Formatted	([39]
Deleted: A. (1990), A model of the formation of mar	
Moved up [5]: A.	([]
Formatted	([41]
Deleted: Oceanographic Research Papers, 37(8), 119	7-12 [42]
Moved up [8]: Res. Lett.,	([74]
Formatted	([43]
Deleted: 32(13), https://doi.org/10.1029/2005GL023	
Formatted	
Deleted: https://doi.org/10.1002/2014GB004813.	([45]
Formatted	
Deleted: 1	([46]
>	
Formatted	([47]
Formatted	([48]
Formatted	([49]
Deleted: https://doi.org/10.1016/j.dsr2.2006.05.028.	
Formatted	([50]
Deleted: 1	
Formatted	([51]
Formatted	([52]
Formatted	([53]
Deleted: K., &	
Formatted	([54]
Deleted: , M.	
Deleted:).	
Deleted:	
Formatted	([55]
Formatted	([56]
Deleted: . https://doi.org/10.1029/2019RG000681	
Formatted	([57]
Formatted	([58]
Deleted: 1	([50]
Formatted	[[[0]
Formatted	([59]
Deleted: https://doi.org/10.5194/bg-20-1963-2023.	([60]
Formatted	
Formatted	([61]
	([62]
Deleted: 1	
Formatted	([63]
Formatted	([65]
Formatted	([64]
Deleted: https://doi.org/10.1016/j.earscirev.2023.104	359.
Formatted	([66]
Deleted: ¶	
Deleted: .	
Formatted	([67]
Formatted	([68]
Deleted: International Patent WO/2022/002939	
Formatted	([69]
Deleted: 1	

		Formatted
:17	Riebesell, U., D. Basso, S. Geilert, A. W. Dale, M. Kreuzburg, and F. Meysman (2023), Mesocosm experiments in ocean	Formatted
18	alkalinity enhancement research, in Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23),	Formatted
:19	edited by A. Oschlies, A. Stevenson, L. Bach, K. Fennel, R. Rickaby, T. Satterfield, R. Webb and JP. Gattuso, Copernicus	
20	Publications, State Planet, https://doi.org/:10XXXXX.	Formatted
21	Rödenbeck, C., T. DeVries, J. Hauck, C. Le Quéré, and R. F. Keeling (2022), Data-based estimates of interannual sea-air CO ₂	// Deleted: ¶
:22	flux variations 1957–2020 and their relation to environmental drivers, <i>Biogeosciences</i> , 19(10), 2627-2652, https://doi.org/10.5194/bg-19-2627-2022.	Formatted
.23 .24	Sabine, C., A. Sutton, K. McCabe, N. Lawrence-Slavas, S. Alin, R. Feely, R. Jenkins, S. Maenner, C. Meinig, J. Thomas, E.	Deleted: ht
:24	van Ooijen, A. Passmore, and B. Tilbrook (2020), Evaluation of a New Carbon Dioxide System for Autonomous Surface	
:26	Vehicles, J. Atmos. Oceanic Tech., 37(8), 1305-1317, https://doi.org/https://d	Formatted
27	Sarmiento, J. L., and N. Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press,	Deleted: 1
28	https://doi.org/10.2307/j.ctt3fgxqx	Formatted
:29	Schulz, K. G., L. T. Bach, and A. G. Dickson (2023), Seawater carbonate system considerations for ocean alkalinity	Formatted
30	enhancement research, in Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23), edited by A.	Formatted
31	Oschlies, A. Stevenson, L. Bach, K. Fennel, R. Rickaby, T. Satterfield, R. Webb and JP. Gattuso, Copernicus Publications,	
:32	State Planet, https://doi.org/:10XXXXX.	Deleted: ht
:33	Sharp, J. D., A. J. Fassbender, B. R. Carter, P. D. Lavin, and A. J. Sutton (2022), A monthly surface pCO2 product for the	Formatted
34	California Current Large Marine Ecosystem, Earth Syst. Sci. Data, 14(4), 2081-2108, https://doi.org/10.5194/essd-14-2081-	Deleted:
35	2022.	(Deleted:)
:36 :37	Smetacek, V., C. Klaas, V. H. Strass, P. Assmy, M. Montresor, B. Cisewski, N. Savoye, A. Webb, F. d'Ovidio, J. M. Arrieta, U. Bathmann, R. Bellerby, G. M. Berg, P. Croot, S. Gonzalez, J. Henjes, G. J. Herndl, L. J. Hoffmann, H. Leach, M. Losch,	Formatted
:37	M. M. Mills, C. Neill, I. Peeken, R. Röttgers, O. Sachs, E. Sauter, M. M. Schmidt, J. Schwarz, A. Terbrüggen, and D. Wolf-	// //≻────
:39	Gladrow (2012), Deep carbon export from a Southern Ocean iron-fertilized diatom bloom, <i>Nature</i> , 487(7407), 313-319,	Formatted
:40	https://doi.org/10.1038/nature11229	Formatted
41	Smith, S. M., O. Geden, G. Nemet, M. Gidden, W. F. Lamb, C. Powis, R. Bellamy, M. Callaghan, A. Cowie, E. Cox, S. Fuss,	Deleted: , h
:42	T. Gasser, G. Grassi, J. Greene, S. Lück, A. Mohan, F. Müller-Hansen, G. Peters, Y. Pratama, T. Repke, K. Riahi, F. Schenuit,	Formatted
:43	J. Steinhauser, J. Strefler, J. M. Valenzuela, and J. C. Minx (2023), The State of Carbon Dioxide Removal - 1st Edition, Rep.	Formatted
:44	Sutton, A. J., N. L. Williams, and B. Tilbrook (2021), Constraining Southern Ocean CO ₂ Flux Uncertainty Using Uncrewed	// />
:45	Surface Vehicle Observations, 48(3), e2020GL091748, https://doi.org/https://doi.org/10.1029/2020GL091748.	Deleted:
:46	Torres, O., L. Kwiatkowski, A. J. Sutton, N. Dorey, and J. C. Orr (2021), Characterizing Mean and Extreme Diurnal Variability of	// Formatted
:47	of Ocean CO ₂ System Variables Across Marine Environments, Geophys. Res. Lett., 48(5), e2020GL090228,	Deleted: ht
:48 :49	https://doi.org/https://doi.org/10.1029/2020GL090228, Wang, H., D. J. Pilcher, K. A. Kearney, J. N. Cross, O. M. Shugart, M. D. Eisaman, and B. R. Carter (2023), Simulated Impact	Formatted
:50	of Ocean Alkalinity Enhancement on Atmospheric CO ₂ Removal in the Bering Sea, <i>Earth's Future</i> , 11(1), e2022EF002816,	Deleted:
:51	https://doi.org/https//doi.org/https://doi.org/https://doi.org/https//doi.org/	
:52	Wanninkhof, R., W. Asher, R. Weppernig, H. Chen, P. Schlosser, C. Langdon, and R. Sambrotto (1993), Gas transfer	Formatted
53	experiment on Georges Bank using two volatile deliberate tracers, J. Geophys. Res., 98, 20237-20248,	Deleted: ht
:54	https://doi.org/10.1029/93JC01844_	Formatted
:55	Wanninkhof, R., GH. Park, T. Takahashi, R. A. Feely, J. L. Bullister, and S. C. Doney (2013), Changes in deep-water CO2	Deleted: 1
:56	concentrations over the last several decades determined from discrete pCO2 measurements, Deep-Sea Res. 1, 74, 48-63,	Deleted: G
:57	https://doi.org/https://doi.org/10.1016/j.dsr.2012.12.005,	$(1 \setminus \sum$
:58	Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, JW. Boiten, L. B. da	Deleted: T.
:59	Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R.	Deleted: R.
:60 :61	Finkers, A. Gonzalez-Beltran, A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. 't Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S	Deleted: J.
:62	A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J.	Deleted:).
:62	Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons (2016), The FAIR Guiding Principles for	Formatted
64	scientific data management and stewardship, Scientific Data, 3(1), 160018, https://doi.org/10.1038/sdata.2016.18,	Formatted
		Formatted

matted ... [74] eted: 1 matted ... [75] eted: https://doi.org/10.2307/j.ctt3fgxqx. matted (... [76] eted: 1 matted (... [77]) matted ... [78] matted (... [79] eted: https://doi.org/10.1038/nature11229. matted (... [80] eted: 1 eted:) Characterising mean and extreme diurnal varia ... [84] matted ... [81] matted (... [83]) matted ... [82] eted: , https://doi.org/10.1029/2020GL090228, matted (... [85]) matted ... [86] eted: matted (... [87]) eted: https://doi.org/10.1029/2022EF002816. matted ... [88] eted: 1 matted (... [89] eted: https://doi.org/10.1029/93JC01844. matted ... [90] eted: 1 eted: G.-H., eted: T., eted: R. A., eted: J. L., & Doney, eted:). matted (... [91]) matted (... [92]) Formatted (... [93] Formatted ... [94] Formatted (... [95]) Formatted ... [96] Deleted: . Deep Sea Research Part I: Oceanographic Rese ... [97] Formatted ... [98] Deleted: Formatted (... [99] Deleted: https://doi.org/10.1038/sdata.2016.18. Formatted (... [100])

(... [70]

(... [71])

(... [72])

... [73]

Formatted

	Δ	•	Formatted: Font color: Black
15	Wimart-Rousseau, C., T. Steinhoff, B. Klein, H. Bittig, and A. Körtzinger (2023), Technical note: Enhancement of float-pH		Formatted: Normal, Line spacing: Multiple 1.15 li, No
16	data quality control methods: A study case in the Subpolar Northwestern Atlantic region, Biogeosciences Discuss., 2023, 1-		widow/orphan control, Border: Top: (No border), Bottom: (No
17	26, https://doi.org/10.5194/bg-2023-76.		border), Left: (No border), Right: (No border), Between : (No
18		•	border)
			Formatted: Indent: Left: 0", Hanging: 0.5", Space After: (pt, Line spacing: single

1	

Page 1: [1] Formatted David Ho 10/4/23 3:39:00 PM

Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

 Page 2: [2] Deleted
 David Ho
 10/4/23 3:39:00 PM

Page 2: [3] Formatted David Ho 10/4/23 3:39:00 PM

Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

Page 2: [4] Deleted	David Ho	10/4/23 3:39:00 PM	
r			
Page 2: [5] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Auto			
Page 2: [6] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Auto			
Page 2: [7] Deleted	David Ho	10/4/23 3:39:00 PM	
2.			
Page 6: [8] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [8] Deleted	David Ho	10/4/23 3:39:00 PM	
7			
Page 6: [8] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [8] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [8] Deleted	David Ho	10/4/23 3:39:00 PM	
·			
Page 6: [8] Deleted	David Ho	10/4/23 3:39:00 PM	

Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
r			
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
Ι			
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
-			
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
I			
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
,			
Page 6: [9] Deleted	David Ho	10/4/23 3:39:00 PM	
		10/4/25 5:59:00 PM	
	D		
Page 6: [10] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [10] Deleted	David Ho	10/4/23 3:39:00 PM	
.			
Page 6: [10] Deleted	David Ho	10/4/23 3:39:00 PM	

Page 6: [10] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [10] Deleted	David Ho	10/4/23 3:39:00 PM	
7			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
v			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
۲			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
۷			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
۷			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
v			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
Υ			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
V			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
V			
Page 6: [11] Deleted	David Ho	10/4/23 3:39:00 PM	
V			
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
v			
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
×			
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
v			

Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
τ			
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
۲			
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [12] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [13] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [13] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 6: [13] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 11: [14] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 11: [15] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 11: [16] Deleted	David Ho	10/4/23 3:39:00 PM	
Page 11: [17] Deleted	David Ho	10/4/23 3:39:00 PM	

Page 11: [19] Deleted	David Ho	10/4/23 3:39:00 PM	
v			
Page 11: [20] Deleted	David Ho	10/4/23 3:39:00 PM	
v			
Page 11: [21] Deleted	David Ho	10/4/23 3:39:00 PM	
v			
Page 11: [22] Deleted	David Ho	10/4/23 3:39:00 PM	

v.....

I

Page 1: [23] Formatted David Ho 10/4/23 3:39:00 PM

Normal, Line spacing: Multiple 1.15 li, No widow/orphan control, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Page 15: [24] Formatted	David Ho	10/4/23 3:39:00 PM

Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Page 15: [25] Deleted David Ho 10/4/23 3:39:00 PM

Page 15: [26] Formatted David Ho 10/4/23 3:39:00 PM

Line spacing: single, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Page 15: [27] Formatted David Ho	10/4/23 3:39:00 PM

Font: Italic, Font color: Black

Page 15: [27] Formatted David Ho	10/4/23 3:39:00 PM

Font: Italic, Font color: Black

Page 15: [27] Formatted David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: Black	

Font: Italic, Font color: Black

Page 15: [27] Formatted	David Ho	10/4/23 3:39:00 PM
-------------------------	----------	--------------------

Font: Italic, Font color: Black

: [27] Formatted David Ho 10/4/23 3:39:00 Pl	avid Ho 10/4/23 3:39:00 PM
--	----------------------------

Font: Italic, Font color: Black

Font: Italic, Font color: Black

Page 15: [27] Formatted David Ho 10/4/23 3:39:00 PM

Font: Italic, Font color: Black

I

: (No border) Page 15: [30] Formatted I Font: Italic, Font color: Blac	er: Top: (No borde David Ho ck David Ho ck	10/4/23 3:39:00 PM er), Bottom: (No border), Left: (No border), Right: (No border), Between 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
: (No border) Page 15: [30] Formatted Font: Italic, Font color: Blac Page 15: [30] Formatted Font: Italic, Font color: Blac Page 15: [30] Formatted	David Ho ck David Ho ck	10/4/23 3:39:00 PM
Page 15: [30] Formatted I Font: Italic, Font color: Black Page 15: [30] Formatted I Font: Italic, Font color: Black Page 15: [30] Formatted I	ck David Ho ck	
Font: Italic, Font color: Blac Page 15: [30] Formatted [Font: Italic, Font color: Blac Page 15: [30] Formatted [ck David Ho ck	
Page 15: [30] FormattedIFont: Italic, Font color: BlackPage 15: [30] Formatted	David Ho ck	10/4/23 3:39:00 PM
Font: Italic, Font color: Black Page 15: [30] Formatted	ck	10/4/23 3:39:00 PM
Page 15: [30] Formatted		
	David Ho	
Font: Italic, Font color: Blac		10/4/23 3:39:00 PM
	ck	
Page 15: [30] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: Blac	ck	
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [31] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [32] Formatted	David Ho	10/4/23 3:39:00 PM

I

Page 15: [32] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [32] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [32] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [32] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [33] Deleted	David Ho	10/4/23 3:39:00 PM	
V	D		
Page 15: [34] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [34] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [34] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [34] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [34] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [35] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [35] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [35] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [35] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 15: [35] Formatted	David Ho	10/4/23 3:39:00 PM	

Font color: Black

Page 15: [36] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [36] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [36] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [36] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 15: [36] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 1: [37] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 1: [38] Formatted	David Ho	10/4/23 3:39:00 PM
Normal Line specing: M	Iultiple 1 15 li	No widow/orphan control, Border: Top: (No border), Bottom: (No border)
Normal, Ellie spacing. W	iumpie 1.15 ii,	No widow/orphan control, Border. Top. (No border), Bottom. (No border)
Left: (No border), Right:	(No border), Be	etween : (No border)
Page 17: [39] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [40] Deleted	David Ho	10/4/23 3:39:00 PM
Υ		
Page 17: [41] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [42] Deleted	David Ho	10/4/23 3:39:00 PM
·		
Page 17: [43] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 17: [43] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 17: [44] Deleted	David Ho	10/4/23 3:39:00 PM
Page 17: [45] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		

|

Page 17: [45] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [45] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [45] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [45] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [46] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [47] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [48] Formatted	David Ho	10/4/23 3:39:00 PM
Line spacing: single Bor	der: Top: (No bor	der), Bottom: (No border), Left: (No border), Right: (No border), Between
: (No border)		
Page 17: [49] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 17: [49] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 17: [49] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 17: [49] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 17: [50] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [51] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [52] Formatted	David Ho	10/4/23 3:39:00 PM
Line meetings single Den	Jam Tana (Malaan	der) Bottom: (No border) Left: (No border) Right: (No border) Between

Line spacing: single, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between

: (No border)

Page 17: [53] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [54] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [55] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [56] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [57] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [57] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [57] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [58] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [59] Formatted	David Ho	10/4/23 3:39:00 PM			
Font color: Black					
Page 17: [60] Formatted	David Ho	10/4/23 3:39:00 PM			
Line spacing: single, Bor	der: Top: (No bord	der), Bottom: (No border), Left: (No border), Right: (No border), Between			
: (No border)					
Page 17: [61] Formatted	David Ho	10/4/23 3:39:00 PM			
Font: Italic, Font color: B	Font: Italic, Font color: Black				
Page 17: [61] Formatted	David Ho	10/4/23 3:39:00 PM			
Font: Italic, Font color: B	lack				
Page 17: [61] Formatted	David Ho	10/4/23 3:39:00 PM			
Font: Italic, Font color: B	lack				
Page 17: [61] Formatted	David Ho	10/4/23 3:39:00 PM			
Font: Italic, Font color: B	lack				
Page 17: [62] Formatted	David Ho	10/4/23 3:39:00 PM			

	Pavid Ho Pavid Ho Pavid Ho	10/4/23 3:39:00 PM der), Bottom: (No border), Left: (No border), Right: (No border), Between 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
Line spacing: single, Border : (No border) Page 17: [65] Formatted Da Font color: Black Page 17: [65] Formatted Da Font color: Black Page 17: [65] Formatted Da Font color: Black	r: Top: (No bord Pavid Ho Pavid Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Between 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
: (No border) Page 17: [65] Formatted Da Font color: Black Page 17: [65] Formatted Da Font color: Black Page 17: [65] Formatted Da Font color: Black Font color: Black	Pavid Ho Pavid Ho Pavid Ho	10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
Page 17: [65] Formatted Data Font color: Black Data Font color: Black Data Page 17: [65] Formatted Data Font color: Black Data Font color: Black Data Font color: Black Data Font color: Black Data	Pavid Ho Pavid Ho	10/4/23 3:39:00 PM
Font color: Black Page 17: [65] Formatted Da Font color: Black Page 17: [65] Formatted Da Font color: Black Font color: Black	Pavid Ho Pavid Ho	10/4/23 3:39:00 PM
Page 17: [65] Formatted Data Font color: Black Data Page 17: [65] Formatted Data Font color: Black Data	Pavid Ho	
Font color: Black Page 17: [65] Formatted Data Font color: Black	Pavid Ho	
Page 17: [65] Formatted Da		10/4/23 3:39:00 PM
Font color: Black		10/4/23 3:39:00 PM
	avid Ho	
Page 17: [65] Formatted Da	avid Ho	
		10/4/23 3:39:00 PM
Font color: Black		
Page 17: [65] Formatted Da	avid Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [66] Formatted Da	avid Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [67] Formatted Da	avid Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [68] Formatted Da	avid Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 17: [69] Formatted Da	avid Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 1: [70] Formatted Da	avid Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 1: [71] Formatted Da	avid Ho	10/4/23 3:39:00 PM
Normal, Line spacing: Mult	tiple 1.15 li, No	o widow/orphan control, Border: Top: (No border), Bottom: (No border)

Page 18: [72] Formatted David Ho 10/4/23 3:39:00 PM

Page 18: [73] Formatted	David Ho	10/4/23 3:39:00 PM
Line spacing: single, Bor	der: Top: (No bord	ler), Bottom: (No border), Left: (No border), Right: (No border), Between
: (No border)		
Page 18: [74] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [74] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [74] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [74] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [74] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [74] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [74] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [75] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 18: [75] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 18: [75] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 18: [76] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 18: [77] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 18: [78] Formatted	David Ho	10/4/23 3:39:00 PM

Line spacing: single, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Page 18: [79] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [79] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [79] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [79] Formatted	David Ho	10/4/23 3:39:00 PM
Font: Italic, Font color: B	lack	
Page 18: [80] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Page 18: [81] Formatted	David Ho	10/4/23 3:39:00 PM
Font color: Black		
Font color: Black Page 18: [82] Formatted	David Ho	10/4/23 3:39:00 PM
Page 18: [82] Formatted		
Page 18: [82] Formatted		10/4/23 3:39:00 PM der), Bottom: (No border), Left: (No border), Right: (No border), Betwee
Page 18: [82] Formatted Line spacing: single, Bord : (No border)	der: Top: (No boro	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted	der: Top: (No boro	
Page 18: [82] Formatted Line spacing: single, Bord : (No border)	der: Top: (No boro	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted	der: Top: (No bord David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black	der: Top: (No bord David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted	der: Top: (No bord David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM
 Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black 	der: Top: (No bord David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
 Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black 	der: Top: (No bord David Ho David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
 Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black Page 18: [84] Deleted 	der: Top: (No bord David Ho David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black Page 18: [84] Deleted Page 18: [85] Formatted	der: Top: (No bord David Ho David Ho David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black Page 18: [84] Deleted Font color: Black Page 18: [85] Formatted Font color: Black	der: Top: (No bord David Ho David Ho David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black Page 18: [84] Deleted Font color: Black Page 18: [85] Formatted Font color: Black Page 18: [85] Formatted Font color: Black	der: Top: (No bord David Ho David Ho David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black Page 18: [84] Deleted Font color: Black Page 18: [85] Formatted Font color: Black Page 18: [85] Formatted Font color: Black Font color: Black Page 18: [85] Formatted Font color: Black Page 18: [86] Formatted Font color: Black	der: Top: (No bord David Ho David Ho David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM
Page 18: [82] Formatted Line spacing: single, Bord : (No border) Page 18: [83] Formatted Font color: Black Page 18: [83] Formatted Font color: Black Page 18: [84] Deleted Font color: Black Page 18: [85] Formatted Font color: Black Page 18: [85] Formatted Font color: Black Page 18: [86] Formatted Font color: Black Page 18: [86] Formatted Font color: Black	der: Top: (No bord David Ho David Ho David Ho David Ho David Ho	der), Bottom: (No border), Left: (No border), Right: (No border), Betwee 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM 10/4/23 3:39:00 PM

l

Page 18: [87] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [87] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [87] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [88] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [89] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [89] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [89] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [89] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [89] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [90] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [91] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [91] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [92] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [93] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [94] Formatted	David Ho	10/4/23 3:39:00 PM	

Page 18: [95] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [95] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [96] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [97] Deleted	David Ho	10/4/23 3:39:00 PM	
▼			
Page 18: [98] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [99] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [99] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [99] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [99] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [99] Formatted	David Ho	10/4/23 3:39:00 PM	
Font color: Black			
Page 18: [100] Formatted	Dav	id Ho 10/4/23 3:39:00 PM	

Font color: Black