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Abstract 21 

The deliberate increase of ocean alkalinity (referred to as Ocean Alkalinity Enhancement or 22 
OAE) has been proposed as a method for removing CO2 from the atmosphere. Before OAE can 23 
be implemented safely, efficiently, and at scale several research questions have to be addressed 24 
including: 1) which alkaline feedstocks are best suited and in what doses can they be added 25 
safely, 2) how can net carbon uptake be measured and verified, and 3) what are the potential 26 
ecosystem impacts. These research questions cannot be addressed by direct observation alone 27 
but will require skillful and fit-for-purpose models. This article provides an overview of the 28 
most relevant modeling tools, including turbulence-, regional- and global-scale biogeochemical 29 
models, and techniques including approaches for model validation, data assimilation, and 30 
uncertainty estimation. Typical biogeochemical model assumptions and their limitations are 31 
discussed in the context of OAE research, which leads to an identification of further 32 
development needs to make models more applicable to OAE research questions. A description 33 
of typical steps in model validation is followed by proposed minimum criteria for what 34 
constitutes a model that is fit for its intended purpose. After providing an overview of 35 
approaches for sound integration of models and observations via data assimilation, the 36 
application of Observing System Simulation Experiments (OSSEs) for observing system design 37 
is described within the context of OAE research. Criteria for model validation and 38 
intercomparison studies are presented. The article concludes with a summary of 39 
recommendations and potential pitfalls to be avoided.  40 
 41 
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1 Introduction 42 

Ocean Alkalinity Enhancement (OAE) refers to the deliberate increase of ocean alkalinity, which 43 
can be realized either by removing acidic substances from or adding alkaline substances to 44 
seawater. OAE is receiving increasing attention as a method for removing CO2 from the 45 
atmosphere; such methods are referred to as marine Carbon Dioxide Removal (mCDR) 46 
technologies (Renforth and Henderson, 2017). Natural analogues to OAE exist (Shubas et al. 47 
2023). An increase in the alkalinity of seawater leads to a repartitioning of its dissolved 48 
carbonate species with a shift toward bicarbonate and carbonate ions (Zeebe and Wolf-Gladrow 49 
2001, Renforth and Henderson 2017), leading to a reduction in the aqueous CO2 concentration 50 
and thus the partial pressure of CO2 (pCO2; Schulz et al. 2023). Since exchange of CO2 between 51 
the ocean and atmosphere occurs when the surface ocean pCO2 is out of equilibrium with that of 52 
the atmosphere, a lowering of the ocean’s pCO2 will lead to a net ingassing of atmospheric CO2 53 
(i.e., an increase in CO2 uptake by the ocean or a decrease in outgassing due to OAE). This 54 
would increase the oceanic and decrease the atmospheric inventories of inorganic carbon, in 55 
other words, it would result in mCDR. In contrast to other mCDR technologies, OAE does not 56 
exacerbate ocean acidification (Ilyina et al. 2013). In fact, an increase in ocean alkalinity 57 
counteracts acidification, and while subsequent net uptake of atmospheric CO2 largely restores 58 
pH to its pre-perturbation value, there is potential for OAE deployment to mitigate acidification 59 
impacts near injection sites (Mongin et al. 2021). 60 

Several important research questions should be addressed before implementing OAE as an 61 
mCDR technology at scale. These include: 1) which alkaline substances are best suited and in 62 
what doses can they be added reliably while avoiding precipitation of calcium carbonate (which 63 
would decrease alkalinity and could result in runaway precipitation events), 2) how can 64 
changes in alkalinity and net carbon uptake be measured, verified, and reported (referred to as 65 
MRV; see Ho et al. 2023) to enable meaningful carbon crediting, and 3) what are the potential 66 
ecosystem impacts and how can harm to ecosystems be avoided or minimized while 67 
maximizing potential benefits. These research questions cannot be addressed by direct 68 
observation alone but will require an integration of observations and numerical ocean models 69 
across a range of scales. Skillful and fit-for-purpose models will be essential for addressing 70 
many OAE research questions including the MRV challenge, assessment of environmental 71 
impacts, and interpretation of natural analogs. 72 

Ocean models are useful for a broad range of purposes, from idealized models for basic 73 
hypothesis testing of fundamental principles to realistic models for more applied uses (see 74 
primer on ocean biogeochemical models by Fennel et al. 2022). In the context of OAE research, 75 
this full range of models is applicable. For example, idealized models of particle-fluid 76 
interaction can inform us about dissolution and precipitation kinetics at the scale of particles, 77 
realistic local-scale models can inform us about nearfield processes in the turbulent 78 
environment around injection sites, and larger-scale regional or global ocean models can be 79 
used to support observational design for field experiments, to demonstrate possible verification 80 
frameworks, and to address questions about global-scale feedbacks on ocean biogeochemistry. 81 
A common objective of all these modeling approaches is to realistically simulate the spatio-82 
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temporal evolution of the seawater carbon chemistry, including alkalinity and dissolved CO2, 83 
and attribute that evolution to physical, chemical, and biological processes. Models that are 84 
suitable for this purpose will provide spatial and temporal context for properties that can be 85 
observed (but at much sparser temporal and spatial coverage than a model can provide) as well 86 
as estimates of properties and fluxes that cannot be directly observed but may be inferred 87 
because of known mechanistic relationships or patterns of correlation. Applications of realistic 88 
models rely on them being skillful and accurate, requiring that they include parameterizations 89 
of the relevant processes, and that they are constrained by observations that contain sufficient 90 
meaningful information (what is sufficient depends on the application and research question). 91 
Methods for constraining models by observations through statistically optimal combination of 92 
both are available. Application of such methods is referred to as data assimilation and provides 93 
the most accurate estimates of biogeochemical properties and fluxes (see Fennel et al. 2022 for 94 
fundamentals and code examples).  95 

Model applications for OAE research include the following four general types:  96 

● Hindcasts are model applications where a defined time period in the past was 97 
simulated. They can be unconstrained—in the sense that no observations are fed into the 98 
model except for initial, boundary, and forcing conditions—or constrained, where 99 
observations inform the model state via data assimilation. The latter are also referred to 100 
as optimal hindcasts or reanalyses. 101 

● Nowcasts/forecasts are similar to constrained hindcasts but with the simulations carried 102 
out up to the present (referred to as nowcasts) or into the future (referred to as 103 
forecasts). The latter require assumptions about future forcing and boundary conditions, 104 
e.g., from other forecasts, climatology, or assuming persistence. 105 

● Scenarios are unconstrained hindcasts or forecasts where one or more aspects of the 106 
model is systematically perturbed to assess the effect of the perturbation, for example, in 107 
paired simulations with and without OAE, one would be the realistic case and the other 108 
a scenario (also referred to as counterfactual in this case). These can be used to explore 109 
even very unlikely situations, which is often required in comprehensive uncertainty and 110 
risk assessment. 111 

● Observing System Simulation Experiments (OSSEs) for observing system design use 112 
unconstrained and/or constrained hindcasts to evaluate the benefits of different 113 
sampling designs and optimize deployment of observational assets for a defined 114 
objective, including tradeoffs between different types of observation platforms. 115 

Successful implementation of models to support OAE research and MRV is challenging because 116 
of the general sparseness of relevant biogeochemical observations, and the limited lab, 117 
mesocosm, and field trial data available to date for model parameterization. Further, models are 118 
built at a process level and integrated to reveal behavior at the emergent scale. As such, models 119 
comprise a collective hypothesis of the ocean’s physical, biogeochemical, and ecosystem 120 
function—but it is important to recognize that model formulations of key processes related to 121 
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OAE remain uncertain. It may well turn out that parameterizations of the carbonate system, of 122 
plankton diversity and trophic interactions, small scale turbulence, submesoscale subduction 123 
and restratification processes, and air-sea gas exchange in the current generation of models 124 
require improvement to robustly treat OAE-related questions.   125 

The intended scope of this article is to provide an overview of the most relevant modeling tools 126 
for OAE research with high-level background information, illustrative examples, and references 127 
to more in-depth methodological descriptions and further examples. We aim to provide simple 128 
criteria and guidance for researchers on the current state-of-the-art of biogeochemical modeling 129 
relevant to OAE research, keeping in mind short-term research goals in support of pilot 130 
deployments of OAE and long-term goals such as credible MRV in an ocean affected by large-131 
scale deployment of OAE and possibly other CDR technologies.  132 

2 Modeling approaches 133 

This section provides a brief review of modeling tools available for OAE research with 134 
references to more in-depth methodological descriptions and examples, as well as a discussion 135 
of which approaches are most applicable to simulating essential processes in different 136 
circumstances. The presentation is structured using two complementary organizing principles, 137 
the spatial and temporal scales of the problem in Section 2.1 and the biogeochemical and 138 
ecological complexity represented by different modeling approaches in Section 2.2. Section 2 139 
concludes with a summary of suggested future model development efforts in Section 2.3. 140 
 141 
 2.1. Modeling approaches across scales  142 

In the nearfield, close to the site of an alkalinity increase, an accurate characterization of the 143 
spatio-temporal evolution of alkalized waters requires direct representation or parameterization 144 
of fluid and particle physics and seawater carbonate chemistry at scales ranging from 145 
micrometers to hundreds of meters, spanning turbulent to submesoscale processes (Section 146 
2.1.1). In the farfield, covering scales from 10s of meters to 100s of kilometers, where the effect of 147 
an alkalinity increase depends less on the details of how the alkalinity was added, or acidity 148 
removed, and is instead dominated by ambient environmental processes, local to regional scale 149 
models are useful for simulating the impact of alkalinity increases, for verifying the intended 150 
perturbations in air-sea exchange of CO2 and in carbonate system variables, and potentially for 151 
simulating ecosystem impacts  (Section 2.1.2). Lastly, investigation of the effects of the global 152 
ocean’s overturning circulation, impacts on atmospheric CO2 levels, and of Earth system 153 
feedbacks resulting from deployment of OAE and other CDR technology at scale requires 154 
global modeling approaches (Section 2.1.3).  155 
 156 
2.1.1. Particle scale to nearfield/turbulence scale (µm to km scales) 157 

Small-scale modeling approaches cover the range from µm-size particles to the turbulent- and 158 
submeso-scales in the nearfield of alkalinity additions. Simulating processes on these scales 159 
allows one to address questions about how turbulent mixing dilutes and disperses alkalized 160 
water and how it affects the settling, aggregation, disaggregation, precipitation, and dissolution 161 
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of suspended particles. Nearfield modeling has an important role to play in guiding the design 162 
of deployment strategies that mitigate environmental impacts and meet future permitting 163 
requirements, and to support monitoring. During the initial dispersion and dilution phase of an 164 
alkalinity increase in the nearfield, the direct impacts on carbonate system variables are 165 
greatest, with waters exhibiting the largest elevations in pH and the highest potential for the 166 
formation of secondary precipitates. For particulate alkalinity feedstocks, turbulence close to the 167 
deployment site affects dissolution and settling rates, increasing dissolution and either 168 
accelerating or diminishing the settling of sedimentary particles compared to the Stokes settling 169 
speed (Fornari et al. 2016).  170 

Distinct approaches to modeling at these scales involve different levels of parametrization and 171 
computational expense, with the relative utility of each approach being dependent on the 172 
scientific questions at hand. At the smallest scales, Direct Numerical Simulations (DNS) are the 173 
most computationally expensive and specialized class of fluid modeling, as they resolve flows 174 
down to the scales at which flow variances dissipate—typically centimeters or smaller in the 175 
ocean. Consequently, computational constraints imply that they cannot be run over domains 176 
larger than a few meters. DNS are thus integrated over idealized physical domains (i.e., they 177 
lack realistic bathymetry) and are suited to investigating fundamental physical processes. For 178 
example, multiphase DNS simulations have been used to model the interaction of turbulence 179 
with gas bubbles (Farsoiya et al. 2023) and particles (Fornari et al. 2016). Results from such 180 
studies provide an important testbed that can be used to develop parameterizations required in 181 
lower resolution models. 182 

A well-established approach to modeling the fluid flow at scales up to about 10 km uses Large 183 
Eddy Simulations (LES), a class of model that directly solves the unsteady Navier-Stokes 184 
equations down to the largest turbulent scales on a high-resolution grid. Such models 185 
parameterize turbulence using a subgrid-scale model (e.g., Smagorinsky 1963). An advantage of 186 
these models is their ability to simulate both an alkalized plume and the environmental 187 
turbulence into which the plume emerges. Once alkalized waters enter the surface boundary 188 
layer, LES models have an established history of simulating turbulence and mixing that is 189 
directly relevant to OAE research (e.g., Mensa et al. 2015, Taylor et al. 2020). An example of an 190 
LES simulation of near-surface turbulence dispersing surface-deployed alkalinity downwards is 191 
illustrated in Figure 1, where a physical model (Ramadhan et al. 2020) has been coupled to a 192 
carbonate solver (Lewis et al. 1998). To date, LES models have rarely been coupled to 193 
biogeochemical models due to the computational expenses involved, though their inclusion 194 
may be increasingly feasible (Smith et al. 2018, Whitt et al. 2019). As LES simulate flow physics 195 
at scales ranging from 10-10,000 m, they do not explicitly resolve the microscales of fluid motion 196 
and chemical reactions at particle scales. Nevertheless, the parameterizations of such processes 197 
can be included; for example, Liang et al. (2011) used models of bubble concentration and 198 
dissolved gas concentration in an LES to examine the influence of bubbles on air-sea gas 199 
exchange. 200 
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 201 
Figure 1: LES of near surface turbulence coupled to a carbonate system solver. Alkalinity is 202 
added at a rate of 4 µmol kgsw1 m-2 s-1 for 20 minutes to the top grid cell at the start of the 203 
simulation. Turbulence, generated by surface wind stress and cooling, sets the rate at which it 204 
mixes downwards (a) along with associated waters of lowered pCO2 (b). Turbulent plumes and 205 
eddies lead to inhomogeneities in water properties at scales of tens of meters. 206 
 207 
For alkalized plumes associated with outfalls from, for example, wastewater treatment plants, 208 
integral models (that assume plume properties such that the governing equations are 209 
simplified) have been developed to examine the initial dilution close to jets and buoyant plumes 210 
up to kilometer scales (Jirka et al. 1996). These models are highly configurable, enabling specific 211 
diffuser configurations as well as the potential to incorporate sediment laden plumes with 212 
particle settling (Bleninger & Jirka 2004). Results are commonly accepted for engineering 213 
purposes, defining mixing zones, and providing a fast “first look” at diffusion and mixing near 214 
an outfall site. However, these models rely on assumptions about the underlying physics of 215 
fluid flow (e.g., axisymmetric plumes and simplified entrainment rates) that may not be 216 
accurate under general oceanic conditions, and results will not include all effects of irregular 217 
bathymetry, finite domain size or arbitrarily non-uniform ambient conditions. Nevertheless, 218 
their simplicity makes them very useful. For example, by combining several simple process 219 
models for plume dilution, particle dissolution, and carbon chemistry, Caserini et al. (2021) 220 
have simulated the initial dilution of slaked lime Ca(OH)2 particles and alkalinity in a plume 221 
behind a moving vessel. 222 

Other methods for modeling at this scale include Reynolds Averaged Navier Stokes (RANS) 223 
and Unsteady RANS (URANS), wherein fluctuations against a slowly varying or time mean 224 
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background are parametrized, often using constant (large) eddy diffusivities and viscosities. 225 
These approaches are often inaccurate at these scales, resulting in simulations that are too 226 
diffusive or lacking processes that are of leading order importance to mixing (Golshan et al. 227 
2017, Chang & Scotti 2004). 228 

There are multiple, potentially interacting sources of uncertainty to consider when evaluating 229 
the uncertainty of the applications described above. Perhaps best understood but still 230 
problematic is the uncertainty that arises from the computational intractability of simulating all 231 
the relevant scales in the µm to km range at once, necessitating the different modeling 232 
approaches for different scales, with parameterizations to account for unresolved scales and 233 
scale interactions. The dissolved carbonate chemistry of seawater is relatively well 234 
parameterized (Zeebe and Wolf-Gladrow 2001), but some modest uncertainties arise from 235 
approximations required for computational tractability (Smith et al. 2018). The least understood 236 
but potentially dominant source of uncertainty pertains to the representation of the microscale 237 
biological, chemical, and physical dynamics of particles, which is an active area of experimental 238 
and observational investigation (Subhas et al. 2022, Fuhr et al. 2022, Hartmann et al. 2023). 239 
While the explicit multiphase modeling of the particles themselves is computationally costly, an 240 
approach wherein the parametrized evolution of inertia-less Lagrangian particles are simulated 241 
may provide a fruitful middle ground, providing a mechanism to realistically determine the 242 
alkalinity release field associated with the advection, mixing, sinking and dissolution of reactive 243 
mineral particles. These questions about particles apply to those released in OAE deployments, 244 
as well as particles that precipitate from seawater in part due to OAE deployments, and finally 245 
the role of ambient biotic and abiotic particles where OAE is deployed. 246 
 247 
2.1.2. Local to regional scales (m to km) 248 

Local to regional scale models that range in horizontal resolution from tens of meters to 249 
hundreds of kilometers are useful for simulating the impact of alkalinity injections beyond the 250 
immediate local area, where conditions do not depend on the details of how the alkalinity was 251 
added and instead are determined by regional-scale currents and other process, including the 252 
potential for biogenic feedbacks. These models are particularly useful to support OAE field 253 
experiments, including planning and observational design, and analysis, integration and 254 
synthesis of observations, and to facilitate interpretation of observations from natural analogs. 255 
Furthermore, local and regional scale models will likely prove to be indispensable for 256 
quantification of OAE effects in research settings, for guiding assessments of its environmental 257 
impacts, and for MRV during the potential implementation of OAE. A skillful model can 258 
simulate when and where changes in carbonate chemistry and the ensuing anomalies in air-sea 259 
CO2 exchange occur and provide an estimate of the spatio-temporal extent of the 260 
biogeochemical properties affected by OAE.  261 
 262 
Regional models have distinct advantages over global models in their ability to resolve the 263 
spatial scales on which OAE would be applied both experimentally and operationally, and their 264 
documented skill in representing coastal and continental shelf processes more accurately 265 
(Mongin et al. 2016, Laurent et al. 2021). Examples of regional model applications in the context 266 
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of OAE include the recent studies by Mongin et al. (2021) and Wang et al. (2023). Mongin et al. 267 
(2021) used a coupled physical-biogeochemical-sediment model tailored to Australia’s Great 268 
Barrier Reef to investigate to what extent realistic OAE applied along a shipping line could 269 
alleviate anthropogenic ocean acidification on the reef. Wang et al. (2023) used a coupled ice-270 
circulation-biogeochemical model of the Bering Sea to study the efficiency of OAE in coastal 271 
Alaska.  272 
 273 
Implementation of a regional model in a target domain requires generation of a grid with 274 
associated bathymetry, specification of boundary conditions (including atmospheric forcing, 275 
information about ocean dynamics along the lateral boundaries of the domain, any fluxes of 276 
biogeochemical properties across the air-sea, sediment-water, and land-ocean boundaries, river 277 
inputs), and generation of initial conditions within the domain (Fennel et al. 2022). Different 278 
circulation models are available for implementation in domains targeted for OAE studies (see, 279 
e.g., Table 1 in Fennel et al. 2022), all with distinct strengths and established user communities. 280 
Particularly relevant in the context of studying coastal applications of OAE is a model’s ability 281 
to accurately represent coastal topography, making unstructured grid models and models with 282 
terrain-following coordinates particularly attractive. Another feature to be considered is a 283 
model’s ability to run in two-way nested configurations. In the more widely applied one-way 284 
nesting of domains, simulated conditions from a larger scale model (referred to as the parent 285 
model) are used to generate the dynamic lateral boundary conditions of a smaller scale, higher 286 
resolution model (the child model), which runs off line from the parent model. With two-way 287 
nesting, both models run simultaneously and information is exchanged continually along their 288 
intersecting boundaries. This allows information generated within the high-resolution child 289 
domain (e.g., the spreading distribution of a tracer or alkalinity addition) to be received and 290 
propagated by the larger-scale parent model. In this context, model simulations are particularly 291 
useful if available in near-real time or in forecast mode. This requires specification of lateral 292 
boundary conditions and atmospheric forcing up to the present and into the future. Global 293 
1/12th-degree nowcasts and 10-day forecasts of ocean conditions are available from the 294 
Copernicus Marine Service (CMEMS 2023) and atmospheric forcing up to the present and 10 295 
days into the future are available from the European Centre for Medium Range Weather 296 
Forecasts (ECMWF 2023). 297 
 298 
One example of a high-resolution local scale model with two-way nested domains is a 299 
framework developed for Bedford Basin in Halifax, Canada (Figure 2, Laurent et al. 2024). The 300 
model framework consists of three nested ROMS models (ROMS is the Regional Ocean 301 
Modelling System; https://myroms.org, Haidvogel et al. 2008, Shchepetkin and McWilliams 302 
2005). The outermost ROMS domain has a resolution of 900 m and is nested one-way within the 303 
data-assimilative global GLORYS reanalysis of physical and biogeochemical properties 304 
(Lellouche et al. 2021). Nested within are two models with increasingly higher resolutions of 305 
200 m and 60 m. Depending on the scientific objective to be addressed, the models can be run in 306 
one-way and two-way nested mode, where two-way nesting is computationally more 307 
demanding, and in hindcast or forecast mode. Implementation of dye-tracers within the model 308 
(Wang et al. 2024) allows one to determine dynamic distribution patterns and residence times.   309 
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 310 
 311 
Figure 2: Nested configuration of three ROMS models for the Bedford Basin and the adjacent 312 
harbor in Halifax Regional Municipality (HRM). a) The highest resolution model (HRM3; 60 m) 313 
includes the 7 km-long and 3 km-wide Bedford Basin and The Narrows, a 20-m shallow narrow 314 
channel that connects the basin to the outer harbor. b) The larger scale model (HRM2, 200 m) 315 
includes Bedford Basin and Halifax Harbor as well as the adjacent shelf. c) The largest-scale 316 
model (HRM3, 900 m) covers the central part of the Scotian Shelf as indicated in e). d) 317 
bathymetry along a section through HRM3 and HRM2, indicated by the black line in b). Lateral 318 
boundaries of HRM3, HRM2, and HRM1 are shown by black boxes in b), c) and e), respectively. 319 
Black arrows indicate the information flow between models in one way nesting mode. The red 320 
arrow indicates that HRM1 and HRM2 can be run simultaneously with bi-directional flow of 321 
information (two-way coupled mode).  322 
 323 
2.1.3. The global scale  324 

A strength of global ocean models is their capacity to comprehensively represent the global 325 
overturning circulation and ocean ventilation. These processes control the time scales over 326 
which waters are sequestered in the ocean interior and determine how long surface waters are 327 
exposed to the atmosphere and can exchange properties, including CO2, before being injected 328 
back into the ocean interior (Naveira Garabato et al. 2017). Similarly, the large-scale overturning 329 
circulation and the patterns associated with ventilation are important to consider in the context 330 
of deploying OAE at scale, as these patterns exert strong control on the efficiency of OAE at 331 
sequestering CO2 (e.g., Burt et al. 2021). 332 
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When global ocean models are dynamically coupled with models of the land biosphere and the 333 
atmosphere, they are referred to as Earth System Models (ESMs) and can be employed to 334 
explore Earth system feedbacks to mCDR. In the case of OAE, the main feedback is the change 335 
in atmospheric pCO2 and air-sea gas exchange that will result when CDR approaches are 336 
implemented at scale. While regional models have to be forced by atmospheric CO2 337 
concentrations, ESMs represent the atmospheric reservoir and are forced by CO2 emissions into 338 
the atmosphere, which then interacts with land and ocean carbon reservoirs. Only the latter 339 
approach can account for OAE-induced reductions in the atmospheric CO2 inventory which, in 340 
turn, would lead to a systematic reduction in air-sea CO2 fluxes. Regional models and global 341 
ocean models that do not explicitly represent the atmospheric CO2 reservoir and instead are 342 
forced by prescribed atmospheric pCO2 cannot simulate the decline in atmospheric pCO2 due to 343 
OAE. Depending on the alkaline material applied, there may also be feedbacks associated with 344 
changes in temperature, albedo, nutrient cycles, and biological responses which can be studied 345 
with the help of ESMs.  346 

Another important strength of global models relates to the fact that anomalies in air-sea CO2 347 
flux generated by OAE deployments will manifest over large spatio-temporal scales because 348 
CO2 equilibrates with the atmosphere via gas exchange slowly. Alkalinity enhanced waters can 349 
be transported far away from injection sites before equilibration is complete (He and Tyka 350 
2023). Consequently, OAE signals may exit the finite domain of regional models prior to full 351 
equilibration with the atmosphere (e.g., Wang et al. 2023). Because global models represent the 352 
entire ocean and can be integrated for centuries and longer, they enable full-scale assessments. 353 

A primary challenge for global models, however, is that their horizontal resolution is 354 
necessarily limited by computational constraints (see example in Figure 3). Most of the global 355 
ocean models contributing the Coupled Model Intercomparison Project version 6 (CMIP6), for 356 
example, have horizontal resolutions of about 1° or roughly 100 km (Heuzé 2021) and do not 357 
accurately represent biogeochemical processes along ocean margins (Laurent et al. 2021). Model 358 
grid-spacing imposes a limit on the dynamical scales that can be explicitly resolved in the 359 
models; this is particularly problematic for coarse resolution global models because mesoscale 360 
eddies—i.e., motions on scales of about 10–100 km—dominate the variability in ocean flows 361 
(Stammer 1997). Since coarse resolution models cannot resolve mesoscale eddies explicitly, the 362 
rectified effects of these phenomena, including their role in transporting buoyancy and 363 
biogeochemical tracers, must be approximated with parameterizations (e.g., Gent and 364 
McWilliams 1990).  365 

Notably, the fidelity of the simulated flow in global models, including the imperfect nature of 366 
these parameterizations, projects strongly on the model’s capacity to accurately simulate 367 
ventilation and the associated uptake of transient tracers, such as anthropogenic CO2 or 368 
chlorofluorocarbons (CFCs), from the atmosphere (e.g., Long et al. 2021). Biases in the uptake of 369 
transient tracers will also have implications for a model’s capacity to faithfully represent the 370 
impact of OAE, where the path of alkalinity-enhanced waters parcels in the surface ocean, and 371 
their subsequent transport to depth is a key control on the efficiency of carbon removal. Biases 372 
in the simulated flow are also an important determinant of the simulated distribution of 373 
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biogeochemical tracers in the model’s mean state. Hinrichs et al. (2023), for example, 374 
demonstrate that inaccuracies in the physical redistribution of alkalinity by the flow is a 375 
dominant mechanism contributing to biases in the alkalinity distributions simulated by CMIP6 376 
models. 377 

 378 

Figure 3: Example of Earth System Model properties and output from the University of Victoria 379 
Earth System Climate Model (Keller et al., 2012, Mengis et al., 2021) including a) the model 380 
bathymetry (depth levels), and b) the simulated present-day dissolved inorganic carbon 381 
concentration (mol m-3) averaged over the upper 50 m of the ocean. Panels c) and d) show 382 
results from a coastal OAE study by Feng et al. (2017) where the change in upper ocean 383 
alkalinity (upper 50 m) and the air-sea flux of CO2 are shown relative to the RCP8.5 control 384 
simulation. Shown is the Oliv100_Omega3.4 simulation from Feng et al. (2017), where 100 µm 385 
olivine grains were added to ice-free coastal grid cells in proportion to RCP 8.5 CO2 emissions 386 
(i.e., 1 mol of alkalinity per mole of emitted CO2) until a sea surface aragonite Ω threshold of 3.4 387 
was reached. 388 

Finally, another important challenge associated with global ocean models is the requirement to 389 
represent the entire global ocean ecosystem with a single set of model parameters (e.g., Long et 390 
al. 2021, Sauerland et al. 2020). In particular, the biological pump is an important control on the 391 
distribution of biogeochemical tracers, including alkalinity and DIC. The magnitude of organic 392 
carbon export, and the magnitude of biogenic calcium carbonate export, are important controls 393 
on the distribution of alkalinity and DIC at the ocean surface and in the interior (e.g., Fry et al., 394 
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2015). These quantities are a product of ecosystem function and, since the global ocean is 395 
characterized by diverse biogeography (e.g., Barton et al., 2013), capturing global variations in 396 
the biological pump presents a challenge. 397 

2.1.4 Integration across scales 398 

Choosing the appropriate modeling tool for a given OAE-related question requires clarity about 399 
the scale of the problem to be addressed and the objectives of the model application. 400 
Approaches for OAE vary significantly with respect to the spatial footprint of alkalinity 401 
increase. Proposed methods for spreading alkalinity feedstocks at the surface ocean include the 402 
addition of reactive minerals (e.g., CaO, Ca(OH)2 or Mg(OH)2) in ship-propeller washes (e.g., 403 
Köhler et al., 2013, Renforth et al., 2017, Caserini et al., 2021) or using other means (e.g., Gentile 404 
et al., 2022) along tracks from commercial or dedicated OAE vessels or through coastal outfalls 405 
(e.g., wastewater-treatment or power plants); the addition of less-reactive minerals to corrosive 406 
or high-weathering environments (e.g., olivine spreading on beaches or mineral addition to 407 
riverine discharge, e.g., Montserrat et al., 2017, Foteinis et al., 2023, Mu et al., 2023); and 408 
electrochemically generated point-sources of alkalinity that are discharged as highly alkaline 409 
seawater (e.g., House et al., 2009) from existing facilities (e.g., desalination and wastewater-410 
treatment plants), dedicated facilities (e.g., Wang et al., 2023), or from an array of smaller 411 
infrastructure (e.g., grids of off-shore wind turbines). Models for OAE research should 412 
represent these footprints of alkalinity increases appropriately for the questions being 413 
addressed. 414 

There are research questions that fall relatively neatly into one of the three scale ranges 415 
described above in sections 2.1.1 to 2.1.3. For example, consideration of the nearfield effects of 416 
different alkalinity feedstocks (e.g., dissolved versus particles) or analysis of the potential 417 
impacts from secondary CaCO3 precipitation due to elevated alkalinity from a point source 418 
require models that resolve the scales of turbulent motion. Examination of the change in air-sea 419 
CO2 flux due to a broad and diffuse alkalinity increase is less demanding on model resolution 420 
and regional scale models are appropriate for this question. Investigation of Earth system 421 
feedbacks requires ESMs. However, there also are many aspects of OAE that require a bridging 422 
of scales. For example, when considering different deployment methods like discharge from 423 
vessels into the ocean surface boundary layer versus additions made through outfalls via 424 
surface or subsurface plumes, modeling requirements vary. In both cases, the resulting 425 
biogeochemical response may be affected by dynamics operating in the nearfield, where 426 
conditions are sensitive to the deployment method and turbulence has to be considered, and the 427 
far-field, where conditions do not depend on the details of how the alkalinity was added and 428 
the air-sea flux of CO2 is instead determined by ambient environmental processes. Another 429 
example is the challenge that anomalies in air-sea CO2 flux generated by OAE deployments will 430 
manifest over large spatio-temporal scales because CO2 equilibrates with the atmosphere via 431 
gas exchange slowly. Some interplay among the modeling tools described in sections 2.1.1 and 432 
2.1.2 is likely going to be required. One straightforward approach would be to parameterize 433 
small-scale processes in the larger-scale models. 434 
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2.2 The range of biogeochemical realism & complexity 435 

Application of biogeochemical ocean models for the purposes of OAE research and verification 436 
requires reevaluation, and likely further development, of several model assumptions and 437 
features related to biogeochemical realism and complexity. For example, the internal sources 438 
and sinks of alkalinity are typically not explicitly represented in ocean models; this may become 439 
necessary in some circumstances but will be challenging (Section 2.2.1). OAE-related 440 
perturbations of alkalinity, other carbonate system properties, and addition of macro- and 441 
micronutrients contained in some alkalinity feedstocks may result in biological and ecosystem 442 
responses that current biogeochemical models are not capable of representing but that would be 443 
relevant for the assessment of environmental impacts of OAE and the verification its CDR 444 
efficiency (Section 2.2.2). Furthermore, depending on the environmental setting, sediments can 445 
be sources or sinks of alkalinity; these sediment-water fluxes need to be appropriately 446 
considered, including the potential impacts of OAE on their magnitude, in order to obtain 447 
complete and trustworthy carbon budgets (Section 2.2.3). Other boundary fluxes that require 448 
accurate specification are alkalinity inputs from rivers and groundwater (Section 2.2.4) and the 449 
air-sea flux of CO2 across the air-sea interface (Section 2.2.5).     450 
 451 
2.2.1 Representing alkalinity in seawater 452 

Alkalinity is an emergent property that depends on the concentrations of numerous chemical 453 
species with distinct internal source and sinks (Schulz et al. 2023; Wolf-Gladrow et al. 2007; 454 
Middelburg et al. 2020). Skillful simulation of alkalinity in seawater may require explicit 455 
representation of its multiple biotic and abiotic sources and sinks, some of which are difficult to 456 
constrain. A major process by which alkalinity is consumed is the production of calcium 457 
carbonate. In the water column, this is predominantly a biotic process, performed by calcifiers, 458 
although “whiting” events, where calcium carbonate precipitates spontaneously from in 459 
ambient seawater can be locally important (e.g., Long et al. 2017).  460 
 461 
Models vary in the degree of mechanistic sophistication with which biogenic calcification is 462 
represented. For example, some models explicitly resolve calcifiers, such as pelagic 463 
coccolithophores (e.g., Krumhardt et al. 2017) and foraminifera (Grigoratou et al. 2022) and, in 464 
some cases, also benthic corals, foraminifera, or calcifying higher trophic levels and thus can 465 
mechanistically account for the associated alkalinity consumption. Alternatively, models can 466 
parameterize biotic production of carbonate, and its subsequent sinking and dissolution, as a 467 
fraction of organic matter production combined with an assumed remineralization profile (e.g., 468 
Schmittner et al. 2008; Long et al. 2021). Dissolution of carbonate minerals produces alkalinity, 469 
at the sediment surface and in the water column as carbonate particles sink. This can be 470 
represented with first-order abiotic dissolution kinetics with a dependence on the saturation 471 
state of ambient water in the water column (e.g., Sulpis et al., 2021), in the sediments (e.g., 472 
Emerson & Archer, 1990) or in micro-environments in aggregates or organisms (Barrett et al., 473 
2014) with systematic differences for different crystal structures, aragonite and calcite (Morse et 474 
al., 1980).  475 
 476 



14 

Production of alkalinity occurs via uptake of nitrate or nitrite by photoautotrophs, while 477 
remineralization consumes alkalinity when happening aerobically but generates alkalinity 478 
when occurring anaerobically, e.g. via denitrification (Fennel et al. 2008). Biotic production and 479 
consumption of alkalinity is stoichiometrically coupled to the release or uptake of nutrients and 480 
carbon, where non-Redfield processes such as nitrogen fixation or denitrification need to be 481 
specifically considered in the stoichiometric relationships (Paulmier et al., 2009).  482 
 483 
Spontaneous precipitation of carbonate minerals in pelagic environments could occur when 484 
seawater is highly oversaturated with respect to carbonate (Moras et al. 2022) but is, to the best 485 
of our knowledge, not yet included in ocean models. When simulating OAE approaches that 486 
may generate high oversaturation with respect to carbonate, spontaneous precipitation of 487 
carbonates needs to be considered, especially when condensation nuclei are present. 488 
Appropriate approaches will have to be developed, e.g., using near-field models to 489 
mechanistically represent this process and a meta-model approach to develop 490 
parameterizations that are suitable for far-field and larger-scale models. 491 
 492 
Organic compounds produced within the ocean or originating from land can also act as proton 493 
acceptors and contribute organic alkalinity (e.g., Koeve and Oschlies 2012, Ko et al. 2016, 494 
Middelburg et al. 2020) and will impact the carbonate system, the partial pressure of CO2 and 495 
thus the air-sea CO2 flux. Commonly, the contribution of organic alkalinity is deemed small 496 
enough in oceanic environments to be negligible, but this assumption should be reconsidered in 497 
the context of OAE, especially for coastal CDR deployments where the organic contribution to 498 
alkalinity is thought to be larger. To the best of our knowledge, models do not account for 499 
organic alkalinity. A better quantitative understanding of organic contributions to alkalinity is 500 
likely needed to parameterize or mechanistically represent its contribution in models. Similarly, 501 
it may be important in the context of mineral OAE deployments to account for local variations 502 
in [Ca2+] and [Mg2+] to accurately estimate the pCO2 anomalies generated by different OAE 503 
feedstocks. While these constituents have very long residence times in the ocean, and are hence 504 
commonly assumed to vary conservatively in proportion to salinity, variations in their relative 505 
abundance has an impact on the thermodynamic equilibrium coefficients used to solve seawater 506 
carbonate chemistry (Hain et al., 2015). 507 
 508 
2.2.2 Representing biological and ecological processes 509 

A key question related to OAE is whether changes in carbonate chemistry induce differential 510 
responses in organisms. In the pelagic zone, OAE might shift the phytoplankton community 511 
composition, for example, due to distinct physiological sensitivities of different groups (e.g., 512 
Ferderer et al. 2022). Further, if OAE is accomplished via rock dissolution, carbonate versus 513 
silicate rock may impact the relative balance between phytoplankton functional groups (PFTs) 514 
such as calcifiers and diatoms, and changes in Mg and Ca ratios may also influence calcification 515 
(Bach et al., 2019). Additionally, ancillary constituents specific to particular feedstocks may have 516 
biological activity. Silicate rocks include bioreactive metals such as Fe, a micronutrient with the 517 
capacity to stimulate phytoplankton growth, and others that are can be toxic when occurring in 518 
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high concentrations, such as Ni and Cu, and may adversely impact phytoplankton and reduce 519 
primary productivity (Bach et al., 2019). The bioreactivity of these metals may be difficult to 520 
simulate in models as their dissolved concentrations can be partially mediated by complexation 521 
with organic ligands (Guo et al., 2022). Physical impacts of OAE feedstocks may also have 522 
important biological impacts through changes in the propagation of light in the surface ocean, 523 
and direct exposure to mineral particles may have additional impacts, e.g., on zooplankton 524 
through particle ingestion (Harvey, 2008; Fakhraee et al., 2023). Effects of OAE on plankton 525 
have the potential to propagate to higher trophic levels through marine food webs as the 526 
magnitude and quality of net primary productivity shifts and trophic energy transfer is altered 527 
accordingly.  528 
 529 
Simulating this full collection of processes in models is challenging. Dominant modeling 530 
paradigms for simulating planktonic ecosystems include PFT- and trait-based models (e.g., 531 
Negrete-Garcia et al., 2022). In these systems, physiological sensitivities are parameterized 532 
according to transfer functions that modulate rate processes—growth, for instance—on the basis 533 
of ambient environmental conditions. Nutrient limitation of growth is often represented using 534 
Michaelis–Menten kinetics wherein growth rates decline as nutrients concentrations become 535 
limiting. State-of-the-art ESMs represent PFTs with multiple nutrient co-limitation, which is 536 
essential to effectively simulate plankton biogeography of the global ocean. Diatoms, for 537 
example, are capable of high growth rates, enabling them to outcompete other phytoplankton 538 
under high-nutrient conditions, but their range is restricted to high latitudes and upwelling 539 
regions where there is sufficient silicate. If OAE were to modulate the concentration of 540 
constituents represented by multiple nutrient co-limitation models, it is possible such models 541 
could simulate the phytoplankton community response—though it’s important to consider 542 
whether the models provide representations that are sufficiently robust for the magnitude of 543 
OAE-related perturbations. In some cases, models are missing key processes that would be 544 
required to mechanistically simulate certain effects. We are aware of no models that represent 545 
Ni toxicity, for instance. Including these effects, as well as a capacity to simulate secondary 546 
interactions, such as ligand complexation of metals in OAE feedstocks, will require significant 547 
investment in empirical experimentation to understand essential rate processes and 548 
physiological responses. 549 
 550 
Shortcomings in the capacity of models to represent physiological responses to OAE is an 551 
important consideration for the ability of models to faithfully represent ecological impacts. 552 
Notably, electrochemical OAE techniques present a simpler set of processes to consider than 553 
using crushed-rock feedstocks, where ancillary constituents and physical dynamics come into 554 
play. For electrochemical OAE, the most likely biological feedback to consider relates to the 555 
impacts of changing carbonate chemistry on biogenic rates of calcification or phytoplankton 556 
growth rates (Paul and Bach 2020). It is also possible that carbon limitation of phytoplankton 557 
growth (Paul and Bach 2020; Riebesell et al. 1993) may also be important. Empirical research 558 
exploring physiological sensitivities should be used to develop prioritizations of key model 559 
processes comprising early targets for implementation. Model documentations should use 560 
consistent stoichiometric relations to link alkalinity changes to those of nutrients and carbon 561 
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(Paulmier et al. 2009) and state the assumptions made about carbonate formation and 562 
dissolution. 563 
 564 
2.2.3 Representing sediment-water exchanges 565 

The exchange of solutes between the sediments and overlying water influences ocean 566 
chemistry, including the properties of the carbonate system (Burdige 2007). Depending on 567 
location and time scale, OAE may affect these exchanges and should be appropriately 568 
considered in models. Sediments influence the marine carbonate system primarily through the 569 
remineralization of organic matter, which returns DIC to overlying water (and alkalinity if this 570 
remineralization occurs anaerobically), and the dissolution of biogenic silicate or carbonate 571 
minerals. CaCO3 is of particular importance as its dissolution releases alkalinity, while its burial 572 
is an alkalinity sink, and the balance between the two is a key control on the ocean’s alkalinity 573 
balance over timescales approaching 104 years (Middelburg et al. 2020). Furthermore, 574 
remineralization and other microbial metabolisms, such as “cable bacteria,” can significantly 575 
lower pore water pH by several pH units below seawater values (Meysman and Montserrat 576 
2017). This can drive dissolution of CaCO3 and generate alkalinity in the sediments, even in 577 
shallow waters when the overlying water is supersaturated (Rau et al. 2012). 578 
 579 
Representing these processes in coastal and shelf sediments (< 200 m) is challenging. Shallow 580 
water depths and high productivity result in a significant delivery of organic matter to the 581 
sediments that is much larger than in the deep ocean. As a result, the relative importance of 582 
sediments in organic matter remineralization is larger and production of alkalinity by anaerobic 583 
metabolisms is more important in these shallow sediments than in the deep ocean (Seitzinger et 584 
al. 2006, Jahnke 2010, Huettel et al. 2014, Chua et al. 2022). In addition, these environments are 585 
dynamic with organic supply and bottom water conditions varying on tidal, seasonal, and 586 
interannual timescales. Accounting for the exchange between sediments and overlying water 587 
and its variability on tidal, seasonal, and interannual timescales will likely be necessary in 588 
regional and global biogeochemical models that aim to simulate alkalinity cycling in coastal and 589 
shelf seas, even for relatively short simulation durations of months to years.   590 
 591 
The choice of approach to modeling sediments may depend on the sediment type. For example, 592 
the mechanisms transporting solutes across the sediment-water interface can be divided into 593 
two categories depending on the sediment’s grain size. In coarse sediments, i.e. permeable 594 
sands, pressure gradients drive flow through the seabed replenishing sediment oxygen content 595 
(Huettel et al. 2014). Organic carbon stores are low and remineralization was long thought to be 596 
primarily aerobic. However, evidence has emerged relatively recently that anaerobic 597 
remineralization in sandy sediments is more important than originally thought (Chua et al. 2022 598 
and references therein). Idealized models that represent the three-dimensional sediment 599 
structure illustrate the importance of turbulence and oscillatory flows in permeable sediments 600 
(see Box 2 in Chua et al. 2022). These models are highly localized and computationally 601 
demanding, prohibiting their coupling with ocean biogeochemical models. Thus, permeable 602 
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sediments are currently not well represented in regional or global ocean biogeochemical 603 
models.  604 
 605 
In cohesive, fine-grained sediments with low permeability, i.e. muds, transport is limited by 606 
diffusion or faunal mediated mixing and exchange processes, i.e. bioirrigation or bioturbation 607 
(Meysman, et al. 2006, Aller 2001). In these environments, detailed multicomponent reactive-608 
transport models of sediment biogeochemistry – so called diagenetic models – can reproduce 609 
carbon remineralization rates partitioned between aerobic and anaerobic pathways, 610 
precipitation/dissolution reactions between sediment grains and porewaters, and the transport 611 
of solutes across the sediment-water interface (Boudreau 1997, Middelburg et al., 2020). These 612 
mechanistic models will be useful for detailed investigations into how perturbations of the 613 
carbonate system in seawater overlying the sediments affect their biogeochemistry and for 614 
addressing questions about the potential influence of particulate alkalinity feedstocks settling to 615 
the seafloor (Montserrat et al. 2017, Meysman and Montserrat 2017). However, typically these 616 
models are one-dimensional and applied to a few representative locations. Coupling fully 617 
explicit diagenetic models to three-dimensional ocean biogeochemical models, while 618 
conceptually straightforward, is computationally prohibitive. Instead, depth-integrated 619 
sediment processes have been implemented as bottom boundary conditions (e.g., Moriarty et al. 620 
2017, 2018, Laurent et al. 2016). For example, Laurent et al. (2016) used a diagenetic model in a 621 
“meta-modeling” approach to estimate bottom boundary nutrient fluxes for a regional scale 622 
biogeochemical model. By parameterizing the diagenetic model with detailed geochemical data 623 
(porewater profiles and nutrient fluxes) from a few individual locations, then forcing it over a 624 
range of expected bottom water conditions, they developed empirical functions relating 625 
sediment fluxes to bottom water conditions that could be used to parameterize bottom 626 
boundary conditions in the water column model. A similar approach could be used in OAE 627 
models to parameterize how sediment biogeochemistry may alter alkalinity fluxes, for example, 628 
how redox sensitive processes, such as coupled nitrification-denitrification or sulfate reduction 629 
coupled to pyrite burial, both of which may produce alkalinity (Soetaert et al. 2007), may 630 
respond to changes in bottom water oxygen or organic matter loading. 631 
 632 
When considering the long-term storage of CO2 in global-scale ESMs, the interactions between 633 
sediments and the deep ocean (> 1000 m bottom depth) may need to be considered. In this 634 
environment most organic matter remineralization occurs in the water column, and the small 635 
amount of organic matter reaching the seafloor is remineralized aerobically with little to no 636 
release of alkalinity. In this case, sediment remineralization can likely be either ignored or 637 
implemented as a reflective boundary condition where the simulated POC flux to the seafloor is 638 
immediately returned as DIC and remineralized nutrients. However, the dissolution or 639 
preservation of CaCO3 in deep sediments is critical to controlling deep water alkalinity and may 640 
be important in model simulations that aim to quantify OAE effects on the timescales associated 641 
with the large-scale global overturning circulation. CaCO3 solubility increases with pressure 642 
and decreasing pH and CaCO3 eventually becomes undersaturated at depth. The depth at 643 
which sinking CaCO3 balances its dissolution is referred to as the carbonate compensation 644 
depth (CCD). An increase in bottom water CO32- or CaCO3 deposition, will deepen the CCD, 645 
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burying CaCO3, trapping alkalinity, and lowering the alkalinity budget of the ocean.  646 
Conversely if CaCO3 rain rate or CO32- concentration decreases, the CCD will shoal and 647 
previously buried CaCO3 will dissolve releasing alkalinity to the deep ocean. CCD 648 
compensation therefore opposes any forcing of the deep ocean carbonate system and therefore 649 
dampens the rise of CO2 in the atmosphere but will also counteract any potential OAE solution 650 
(see Renforth and Henderson 2017 for a detailed explanation). Although most CaCO3 651 
dissolution occurs in the sediments, there is no consensus as to the level of detail this needs to 652 
be represented in models. Some global models employed to investigate large-scale OAE include 653 
calcium carbonate dynamics at the sediment surface (Ilyina et al. 2013) others disregard this 654 
process (Keller et al. 2014).  655 
 656 
Often global models will parameterize CaCO3 burial as a function of saturation state, such an 657 
approach is effective for resolving CCD dynamics over geological timescales (~10,000 y), but not 658 
over the century to millennial timescales of CCD readjustment. Models that fully couple 659 
sediment diagenesis can resolve these dynamics (Gehlen et al. 2008), but the computational 660 
demand can make them ineffective. One solution is the approach of Boudreau et al. (2010) and 661 
(2018). By suggesting that CaCO3 dissolution dynamics are controlled by transport of 662 
dissolution products across the benthic boundary layer, they were able to derive equations 663 
predicting CCD depth and CaCO3 dissolution based on bottom water CO32- and CaCO3 rain rate 664 
and avoiding a detailed representation of the sediments. These equations, combined with model 665 
bathymetry, can parameterize sediment CO32- flux as a boundary condition and suitably account 666 
for transient sediment CaCO3 dissolution in large scale ESMs while avoiding the computational 667 
demands of a fully coupled ocean circulation-diagenesis model. 668 
 669 
2.2.4 Representing river and groundwater fluxes 670 

Regional and global ocean biogeochemical models typically account for river inputs, including 671 
their contributions to alkalinity and DIC. In most models this is done by specifying alkalinity 672 
and DIC concentrations in imposed riverine freshwater fluxes, although accurate prescription of 673 
these concentrations can be challenging. Typically, a combination of direct river measurements, 674 
where available, output from watershed models (e.g., Seitzinger et al. 2010), or extrapolations of 675 
coastal ocean measurements to a freshwater endmember (e.g., Rutherford et al. 2021) are used. 676 
Solute inputs from groundwater are typically ignored but could be important locally. In high-677 
resolution coastal domains near urban areas, sewage input may be an additional important 678 
source of carbon, nutrients, and alkalinity. 679 
 680 
It is important to note that land-based CDR applications may have an important effect on ocean 681 
alkalinity dynamics through riverine and groundwater delivery of solutes. Terrestrial OAE 682 
equivalents broadly referred to as Enhanced Rock Weathering (ERW) rely on the application of 683 
lime or pulverized silicate or carbonate rocks on land and in rivers. These strategies aim to 684 
generate CO2 uptake locally but yield a leaching flux of bicarbonate into freshwater systems and 685 
subsequent transport into the coastal ocean. Field trials and some commercial applications are 686 
currently underway, most of them with the implicit or explicit assumption that the enhanced 687 
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delivery of alkalinity will generate a carbon removal in the ocean (Köhler et al., 2010; Taylor et 688 
al., 2016; Bach et al., 2019). There is a need for coordinated efforts to improve quantification of 689 
background riverine fluxes and establish initiatives to effectively track the solute additions from 690 
ERW. 691 
 692 
2.2.5 Representing air-sea gas exchange  693 

The calculation of air-sea gas exchange is necessary for the quantification of net carbon uptake 694 
from OAE in models. Biogeochemical models typically represent this exchange using a bulk 695 
relationship that depends on the product of the gas transfer velocity and the effective air-sea 696 
concentration difference (Fairall et al. 2000). However, the gas transfer velocity remains highly 697 
uncertain and is sensitive to a collection of processes that vary across scales, including sea state, 698 
boundary layer turbulence, bubble dynamics, and concentrations of surfactants. The most 699 
widely used parameterizations of the gas transfer velocity use empirical fits to observations to 700 
construct a functional relation dependent on wind speed only, under the premise that 701 
turbulence and bubbles (via the breaking of surface gravity waves) are predominantly 702 
determined by wind stress (Wanninkhof 2014). This neglects processes that could be regionally 703 
important such as convection, modification by biological surfactants, rain and wave-current 704 
interactions, while vastly simplifying the effects of wave breaking and bubbles. Although 705 
different dependencies on wind speed have been proposed (quadratic, cubic, hybrid), 706 
parameterizing the gas transfer coefficient as a quadratic function of the 10-meter wind speed is 707 
the most common (Wanninkhof 1992; Wanninkhof 2014). This relationship is supported by 708 
direct measurements of air-sea flux at intermediate wind speeds (3-15 m/s), but at low wind 709 
speeds (< 3 m/s), non-wind effects can have an important impact on gas transfer. At high wind 710 
speeds (> 15 m/s), breaking waves and bubble injection enhance gas exchange for lower 711 
solubility gasses such as CO2 (Bell et al. 2017). Therefore, quadratic fits tend to underestimate 712 
the gas exchange at low and high wind speeds (Bell et al. 2017). 713 
 714 
More complex air-sea exchange parameterizations account for processes such as bubbles, near 715 
surface gradients and buoyancy driven convection (e.g., Liang et al. 2013, Fairall et al. 2000), but 716 
they depend upon a wider range of input variables. Other considerations in estimating flux 717 
arise from the nonlinear dependence on these variables, e.g., wind speed, which can lead to 718 
underestimates when made using daily averages rather than hourly measurements (Bates and 719 
Merlivat 2001). 720 
 721 
Notably, the gas transfer velocity (kw) determines the kinetics of gas exchange, given a 722 
perturbation in surface ocean pCO2 away from equilibrium. The timescale for CO2 equilibration 723 
over the surface mixed layer can be fully quantified using the following expression, 724 

 𝜏!"#$%& = #'()*
'+,(

$
$-
# .
/!
$ 725 

where h is the depth of the surface mixed layer and the partial derivative ∂CO2/∂DIC captures 726 
the thermodynamic state of the carbon system chemistry in seawater, specifically with respect 727 
to the amount that dissolved CO2 changes per unit change in DIC (Sarmiento and Gruber 2006). 728 
This property is related to the buffer capacity and varies in roughly linear proportion to the 729 
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carbonate ion concentration. The magnitude of #'()*
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 is typically about 20, which explains 730 
why the equilibration timescale for CO2 is so long. The contribution of uncertainty in the gas 731 
exchange velocity to overall uncertainty in carbon uptake from OAE deployments will depend 732 
in part on the circulation regime involved. For example, in situations where alkalinity-enhanced 733 
water parcels are retained at the surface for timescales that are significantly longer than τgas-ex, 734 
full equilibration will occur and the impact of uncertainty in the gas exchange velocity will have 735 
limited influence on the overall uncertainty. 736 
 737 
Even though OAE-induced additional air-sea CO2 fluxes will, even in hypothetical massive 738 
deployments, amount to at most a few Gt CO2/yr, which is typically not more than a percent of 739 
the atmospheric CO2 inventory, this subtle difference in the treatment of the atmospheric 740 
boundary condition can be significant. Using prescribed atmospheric pCO2 that is unresponsive 741 
to marine CDR-induced air-sea CO2 fluxes has been shown to overestimate oceanic CO2 uptake 742 
by 2%, 25%, 100% and more than 500% on annual, decadal, centennial, and millennial 743 
timescales, respectively (Oschlies 2009). Simulations with prescribed atmospheric pCO2 need to 744 
take such systematic biases into account. 745 
 746 
2.3 Model development needs for OAE research 747 

While there is already substantial capacity for simulating ocean biogeochemical dynamics at 748 
global to regional scales, the discussion above implicates several areas where additional efforts 749 
are required to fully establish a modeling capability suitable for supporting OAE. These fall into 750 
four primary areas: (1) supporting multi-scale simulations with sufficiently high-fidelity flow 751 
fields; (2) faithfully simulating the near-field dynamics associated with alkalinity addition; (3) 752 
capturing feedbacks to OAE owing to biological and geochemical responses; and (4) identifying 753 
whether there are reduced-complexity modeling approaches that might provide sufficiently 754 
robust estimates of the net effects of OAE.  755 

As elucidated above, a primary consideration related to capturing OAE impacts is the fidelity of 756 
the simulated flow. Notably, OAE presents a somewhat novel use case requiring an effective 757 
multi-scale modeling capability. A conceptually straightforward path to improving the 758 
representation of ocean circulation and mixing is to increase the resolution of the model grid. 759 
However, the computational demand of high-resolution simulations can only be met over more 760 
limited-area domains. Since the spatiotemporal footprint of OAE-related perturbations is likely 761 
to be large, there will be a need to represent large regions. An argument might be made, 762 
however, that the circulation in proximity of an OAE site is most important to capture with 763 
high-fidelity. This can be achieved with two-way nested regional models as described in see 764 
Section 2.1.2 but will require further development to couple in the nearfield models described in 765 
Section 2.1.1. Native grid-refinement, e.g. via unstructured grids, is another approach that may 766 
be pursued to effectively support OAE research. 767 

The second area of model development relates to the requirement of faithfully representing the 768 
dynamics associated with alkalinity addition. Regional to global scales are the most relevant for 769 
simulating the air-to-sea exchange of CO2 ensuing from OAE. It is important, however, to 770 
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ensure that local processes affecting the mass fluxes and initial dispersal of alkalinity are 771 
handled appropriately. As illustrated above, DNS or LES simulations (section 2.1.1) can be 772 
leveraged to develop parameterizations for larger-scale models, including for crushed-rock 773 
feedstocks where particle dynamics may be important or techniques involving alkalinity 774 
enhanced streams entering the ocean from outfall pipes. In addition to process fidelity, there are 775 
also numerical constraints to consider. For example, advection schemes used in most ocean 776 
general circulation models struggle to represent sharp gradients; large mass fluxes of alkalinity 777 
into single model grid-points are likely to cause advection errors that may contaminate aspects 778 
of the model solutions making interpretation difficult. More specifically, conservative advection 779 
schemes can be characterized in terms of their accuracy, monotonicity (i.e., ability to preserve 780 
sign), and linearity (i.e., ability to preserve additivity) and there are always tradeoffs to make 781 
between these properties. Research may be required to determine which schemes are best 782 
suited to the particular challenges associated with representing the advection of OAE signals. 783 

The third area of model development relates to our capacity to fully capture the range of 784 
biogeochemical feedback associated with OAE. The class of processes to consider here is 785 
potentially large and many have been touched on in section 2.2.1 to 2.2.3. Precipitation 786 
dynamics, specific elemental components of alkalinity, biogenic responses mediated by 787 
physiological or ecological sensitivities, impacts and processes controlling the cycling of 788 
ancillary constituents, and accurate sediment-water exchange are all areas that merit 789 
consideration. Further efforts are required to understand and prioritize these areas of potential 790 
development and, notably, their relative importance is likely to be regionally dependent. 791 

Finally, it is important that models be tailored to address specific questions of relevance. In this 792 
context, it may be important to consider how much model complexity is required to capture the 793 
effects of perturbations, seeking parsimonious representations that are well-supported by 794 
empirical constraints and invoking wherever possible a separation of concerns to isolate the 795 
factors contributing to uncertainty. For example, there are several near-field considerations that 796 
might be addressed using a combination of local observations and ultra-high-resolution 797 
modeling tools to generate estimates of alkalinity mass fluxes that are subsequently imposed as 798 
forcing in regional- to global-scale models. Another key question is how important it is to 799 
comprehensively simulate the mean state to faithfully capture the response to OAE 800 
perturbations for the purpose of MRV. For example, if it can be documented that biological 801 
feedbacks to OAE are of negligible concern, the core target for simulating OAE effects for MRV 802 
may be to capture the cumulative integral of air-sea CO2 exchange associated with the induced 803 
surface ocean pCO2 anomaly. The mean state of the seawater carbon system is relevant here as 804 
the background DIC and alkalinity fields determine the pCO2 response per unit addition of 805 
alkalinity, but fully prognostic calculations of nutrient cycling may not be necessary. 806 

3 Model validation and integration with observations  807 

Whether a model is useful for OAE research depends on how accurately it represents the 808 
physical, chemical, and biological processes that are relevant to the specific research question to 809 
be addressed. Model validation, the evaluation of a model’s performance, and estimation of 810 
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uncertainties in model output should thus be integral parts of model implementation and 811 
application. It is important to note that any model, even after best efforts have been made to 812 
improve formulations and conduct the most thorough validation, will deviate from reality. Any 813 
model is, by definition, a simplification of the real world and thus its output will be subject to 814 
uncertainties. Deviations of the model state from the real world can be reduced by applying 815 
statistical techniques, collectively referred to as Data Assimilation (DA) methods, that combine 816 
models with observations and yield the best possible estimates. The steps typically involved in 817 
model implementation and validation, and possible integration with observations through data 818 
assimilation are shown in Figure 4. In this section, we summarize the most important 819 
observation needs for model validation (Section 3.1), briefly describe typical metrics for model 820 
validation and articulate a reasonable minimum criterion (Section 3.2), give a high-level 821 
explanation of approaches for the formal statistical combination of models with observations 822 
through parameter optimization and state estimation (Section 3.3), and describe approaches for 823 
the specification of uncertainty in model outputs (Section 3.4). 824 
 825 

 826 
 827 

Figure 4: Typical steps in model implementation and validation. 828 

Initial model implementation 
There are many choices to be made, see 
Sections 2.1, 2.2. This step may include param-
eter optimization, see Section 3.3. 

Unconstrained hindcast

Validation 
See metrics and criteria in Section 3.2.

Does the model have sufficient skill in 
its representation of the relevant 
processes?

No Yes

Model refinement and testing of 
alternative formulations
This typically involves: 
• sensitivity analyses of parameters, parame-
terizations, and model structures; 
• formal parameter optimization; 
• obtaining more observations ideally guided 
by OSSEs (see Section 4.2).

Is there non-deterministic or uncon-
strained variability that hampers the 
model’s utility for the intended applica-
tion?

Yes

Apply DA to produce con-
strained hindcast, nowcast, or 
forecast.

Analyze “forecast” skill by 
assessing model against 
observations not used in DA. 
Is it satisfactory?

Yes

Model is ready to be used 
for its intended application.

No

No

Model is ready to be used for uncon-
strained hindcasts and scenario simula-
tions.

For simulations of OAE impacts, validation of 
simulated anomalies between baseline and 
perturbed simulation is desirable (see Section 
3.2).   
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3.1 Observation types for validation 829 

Two fundamental requirements for models to be useful in the context of OAE research are high-830 
fidelity representations of physical transport due to advection and mixing, and of 831 
biogeochemical effects of OAE, most importantly changes in the inorganic carbon properties.  832 

Observations for validation of the simulated physical transport of alkalized waters include 833 
temperature and salinity distributions, direct measurements of currents, surface drifter 834 
trajectories, sea surface height observations from satellite altimetry, and estimates of 835 
geostrophic flow derived from the latter. Additional metrics relevant for assessing the fidelity of 836 
the large-scale overturning circulation in global models include combinations of biogeochemical 837 
concentration and transient tracers. For example, oxygen can be useful for identifying large-838 
scale transport pathways, even though it convolutes dynamical and biological information. 839 
Particularly valuable for assessing large-scale ocean transport on the timescales relevant for 840 
OAE are abiotic transient tracers such as such as chlorofluorocarbons (CFCs), sulfur 841 
hexafluoride (SF6), and possibly the isotopes 39Ar and 14C. Observational approaches for 842 
validation at regional scales include explicit tracer studies for documenting dispersion 843 
properties using Rhodamine dye or SF6. 844 

In addition to the dynamics of the flow, model validation for OAE research requires the 845 
assessment of the fidelity of simulated carbonate chemistry variables (e.g., alkalinity, total 846 
dissolved inorganic carbon or DIC, pH, pCO2) and salinity and temperature, which are used to 847 
calculate the 13 thermodynamic equilibrium constants and conservative chemical species 848 
needed to constrain seawater acid-base chemistry in oxygenated seawater. Depending on the 849 
OAE approach and the model application, assessment may also require observed macronutrient 850 
(e.g., nitrate, silicate, or phosphate), micronutrient (e.g., Fe), and contaminant (e.g., Ni, and Cr) 851 
measurements; bulk seawater properties related to biogeochemical cycling (e.g., dissolved 852 
organic carbon content [DOC], particulate inorganic carbon [PIC], chlorophyll fluorescence); 853 
and biogeochemical rates and fluxes (e.g., net community calcification).  854 

It is not always feasible to obtain the ideal carbonate system observations for model validation. 855 
Temperature and salinity can be measured reliably across all ocean depths and, with greater 856 
uncertainty and only at the ocean surface, remotely from satellites. The technical capacity for 857 
seawater pH measurements is evolving rapidly and sensors and systems now exist for pH 858 
measurements across nearly all depths, though the depth-capable systems require regular 859 
recalibration (e.g., Maurer et al., 2021). Similarly, there are numerous ways to observe surface 860 
ocean pCO2 using a variety of crewed, autonomous, and fixed-location platforms (e.g., ship-861 
based, Saildrone, and moored systems). However, interior-ocean pCO2 observations remain 862 
challenging to obtain due to the need for calibration gasses and a gas-water interface. Alkalinity 863 
titrations are predominantly performed on discrete bottle samples collected by hand, though 864 
autonomous titration systems are under development that enable in situ surface time series 865 
measurements (Shangguan et al., 2022). Microfluidic in situ alkalinity titrators are also under 866 
development that consume less reagent per sample but currently show higher uncertainties 867 
than discrete samples (Sonnichsen et al. 2023). Solid state titrators that generate acid titrant in 868 
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situ show promise for surface and subsurface alkalinity titrations, but these sensors are still 869 
undergoing development and validation (Briggs et al., 2017). DIC observations combine the 870 
limitations of current measurement systems for both the pCO2 and alkalinity, and there are only 871 
a handful of automated DIC titration systems rated for surface ocean measurements (e.g., 872 
Fassbender et al. 2015; Wang et al. 2015; Ringham 2022). Theoretically, measurement of two of 873 
the carbonate system parameters in combination with temperature and salinity and some 874 
additional assumptions allows calculation of the other carbonate system parameters in 875 
seawater. Unfortunately, the pair of pCO2 and pH, which are the most accessible to autonomous 876 
measurement among the carbonate system parameters, provide nearly identical information 877 
about the system. Thus, the results of the calculations that use this pair have higher 878 
uncertainties than other combinations (Dickson and Riley 1979; Millero 2007; Cullison Gray et 879 
al. 2011; McLaughlin et al. 2015; Raimondi et al. 2019) and are therefore not ideal as a pair for 880 
model validation. 881 

3.2 Validation metrics and approach 882 

Validation relies on comparing the model output to observations, often in an iterative loop 883 
where the evaluation of a hindcast simulation is followed by model refinements followed in 884 
turn by a new hindcast and re-evaluation (Figure 4, Rothstein et al. 2006). Several evaluation 885 
metrics are commonly used (see Box 3 in Fennel et al. 2022). The three most common are the 886 
root-mean-square error (RMSE), the bias, and the correlation coefficient. All three are relative 887 
measures without any objective criterion that indicates which range of values is acceptable or 888 
unacceptable. In contrast, the Z-scores, which consider variability within the observational data 889 
set, and the so-called model efficiency or model skill, which quantifies whether the model 890 
outperforms an observational climatology are two metrics with built-in criteria as to whether a 891 
model’s performance is acceptable or not (Fennel et al. 2022). Since no single metric provides a 892 
complete picture of a model’s skill, multiple complementary metrics should always be used in 893 
combination (Stow et al. 2009). Furthermore, different points in space and time, and a breadth of 894 
variable types should be part of any comprehensive validation because a model may provide 895 
accurate estimates for some variables, locations, or times but perform poorly for others (Doney 896 
et al. 2009). 897 

For OAE research, validation can be considered as a two-step challenge. First, it is necessary to 898 
validate unperturbed model baselines to gain confidence that the natural variability is 899 
represented appropriately and to quantify model uncertainties. One should compare model-900 
simulated spatial fields and time-series at strategic locations with appropriate observations to 901 
assess the model’s skill at representing mean distributions as well as the variability for 902 
carbonate chemistry measurements and other relevant properties using several of the 903 
complementary quantitative metrics listed above. A model could be considered as sufficiently 904 
validated when mean distributions, their seasonal variability, and the timing and magnitude of 905 
events (e.g., blooms, physical disturbances) are accurately represented. As described in Section 906 
3.1, insufficient availability of observational constraints on carbonate system parameters 907 
presents a major challenge in this regard. In models applied for OAE research, it is particularly 908 
important to assess whether they realistically capture the distributions and variability of 909 
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seawater properties that govern sensitivity of the seawater carbonate system; recent work by 910 
Hinrichs et al. (2023) shows that the current representation of alkalinity in state-of-the-art 911 
models requires improvements.  912 

The second, even more difficult step is to test whether a model accurately represents alkalinity 913 
additions. OAE-related modeling studies thus far have relied on models that are validated only 914 
for baseline conditions. These are useful as sensitivity studies. However, validation of a model's 915 
ability to accurately represent the perturbations of an alkalinity addition is ultimately needed to 916 
address OAE science questions around environmental impacts and MRV. It is likely that the 917 
metrics described above for baseline validation are not suitable for this task. Validation should 918 
focus on quantifying whether the model accurately captures the anomalies created by OAE. 919 
This requires consideration of the spatial footprint and temporal evolution of perturbations and 920 
ideally a close integration of experimental, observational, and modeling efforts. For example, a 921 
model that is deemed skillful after baseline validation can be used to estimate the appropriate 922 
dosage of alkalinity additions, thus ensuring a measurable signal, and guide the observational 923 
strategy; subsequent validation may indicate model shortcomings that were not obvious in the 924 
baseline validation (e.g., diverging dissipation rates between model and field observations) and 925 
prompt model refinement in an iterative loop of model validation, improvement, and renewed 926 
experimental assessment (Figure 4). 927 

It is important to note that even with repeated steps of validation and model improvement, 928 
there is going to be a limit to the degree of realism that can be achieved with any model. Any 929 
model simulation will be prone to errors and uncertainties. Sources of error include inaccuracies 930 
in model inputs, numerical approximation schemes, insufficient process understanding, and 931 
inaccurate model parameters and parameterizations. 932 

3.3 Data Assimilation 933 

Data assimilation (DA) is the process of improving the dynamical behavior of models by 934 
statistically combining them with observations. There are a variety of DA techniques that rely 935 
on different mathematical and statistical approaches (Carrassi et al. 2018). Originally developed 936 
for numerical weather prediction, DA has been successfully applied to ocean models, including 937 
biogeochemical models (Mattern et al. 2017, Cossarini et al. 2019, Ciavatta et al. 2018, Verdy and 938 
Mazloff 2017, Teruzzi et al. 2018, Fennel et al. 2019) but success critically depends on the 939 
information content of the available observations (Yu et al. 2018; Wang et al. 2020). While DA 940 
has been shown to yield large improvements in important parameters governing 941 
biogeochemical processes (Mattern et al. 2012, Schartau et al. 2017, Wang et al. 2020) and in 942 
model estimates of the physical and biogeochemical model state (Hu et al. 2012, Mattern et al. 943 
2017, Ciavatta et al. 2018), it is only starting to be applied to carbonate system properties (Verdy 944 
and Mazloff 2017, Carroll et al. 2020, Turner et al. 2023, Figure 5).  945 

Application of DA for ocean models is typically applied for one of two purposes: (1) to 946 
systematically optimize model parameters, e.g., phytoplankton growth and nutrient uptake or 947 
rates of background dispersion, and (2) to estimate the ocean state, e.g., distributions of 948 
temperature, phytoplankton biomass, alkalinity (see Fennel et al. 2022 for more details on the 949 
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practical approaches and examples). The first purpose addresses systematic errors and biases in 950 
models and is useful when systematically modifying and testing different model formulations 951 
while the second assumes an unbiased model and addresses unresolved stochasticity, e.g., 952 
correcting the locations of mesoscale eddies and current meanders. State estimation offers the 953 
potential to constrain variability such that OAE-induced perturbations of carbonate system 954 
parameters can be documented even if they are smaller than the natural variability in the study 955 
region. Joint estimation of physical and biogeochemical properties is common and can yield 956 
significant improvements for both types of properties (Yu et al. 2018). Hybrid approaches 957 
combining parameter and state estimation have also been proposed (Kitagawa 1998, Mattern et 958 
al. 2012, 2014) but are less widely used. 959 

 960 

Figure 5: Example of a DA application for state estimation of carbonate system properties 961 
within a 3-dimensional model of the California Current System. The symbols show glider data 962 
and model estimates at the measurement times and locations; one specific data point and its 963 
associated model estimates are highlighted by red circles. Each data point consists of measured 964 
pH alongside estimated alkalinity and DIC values (see Takeshita et al. (2021) for data source 965 
and details). In the model, pH is a diagnostic variable and primarily dependent on the model's 966 
alkalinity and DIC estimates. (a) When only pH data is assimilated, the model estimates are 967 
moved closer to the observed pH values by increments in alkalinity-DIC space that degrade the 968 
model's alkalinity estimates. (b) The model state estimates improve considerably by 969 
assimilating data for DIC (or alkalinity; not shown) together with the pH observations.  970 

Successful application of DA critically requires sufficient observations either of the properties 971 
that the model parameters to be estimated depend on or of the state variables that are being 972 
estimated. The most commonly used observation type in biogeochemical DA applications is 973 
satellite-based ocean color observations (Mattern et al. 2017, Ciavatta et al. 2018, Teruzzi et al. 974 
2018) which are available at a relatively high temporal resolution and covering large areas of the 975 
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surface ocean. While these observations are useful for informing model estimates of properties 976 
directly linked to processes involving phytoplankton, they provide little information on the 977 
carbonate system. Dynamical models are able to quantitatively constrain processes that cannot 978 
be measured directly, by inferring them from observable properties, but only if the observations 979 
contain enough relevant information about the processes of interest. Hence, one of the biggest 980 
challenges facing the application of DA to models of the marine carbonate system, is the 981 
sparsity of observations of the marine carbonate system. Observations of pH, pCO2, alkalinity, 982 
and DIC used to be limited to moorings and research cruises but have more recently been 983 
extended by automated observing systems, such as gliders, BGC-Argo floats and uncrewed 984 
surface vehicles (Bushinski et al. 2019). Although these measurements are becoming more 985 
common (Chai et al. 2020), they are still sparse compared to what is typically required for DA 986 
applications. In this context, an additional challenge is the problem of underdetermination, i.e. 987 
if multiple processes or properties of interest can cause a similar change in an observable 988 
property, then observing this property alone may not hold enough information to constrain 989 
these processes or properties and more observations are needed (see Figure 5 and code 990 
examples in Fennel et al. 2022). As new platforms are added to the observing system, DA 991 
techniques can help guide their optimal deployment and tailor observational programs to the 992 
specific needs of OAE applications (see Section 4.3 below). Furthermore, statistical and 993 
machine-learning approaches are being developed (e.g., Lohrenz et al. 2018, Bittig et al. 2018, in 994 
prep.) that may help overcome the undersampling of carbonate system properties and could 995 
feed directly into DA applications. 996 

There is an important subtlety to the application of data-assimilative models when quantifying 997 
net CO2 uptake due to OAE, which is highly relevant for MRV. When the net CO2 uptake is 998 
quantified by calculating the difference between two simulations, one with and one without 999 
OAE (one of these is realistic, the other counterfactual), it is not appropriate to assimilate 1000 
biogeochemical observations of properties affected by the alkalinity enhancement. The 1001 
assimilation of alkalinity-related observations to constrain one of the simulations in the pair 1002 
would eliminate the ability to make comparisons between the two. However, assimilation of 1003 
observations that are unaffected by OAE (e.g., temperature, salinity, oxygen, etc.) can be 1004 
applied to both simulations of the pair. Further research and method development are required 1005 
to identify the best approaches for leverage DA in this context. 1006 
 1007 
3.4 Uncertainty analysis 1008 

Model results should be paired with sound qualitative and quantitative uncertainty estimates, 1009 
especially when used for practical decisions. Estimating the uncertainty of model simulations, 1010 
however, is inherently difficult because typically one is most interested in simulation outputs 1011 
for which observations are not available (e.g., unobserved or insufficiently observed properties 1012 
or fluxes in the past, properties and fluxes in the future); hence, standard procedures and 1013 
metrics for model validation (Section 3.2) are not helpful for this aspect. Uncertainty estimates 1014 
could be based on extensive model parameter and configuration sensitivity studies and 1015 
comparisons with models that include more realistic representations of uncertain or 1016 
parameterized processes. Furthermore, since specification of uncertainty is an integral part of 1017 
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DA, DA methodologies provide a useful framework for estimating uncertainty, especially 1018 
ensemble-based methods. 1019 
 1020 
Any DA application requires uncertainty specification of the observations that are assimilated 1021 
and can provide uncertainty estimates of the results of the assimilation procedure. Specification 1022 
of uncertainty in the input data is necessary to inform the DA machinery about how much 1023 
weight and reach each data point or data type should have in influencing the outcome. The 1024 
more realistic the uncertainties of the input data, the better the DA outcomes in terms of 1025 
explanatory or predictive skill. It is important to note that “better” does not mean more precise 1026 
in this context. Overconfidence in the accuracy of assimilated observations will lead to 1027 
overfitting and a degradation of predictive skill. In the case of parameter optimization, the 1028 
output of the assimilation exercise is a set of optimized parameters. The uncertainty of optimal 1029 
parameters, referred to as a posteriori errors, is determined by a Hessian analysis of the cost 1030 
function in combination with the uncertainty of the input parameters before optimization, the 1031 
so-called a priori errors (Thacker et al. 1989, Fennel et al. 2001). In the case of ensemble-based 1032 
state estimation, the ensemble spread of the reanalyzed model state provides a spatially and 1033 
temporally resolved estimate of the uncertainty of the reanalysis (Yu et al. 2018, Hu et al. 2012). 1034 
  1035 
However, an important caveat is that subjectivity enters the uncertainty specification in all of 1036 
these approaches. For example, in the case of parameter optimization the assumed a priori 1037 
errors, their probability distributions, and the choice of the cost function are subjective and 1038 
influence the a posteriori errors (but interestingly the values of the observations themselves do 1039 
not). In the case of ensemble-based state estimation, the sources of uncertainty inherent in the 1040 
model simulation have to be specified and simulated by generating variations within a model 1041 
ensemble. Sources of uncertainty include errors in atmospheric forcing and boundary 1042 
conditions, model parameters, and structural uncertainty. Uncertainty in forcing and boundary 1043 
conditions is often represented by perturbing the time of sampling, uncertainty in parameters is 1044 
represented by sampling from a probability distribution (based on a priori assumptions about 1045 
the uncertainty of each parameter), and the structural uncertainty is typically represented via 1046 
brute-force inflation factors that amplify ensemble spread. Yu et al. (2019), Li et al. (2016), and 1047 
Thacker et al. (2012) provide examples where different sources of model uncertainty are 1048 
accounted for. While the mechanics by which the model ensemble is generated and spreads 1049 
over time is thus subjective, grossly inappropriate choices will lead to obviously wrong or 1050 
degraded reanalyses. The success of a DA exercise, which is best judged by an evaluation of 1051 
whether the predictive power of the model has improved, thus provides a useful reality check 1052 
on whether the choices for specifying uncertainty were appropriate. 1053 
 1054 
How can the framework for specifying and estimating uncertainty from model ensembles be 1055 
applied in the context of OAE research? Two different cases should be considered here: 1) 1056 
model applications where the absolute value of quantities matters for the research question to 1057 
be addressed and thus the uncertainty of the simulated output, and 2) applications where 1058 
information about the difference between a simulation with and without OAE is of interest and 1059 
the uncertainty of this difference (e.g., the net CO2 uptake and its uncertainty in the context of 1060 
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MRV). Examples of the first case include studies of the stability of added alkalinity (i.e., 1061 
simulation of runaway calcium carbonate precipitation) and studies about the exposure of 1062 
planktonic and benthic communities to high pH. In this case, the ensemble framework 1063 
described above can be applied with the caveat that the specification of all the relevant sources 1064 
of uncertainty is by no means trivial and subjective to some degree. 1065 
 1066 
The second case is highly relevant for MRV of OAE where one is interested in accurately 1067 
quantifying the increase in seawater DIC due to OAE with well characterized uncertainty. In 1068 
this case, one would use two simulations that are based on an identical model set-up with only 1069 
one difference, namely a source of alkalinity is applied to one (i.e., one of these two simulations 1070 
is counterfactual or hypothetical, the other would typically be as realistic as possible). It may be 1071 
tempting, and is conceptually straightforward, to apply the ensemble framework for each 1072 
model of the pair and combine the resulting uncertainties via error propagation. However, in 1073 
practice this would not provide meaningful estimates because there are sources of uncertainty 1074 
that are unaffected by OAE (e.g., atmospheric forcing) and accounting for them may 1075 
significantly overestimate uncertainty in the estimated net CO2 uptake. A more appropriate 1076 
approach would be to construct an ensemble of model pairs that explicitly accounts for 1077 
uncertainty related to the impacts of alkalinity addition. How to specify and simulate the 1078 
sources of uncertainty directly resulting from OAE in practice remains an open research 1079 
question. 1080 
 1081 
4 Model experimentation 1082 

In this section, we lay out general objectives for model experimentation in the context of OAE 1083 
research and provide a short historical view of how these model studies have evolved (Section 1084 
4.1) followed by specific recommendations for Observing System Simulation Experiments 1085 
(Section 4.2) and model intercomparisons (Section 4.3).    1086 
 1087 
4.1 General objectives of model experimentation 1088 

General objectives of OAE modeling include (1) gaining a better understanding of the 1089 
biogeochemistry of OAE, including its effectiveness and side effects, (2) supporting 1090 
experiments, field trials, or commercial deployments including through the optimization of 1091 
observing systems, (3) assessing global carbon-cycle and climate feedbacks, (4) understanding 1092 
the role that OAE can play in climate mitigation efforts, and (5) supporting monitoring, 1093 
reporting, and verification activities. At a conceptual level, model approaches for OAE can be 1094 
classified as belonging into one of two groups: idealized or realistic. Idealized modeling 1095 
approaches are typically driven by research questions of a fundamental nature and aim to 1096 
develop or test hypotheses or provide improved process understanding while strongly 1097 
simplifying a range of potentially complicating factors. They are useful for illustrating cause-1098 
and-effect relationships and the range of plausible outcomes given strong assumptions. In 1099 
contrast, realistic modeling approaches aim to include a broad range of contributing factors as 1100 
accurately as possible and provide detailed hindcasts or predictions that, if the model has skill, 1101 
can be used for a range of practical applications. In practice, the dividing line between idealized 1102 
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and realistic models is blurry. Of course, no model will ever simulate all aspects of reality, 1103 
hence even realistic simulations make many assumptions and are prone to errors from multiple 1104 
sources. It can be effective to apply idealized and realistic approaches in a complementary 1105 
manner and iteratively. 1106 

It is illustrative to review briefly how modeling for OAE research has developed over the course 1107 
of the last decade. Much of the early work on OAE used idealized models. Model simulations 1108 
were designed to investigate whether the theoretical concept of OAE could remove large 1109 
amounts of CO2 on the global scale. Rather than trying to account for the technical and socio-1110 
economic constraints of OAE deployment, the model experiments were designed to investigate 1111 
what would happen if surface alkalinity was homogeneously increased by massive amounts via 1112 
a constant addition rate over extremely large regions of the ocean, e.g., in all sea-ice free waters 1113 
(Paquay and Zeebe, 2013; Keller et al., 2014; Ilyina et al., 2013; Köhler et al., 2010; Köhler et al., 1114 
2013). These simulated OAE deployments will never be realized, but the model results 1115 
suggested that OAE can be viable as a CDR approach. A particular advantage of this idealized 1116 
approach is that the effect of OAE was easy to detect against internal model variability, i.e., the 1117 
signal to noise ratio is high. The next steps in modeling OAE have remained idealized but have 1118 
begun to introduce more constraints and better mechanistic or empirically derived components 1119 
as experimental OAE date becomes available. Recently, modeling studies tailored to specific 1120 
regions and modes of application have been conducted to support field trials or commercial 1121 
deployment (Mongin et al. 2021, Wang et al. 2023). These applications must be as realistic as 1122 
possible. None of the modeling studies published to date have simulated an actual OAE field 1123 
trial.  1124 

4.2 Recommendations for Observing System Simulation Experiments (OSSEs) 1125 

Observing system simulation experiments (OSSEs) use data-assimilative simulations to design 1126 
new, or modify existing, observing systems such that deployments of observing assets, e.g., 1127 
floats, gliders, moorings, or surface vehicles, is optimized. General overviews and best practices 1128 
for OSSEs are provided by Halliwell et al. (2015) and Hoffman and Atlas (2016). Examples of 1129 
applications to biogeochemical models include Ford (2021), Wang et al. (2020), and Denvil-1130 
Sommer et al. (2021). Their goal is to maximize the information gained from a new or modified 1131 
observing system, while keeping the number of required instruments, sensors, or deployments 1132 
– and thereby cost and effort – low. OSSEs are especially valuable tools in the context of OAE 1133 
research because the marine carbonate system is still undersampled, observing systems need to 1134 
be designed and expanded, and new instruments deployed and configured (Boyd et al. 2023).  1135 

In practice, this is done with the help of a pair of two different models or model versions, also 1136 
referred to as twin experiments, as follows. A simulation of one of the models is considered to 1137 
be the “truth.” This simulation is also referred to as the “nature run” and synthetic observations 1138 
are generated by subsampling this nature run. This subsampling can be repeated with different 1139 
sampling schemes (e.g., different variable types, different numbers of profiles, transects, and/or 1140 
fixed location time series, etc.) to represent different configurations of the observing system.  1141 
Finally, the synthetic observations are assimilated into the other model for which a non-1142 
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assimilative simulation, the so-called “free run,” is also available. The skill of this data-1143 
assimilative simulation, also referred to as the “forecast run,” can be assessed against the free 1144 
run using independent observations that are also sampled from the nature run. In this way the 1145 
impact of different sets of observations on the data-assimilative model can be measured and 1146 
assessed. 1147 

While conceptually straightforward, care and consideration are required when setting up 1148 
OSSEs. For example, the choice of the two model versions making up the twin is important. If 1149 
the models chosen for the truth and forecast runs are versions of the same model 1150 
implementation that were generated by perturbing initial, forcing or boundary conditions in 1151 
one of them, the method is referred to as the “identical twin” approach. If two different model 1152 
types are used, they are “non-identical twins.” The intermediate approach where the same 1153 
model type is used but in different configurations (e.g., different physical parameterizations 1154 
and/or spatial resolution) is referred to as fraternal twin. The identical twin approach has been 1155 
more common in oceanic DA applications although atmospheric OSSEs have shown that it can 1156 
provide biased impact assessments (Hoffman and Atlas, 2016) typically because the error 1157 
growth rate between the truth and forecast runs is insufficient. A direct comparison of the non-1158 
identical and identical twin approach for an ocean circulation model of the Gulf of Mexico has 1159 
been conducted by Yu et al. (2019). In their assessment of the impacts of the existing observing 1160 
system (consisting of satellites and Argo floats), the identical twin approach provided overly 1161 
optimistic improvements in model skill after assimilation of data from some observing assets 1162 
(specifically sea-surface height and temperature) but undervalued the contribution from 1163 
temperature and salinity profiles. They concluded that skill assessments and OSSEs using the 1164 
non-identical twin approach are more robust. Similar concerns likely apply to OSSEs for 1165 
biogeochemical properties, but this remains to be studied systematically. 1166 

4.3 Recommendations for intercomparisons 1167 

A common approach to assessing model uncertainty are coordinated, multi-model studies, 1168 
commonly called model intercomparison projects or MIPs. They can be used to explore the 1169 
simulated range of model behaviors, to isolate the strengths and weaknesses of different models 1170 
in a controlled setting, and to interpret, through idealized experiments, inter-model differences 1171 
(IPCC 2013). Carefully designed experiments can also offer a way to distinguish between errors 1172 
particular to an individual model and those that might be more universal and should become 1173 
priority targets for model improvement (IPCC 2013). These studies rely on common agreed-1174 
upon protocols for simulating certain processes and writing of diagnostic output to ensure that 1175 
best practices are followed, and results are comparable (e.g., Griffies et al., 2016). The best-1176 
known model intercomparison project is probably the Coupled Model Intercomparison Project 1177 
(CMIP, Eyring et al., 2016), which is currently finishing up its 6th phase. Within CMIP6, the 1178 
carbon dioxide removal intercomparison project (CDRMIP; Keller et al., 2018) is the first project 1179 
to develop a model intercomparison experiment for ocean alkalinity enhancement. This and 1180 
other MIP examples, including those conducted at smaller region scales (Wilcox et al., 2022), 1181 
provide a blueprint for developing coordinated multi-model experiments.  1182 
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The following key practices have proven useful in previous coordinated multi-model 1183 
comparisons. Since broad participation is typically desired, the protocol should be 1184 
straightforward for modeling groups to implement, otherwise few will have the resources to 1185 
participate. In practice this means avoiding new implementations of complex code or requiring 1186 
too many or too long simulations. If applicable, forcing data should be centrally prepared and 1187 
provided to participants in a standardized way that enables easy modification or reformatting, 1188 
if needed, for use with different models. Using common simulations that modeling groups are 1189 
likely to have completed already, e.g., climate change scenarios, as control runs and 1190 
experimental branching points is helpful for minimizing the number of additional required 1191 
simulations. It is useful to establish common practices that facilitate the production and analysis 1192 
of the model output, e.g., what should be archived and shared (Juckes et. al., 2020) and data 1193 
standards governing the structure and required metadata for model output (Pascoe et al., 2020). 1194 
Shared software to standardize model output, such as the Climate Model Output Rewriter 1195 
(CMOR; https://cmor.llnl.gov/) commonly used in CMIP, can be helpful. To maximize the use of 1196 
model output, it should be made available for public download with digital object identifiers 1197 
(DOIs). The Earth System Grid Federation (ESGF) is an example of such a system (Petrie et al., 1198 
2021). If applicable, preparing and providing quality-controlled observational datasets for 1199 
model evaluation is useful for facilitating analytical efforts (Waliser et al., 2020). Coordinating 1200 
the analysis is helpful to avoid duplicative efforts and ensure consistent application of 1201 
evaluation metrics. Finally, the design of a coordinated multi-model experiment and all its 1202 
procedures should be well documented in publications or permanently archived protocols. It is 1203 
advisable to test the multi-model experiment with a small subset of models, before inviting a 1204 
large number of participants. Furthermore, it is worth remembering that the science questions 1205 
must be appropriate. MIPs require much effort and not every science question needs a MIP to 1206 
be answered. 1207 

5 Summary and Key Recommendations 1208 

A range of modeling tools and analysis methods are available for OAE research to address 1209 
questions from micro- to global scales; however, each of these tools and methods has limitations 1210 
and caveats that model users and users of model-generated outputs need to be aware of. 1211 
Furthermore, this new field of research poses questions and challenges that current tools were 1212 
not designed to address, necessitating further development. 1213 
 1214 
A common objective of all modeling approaches described in this article is to simulate the 1215 
spatio-temporal evolution of carbon chemistry properties in seawater by accounting for the 1216 
physical, chemical, and biological processes that determine this evolution. Idealized models, 1217 
which neglect some aspects of reality in the interest of simplicity and clarity of assumptions, 1218 
have long been used to test basic questions about OAE. As research questions are becoming 1219 
more focussed on the practical aspects, feasibility, and ecosystem impacts of OAE, more realistic 1220 
models are increasingly desirable. A skillful realistic model can provide spatial and temporal 1221 
context for observations, including estimates of properties and fluxes not directly observed. 1222 
Such model will include parameterizations of the relevant processes for the research objective to 1223 
be addressed and will be constrained by observations that contain sufficient meaningful 1224 
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information. However, model formulations of several properties and processes relevant to OAE 1225 
research remain uncertain or highly simplified. For example, presently used model 1226 
representations of alkalinity in seawater are likely inadequate and may require explicit 1227 
representation of at least some of the multiple biotic and abiotic sources and sinks of alkalinity; 1228 
the mechanisms and triggers for spontaneous calcium carbonate precipitation are only 1229 
beginning to be described and not yet represented in models; and the impacts of pH 1230 
perturbations on plankton diversity and trophic interactions remain an active area of study and 1231 
unaccounted in biogeochemical models. Furthermore, it is difficult to obtain solid constraints on 1232 
the seawater carbonate system, especially in sufficient spatial and temporal resolution for 1233 
robust model validation and DA. Theoretically, knowledge of two of the carbonate system 1234 
parameters allows calculation of the others, but unfortunately pCO2 and pH, the pair most 1235 
accessible to autonomous measurement, results in high uncertainties. 1236 

One inherent challenge to OAE research is the multiscale nature of many of the relevant 1237 
questions. Different modelling tools are available for different spatial scales. While some 1238 
research questions may fall neatly within the limited spatial range of a particular model, many 1239 
do not and require a bridging of scales that could be accomplished via new parameterizations 1240 
yet to be developed or dynamic coupling of different modeling tools. It is important to 1241 
emphasize that models have to be tailored to the questions they are meant to address. This 1242 
means considering what level of model complexity is required and seeking parsimonious 1243 
representations that are well-supported by empirical constraints. 1244 
  1245 
It is important to note that even after thorough validation, any model simulation will be prone 1246 
to errors and uncertainties due to inaccuracies in model inputs, structural uncertainty due to 1247 
numerical approximation schemes and insufficient process understanding or representation, 1248 
and inaccurate model parameters and parameterizations.  Deviations between models and 1249 
reality can be reduced by DA, which is typically applied either to systematically optimize 1250 
model parameters or to produce optimal estimates of the ocean state. Optimization of model 1251 
parameters addresses systematic model errors and biases; it is useful for systematic testing of 1252 
different model formulations during model design. State estimation assumes an unbiased 1253 
model and addresses unresolved stochasticity, thus leading to model states that are in better 1254 
agreement with the observed ocean state. However, successful application of DA critically 1255 
requires sufficient observations. Currently, the biggest impediment to implementing data-1256 
assimilative models for OAE research is the sparsity of carbonate system observations. OSSEs, 1257 
data-assimilative simulations that inform how to place observing assets most effectively, will 1258 
prove useful in this context. It should also be noted that assimilation of carbonate system 1259 
parameters is not appropriate when models are applied for MRV. 1260 
  1261 
Uncertainty analysis is a necessary component of any quantitative research and will be an 1262 
essential deliverable for effective approaches to MRV. Ensemble-based DA methodologies 1263 
provide a useful framework for estimating uncertainty. Consideration of this framework 1264 
illustrates the “law of conservation of difficulty” applies here. Quantitative assumptions about 1265 
the uncertainty distributions of input data and input parameters, and of structural uncertainties 1266 
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inherent in the model are required to obtain an uncertainty estimate of the model output, in 1267 
other words, difficult assumptions about errors have to be made somewhere. A common 1268 
approach to assessing model uncertainty is by coordinated, multi-model intercomparison. Such 1269 
studies can be used to explore the range of simulated behaviors and the strengths and 1270 
weaknesses of different models and, by elucidating inter-model differences, they can offer 1271 
guidance on priority targets for model improvement. 1272 
 1273 
Key recommendations arising from this article are as follows: 1274 
 1275 

• Idealized models of particle-fluid interaction are recommended to address questions 1276 
about dissolution and precipitation kinetics at the scale of particles, realistic local-scale 1277 
models are recommended for addressing questions about nearfield processes in the 1278 
turbulent environment around injection sites, and larger-scale regional or global ocean 1279 
models are recommended to support observational design for field experiments, to 1280 
demonstrate possible verification frameworks, and to address questions about global-1281 
scale feedbacks on ocean biogeochemistry. 1282 

• When simulating OAE approaches that may generate high oversaturation with respect 1283 
to carbonate, spontaneous precipitation of carbonates needs to be considered and 1284 
appropriate approaches should be developed, e.g., using near-field models to 1285 
mechanistically represent this process and a meta-model approach to develop 1286 
parameterizations that are suitable for far-field and larger-scale models. 1287 

• Shortcomings in current-generation models in terms of representing physiological 1288 
responses of the plankton community to OAE (especially when using crushed-rock 1289 
feedstocks) need to be recognized, better qualified, and addressed. Empirical research 1290 
exploring physiological sensitivities should be used to develop prioritizations of key 1291 
model processes comprising early targets for implementation.  1292 

• The exchange of solutes between the sediments and overlying water influences the 1293 
seawater carbonate system with DIC from the remineralization of organic matter being 1294 
returned to overlying water (and alkalinity if this remineralization occurs anaerobically), 1295 
dissolution of CaCO3 releasing alkalinity, and burial of CaCO3 acting as alkalinity sink. 1296 
Accounting for these exchanges between sediments and overlying water and its 1297 
variability on tidal, seasonal, interannual, and millennial timescales will likely be 1298 
necessary in regional and global biogeochemical models that aim to simulate alkalinity 1299 
cycling. 1300 

• River inputs of alkalinity and DIC in regional and global ocean biogeochemical models, 1301 
including fluxes resulting from land-based CDR applications, should be accurately 1302 
accounted for. Efforts should be made to improve quantification of riverine fluxes 1303 
resulting from ongoing field trials and commercial applications, and to establish 1304 
initiatives to effectively track the solute additions from terrestrial alkalinity 1305 
enhancements. 1306 
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• When simulating large-scale deployment of OAE in ocean-only models with prescribed 1307 
atmospheric CO2, the subtle changes in the atmospheric CO2 inventory resulting from 1308 
CDR should be accounted for. 1309 

• Models should be tailored to the specific questions they are meant to address while 1310 
seeking parsimonious representations that are well-supported by empirical constraints. 1311 
For example, for the purpose of MRV it may be appropriate to neglect biological 1312 
dynamics since the core target is to capture the net air-sea CO2 exchange associated with 1313 
the OAE-induced surface ocean pCO2 anomaly. 1314 

• Model validation should be an integral part of model implementation and application. 1315 
For OAE research, validation is a two-step challenge. First, it is necessary to validate 1316 
unperturbed model baselines to gain confidence that the natural variability is 1317 
represented appropriately and to quantify model uncertainties. Second, it should be 1318 
verified that the model accurately represents the perturbations of an alkalinity addition.  1319 

• Since no single model validation metric provides a complete picture of a model’s skill, 1320 
multiple complementary metrics should be used in combination. Furthermore, different 1321 
points in space and time, and a breadth of variable types should be part of any 1322 
comprehensive validation. 1323 

• Data assimilation, the process of improving the dynamical behavior of models by 1324 
statistically combining them with observations, should be employed in order to obtain 1325 
the most accurate model simulations possible, e.g., to optimize model parameters or to 1326 
estimate the ocean state. The former addresses systematic errors and biases in models, 1327 
while the latter assumes an unbiased model and addresses unresolved stochasticity.  1328 

• When applying data-assimilative models for quantification of the OAE-induced net CO2 1329 
uptake by calculating the difference between a realistic and a counterfactual simulation, 1330 
it is not appropriate to assimilate biogeochemical observations of properties affected by 1331 
the alkalinity enhancement as this would eliminate the ability to make valid 1332 
comparisons between the two simulations. However, assimilation of observations that 1333 
are unaffected by OAE can be applied to both simulations of the pair. 1334 

• Successful application of DA critically requires sufficient observations either of the 1335 
properties that the model parameters to be estimated depend on or of the state variables 1336 
that are being estimated. Observing System Simulation Experiments are recommended 1337 
to design observing strategies tailored to the needs of specific OAE applications. 1338 

• Model results should be paired with sound qualitative and quantitative uncertainty 1339 
estimates, especially when used for practical decisions. DA methodologies provide a 1340 
useful framework for estimating uncertainty, especially ensemble-based methods. 1341 
Another common approach to assessing model uncertainty are coordinated, multi-1342 
model studies, commonly called model intercomparison projects or MIPs. 1343 
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