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Abstract 19 

The deliberate increase of ocean alkalinity (referred to as Ocean Alkalinity Enhancement or 20 
OAE) has been proposed as a method for removing CO2 from the atmosphere. Before OAE can 21 
be implemented safely, efficiently, and at scale several research questions have to be addressed 22 
including: 1) which alkaline feedstocks are best suited and in what doses can they be added 23 
safely, 2) how can net carbon uptake be measured and verified, and 3) what are the potential 24 
ecosystem impacts. These research questions cannot be addressed by direct observation alone 25 
but will require skillful and fit-for-purpose models. This article provides an overview of the 26 
most relevant modeling tools, including turbulence-, regional- and global-scale biogeochemical 27 
models, and techniques including approaches for model validation, data assimilation, and 28 
uncertainty estimation. Typical biogeochemical model assumptions and their limitations are 29 
discussed in the context of OAE research, which leads to an identification of further 30 
development needs to make models more applicable to OAE research questions. A description 31 
of typical steps in model validation is followed by proposed minimum criteria for what 32 
constitutes a model that is fit for its intended purpose. After providing an overview of 33 
approaches for sound integration of models and observations via data assimilation, the 34 
application of Observing System Simulation Experiments (OSSEs) for observing system design 35 
is described within the context of OAE research. Criteria for model validation and 36 
intercomparison studies are presented. The article concludes with a summary of 37 
recommendations and potential pitfalls to be avoided.  38 
 39 
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1 Introduction 41 

Ocean Alkalinity Enhancement (OAE) refers to the deliberate increase of ocean alkalinity, which 42 
can be realized either by removing acidic substances from or adding alkaline substances to 43 
seawater. OAE is receiving increasing attention as a method for removing CO2 from the 44 
atmosphere; such methods are referred to as marine Carbon Dioxide Removal (mCDR) 45 
technologies (Renforth and Henderson, 2017). Natural analogues to OAE exist (Shubas et al. 46 
2023). An increase in the alkalinity of seawater leads to a repartitioning of its dissolved 47 
carbonate species with a shift toward bicarbonate and carbonate ions (Zeebe and Wolf-Gladrow 48 
2001, Renforth and Henderson 2017), leading to a reduction in the aqueous CO2 concentration 49 
and thus the partial pressure of CO2 (pCO2; Schulz et al. 2023). Since exchange of CO2 between 50 
the ocean and atmosphere occurs when the surface ocean pCO2 is out of equilibrium with that of 51 
the atmosphere, a lowering of the ocean’s pCO2 will lead to a net ingassing of atmospheric CO2 52 
(i.e., an increase in CO2 uptake by the ocean or a decrease in outgassing due to OAE). This 53 
would increase the oceanic and decrease the atmospheric inventories of inorganic carbon, in 54 
other words, it would result in mCDR. In contrast to other mCDR technologies, OAE does not 55 
exacerbate ocean acidification (Ilyina et al. 2013). In fact, an increase in ocean alkalinity 56 
counteracts acidification, and while subsequent net uptake of atmospheric CO2 largely restores 57 
pH to its pre-perturbation value, there is potential for OAE deployment to mitigate acidification 58 
impacts near injection sites (Mongin et al. 2021). 59 

Several important research questions should be addressed before implementing OAE as an 60 
mCDR technology at scale. These include: 1) which alkaline substances are best suited and in 61 
what doses can they be added reliably while avoiding precipitation of calcium carbonate (which 62 
would decrease alkalinity and could result in runaway precipitation events), 2) how can 63 
changes in alkalinity and net carbon uptake be measured, verified, and reported (referred to as 64 
MRV; see Ho et al. 2023) to enable meaningful carbon crediting, and 3) what are the potential 65 
ecosystem impacts and how can harm to ecosystems be avoided or minimized while 66 
maximizing potential benefits. These research questions cannot be addressed by direct 67 
observation alone but will require an integration of observations and numerical ocean models 68 
across a range of scales. Skillful and fit-for-purpose models will be essential for addressing 69 
many OAE research questions including the MRV challenge, assessment of environmental 70 
impacts, and interpretation of natural analogs. 71 

Ocean models are useful for a broad range of purposes, from idealized models for basic 72 
hypothesis testing of fundamental principles to realistic models for more applied uses (see 73 
primer on ocean biogeochemical models by Fennel et al. 2022). In the context of OAE research, 74 
this full range of models is applicable. For example, idealized models of particle-fluid 75 
interaction can inform us about dissolution and precipitation kinetics at the scale of particles, 76 
realistic local-scale models can inform us about nearfield processes in the turbulent 77 
environment around injection sites, and larger-scale regional or global ocean models can be 78 
used to support observational design for field experiments, to demonstrate possible verification 79 
frameworks, and to address questions about global-scale feedbacks on ocean biogeochemistry. 80 
A common objective of all these modeling approaches is to realistically simulate the spatio-81 
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temporal evolution of the seawater carbon chemistry, including alkalinity and dissolved CO2, 88 
and attribute that evolution to physical, chemical, and biological processes. Models that are 89 
suitable for this purpose will provide spatial and temporal context for properties that can be 90 
observed (but at much sparser temporal and spatial coverage than a model can provide) as well 91 
as estimates of properties and fluxes that cannot be directly observed but may be inferred 92 
because of known mechanistic relationships or patterns of correlation. Applications of realistic 93 
models rely on them being skillful and accurate, requiring that they include parameterizations 94 
of the relevant processes, and that they are constrained by observations that contain sufficient 95 
meaningful information (what is sufficient depends on the application and research question). 96 
Methods for constraining models by observations through statistically optimal combination of 97 
both are available. Application of such methods is referred to as data assimilation and provides 98 
the most accurate estimates of biogeochemical properties and fluxes (see Fennel et al. 2022 for 99 
fundamentals and code examples).  100 

Model applications for OAE research include the following four general types:  101 

● Hindcasts are model applications where a defined time period in the past was 102 
simulated. They can be unconstrained—in the sense that no observations are fed into the 103 
model except for initial, boundary, and forcing conditions—or constrained, where 104 
observations inform the model state via data assimilation. The latter are also referred to 105 
as optimal hindcasts or reanalyses. 106 

● Nowcasts/forecasts are similar to constrained hindcasts but with the simulations carried 107 
out up to the present (referred to as nowcasts) or into the future (referred to as 108 
forecasts). The latter require assumptions about future forcing and boundary conditions, 109 
e.g., from other forecasts, climatology, or assuming persistence. 110 

● Scenarios are unconstrained hindcasts or forecasts where one or more aspects of the 111 
model is systematically perturbed to assess the effect of the perturbation, for example, in 112 
paired simulations with and without OAE, one would be the realistic case and the other 113 
a scenario (also referred to as counterfactual in this case). These can be used to explore 114 
even very unlikely situations, which is often required in comprehensive uncertainty and 115 
risk assessment. 116 

● Observing System Simulation Experiments (OSSEs) for observing system design use 117 
unconstrained and/or constrained hindcasts to evaluate the benefits of different 118 
sampling designs and optimize deployment of observational assets for a defined 119 
objective, including tradeoffs between different types of observation platforms. 120 

Successful implementation of models to support OAE research and MRV is challenging because 121 
of the general sparseness of relevant biogeochemical observations, and the limited lab, 122 
mesocosm, and field trial data available to date for model parameterization. Further, models are 123 
built at a process level and integrated to reveal behavior at the emergent scale. As such, models 124 
comprise a collective hypothesis of the ocean’s physical, biogeochemical, and ecosystem 125 
function—but it is important to recognize that model formulations of key processes related to 126 
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OAE remain uncertain. It may well turn out that parameterizations of the carbonate system, of 135 
plankton diversity and trophic interactions, small scale turbulence, submesoscale subduction 136 
and restratification processes, and air-sea gas exchange in the current generation of models 137 
require improvement to robustly treat OAE-related questions.   138 

The intended scope of this article is to provide an overview of the most relevant modeling tools 139 
for OAE research with high-level background information, illustrative examples, and references 140 
to more in-depth methodological descriptions and further examples. We aim to provide simple 141 
criteria and guidance for researchers on the current state-of-the-art of biogeochemical modeling 142 
relevant to OAE research, keeping in mind short-term research goals in support of pilot 143 
deployments of OAE and long-term goals such as credible MRV in an ocean affected by large-144 
scale deployment of OAE and possibly other CDR technologies.  145 

2 Modeling approaches 146 

This section provides a brief review of modeling tools available for OAE research with 147 
references to more in-depth methodological descriptions and examples, as well as a discussion 148 
of which approaches are most applicable to simulating essential processes in different 149 
circumstances. The presentation is structured using two complementary organizing principles, 150 
the spatial and temporal scales of the problem in Section 2.1 and the biogeochemical and 151 
ecological complexity represented by different modeling approaches in Section 2.2. Section 2 152 
concludes with a summary of suggested future model development efforts in Section 2.3. 153 
 154 
 2.1. Modeling approaches across scales  155 

In the nearfield, close to the site of an alkalinity increase, an accurate characterization of the 156 
spatio-temporal evolution of alkalized waters requires direct representation or parameterization 157 
of fluid and particle physics and seawater carbonate chemistry at scales ranging from 158 
micrometers to hundreds of meters, spanning turbulent to submesoscale processes (Section 159 
2.1.1). In the farfield, covering scales from 10s of meters to 100s of kilometers, where the effect of 160 
an alkalinity increase depends less on the details of how the alkalinity was added, or acidity 161 
removed, and is instead dominated by ambient environmental processes, local to regional scale 162 
models are useful for simulating the impact of alkalinity increases, for verifying the intended 163 
perturbations in air-sea exchange of CO2 and in carbonate system variables, and potentially for 164 
simulating ecosystem impacts  (Section 2.1.2). Lastly, investigation of the effects of the global 165 
ocean’s overturning circulation, impacts on atmospheric CO2 levels, and of Earth system 166 
feedbacks resulting from deployment of OAE and other CDR technology at scale requires 167 
global modeling approaches (Section 2.1.3).  168 
 169 
2.1.1. Particle scale to nearfield/turbulence scale (µm to km scales) 170 

Small-scale modeling approaches cover the range from µm-size particles to the turbulent- and 171 
submeso-scales in the nearfield of alkalinity additions. Simulating processes on these scales 172 
allows one to address questions about how turbulent mixing dilutes and disperses alkalized 173 
water and how it affects the settling, aggregation, disaggregation, precipitation, and dissolution 174 
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of suspended particles. Nearfield modeling has an important role to play in guiding the design 179 
of deployment strategies that mitigate environmental impacts and meet future permitting 180 
requirements, and to support monitoring. During the initial dispersion and dilution phase of an 181 
alkalinity increase in the nearfield, the direct impacts on carbonate system variables are 182 
greatest, with waters exhibiting the largest elevations in pH and the highest potential for the 183 
formation of secondary precipitates. For particulate alkalinity feedstocks, turbulence close to the 184 
deployment site affects dissolution and settling rates, increasing dissolution and either 185 
accelerating or diminishing the settling of sedimentary particles compared to the Stokes settling 186 
speed (Fornari et al. 2016).  187 

Distinct approaches to modeling at these scales involve different levels of parametrization and 188 
computational expense, with the relative utility of each approach being dependent on the 189 
scientific questions at hand. At the smallest scales, Direct Numerical Simulations (DNS) are the 190 
most computationally expensive and specialized class of fluid modeling, as they resolve flows 191 
down to the scales at which flow variances dissipate—typically centimeters or smaller in the 192 
ocean. Consequently, computational constraints imply that they cannot be run over domains 193 
larger than a few meters. DNS are thus integrated over idealized physical domains (i.e., they 194 
lack realistic bathymetry) and are suited to investigating fundamental physical processes. For 195 
example, multiphase DNS simulations have been used to model the interaction of turbulence 196 
with gas bubbles (Farsoiya et al. 2023) and particles (Fornari et al. 2016). Results from such 197 
studies provide an important testbed that can be used to develop parameterizations required in 198 
lower resolution models. 199 

A well-established approach to modeling the fluid flow at scales up to about 10 km uses Large 200 
Eddy Simulations (LES), a class of model that directly solves the unsteady Navier-Stokes 201 
equations down to the largest turbulent scales on a high-resolution grid. Such models 202 
parameterize turbulence using a subgrid-scale model (e.g., Smagorinsky 1963). An advantage of 203 
these models is their ability to simulate both an alkalized plume and the environmental 204 
turbulence into which the plume emerges. Once alkalized waters enter the surface boundary 205 
layer, LES models have an established history of simulating turbulence and mixing that is 206 
directly relevant to OAE research (e.g., Mensa et al. 2015, Taylor et al. 2020). An example of an 207 
LES simulation of near-surface turbulence dispersing surface-deployed alkalinity downwards is 208 
illustrated in Figure 1, where a physical model (Ramadhan et al. 2020) has been coupled to a 209 
carbonate solver (Lewis et al. 1998). To date, LES models have rarely been coupled to 210 
biogeochemical models due to the computational expenses involved, though their inclusion 211 
may be increasingly feasible (Smith et al. 2018, Whitt et al. 2019). As LES simulate flow physics 212 
at scales ranging from 10-10,000 m, they do not explicitly resolve the microscales of fluid motion 213 
and chemical reactions at particle scales. Nevertheless, the parameterizations of such processes 214 
can be included; for example, Liang et al. (2011) used models of bubble concentration and 215 
dissolved gas concentration in an LES to examine the influence of bubbles on air-sea gas 216 
exchange. 217 
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 219 
Figure 1: LES of near surface turbulence coupled to a carbonate system solver. Alkalinity is 220 
added at a rate of 4 µmol kgsw1 m-2 s-1 for 20 minutes to the top grid cell at the start of the 221 
simulation. Turbulence, generated by surface wind stress and cooling, sets the rate at which it 222 
mixes downwards (a) along with associated waters of lowered pCO2 (b). Turbulent plumes and 223 
eddies lead to inhomogeneities in water properties at scales of tens of meters. 224 
 225 
For alkalized plumes associated with outfalls from, for example, wastewater treatment plants, 226 
integral models (that assume plume properties such that the governing equations are 227 
simplified) have been developed to examine the initial dilution close to jets and buoyant plumes 228 
up to kilometer scales (Jirka et al. 1996). These models are highly configurable, enabling specific 229 
diffuser configurations as well as the potential to incorporate sediment laden plumes with 230 
particle settling (Bleninger & Jirka 2004). Results are commonly accepted for engineering 231 
purposes, defining mixing zones, and providing a fast “first look” at diffusion and mixing near 232 
an outfall site. However, these models rely on assumptions about the underlying physics of 233 
fluid flow (e.g., axisymmetric plumes and simplified entrainment rates) that may not be 234 
accurate under general oceanic conditions, and results will not include all effects of irregular 235 
bathymetry, finite domain size or arbitrarily non-uniform ambient conditions. Nevertheless, 236 
their simplicity makes them very useful. For example, by combining several simple process 237 
models for plume dilution, particle dissolution, and carbon chemistry, Caserini et al. (2021) 238 
have simulated the initial dilution of slaked lime Ca(OH)2 particles and alkalinity in a plume 239 
behind a moving vessel. 240 

Other methods for modeling at this scale include Reynolds Averaged Navier Stokes (RANS) 241 
and Unsteady RANS (URANS), wherein fluctuations against a slowly varying or time mean 242 
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background are parametrized, often using constant (large) eddy diffusivities and viscosities. 243 
These approaches are often inaccurate at these scales, resulting in simulations that are too 244 
diffusive or lacking processes that are of leading order importance to mixing (Golshan et al. 245 
2017, Chang & Scotti 2004). 246 

There are multiple, potentially interacting sources of uncertainty to consider when evaluating 247 
the uncertainty of the applications described above. Perhaps best understood but still 248 
problematic is the uncertainty that arises from the computational intractability of simulating all 249 
the relevant scales in the µm to km range at once, necessitating the different modeling 250 
approaches for different scales, with parameterizations to account for unresolved scales and 251 
scale interactions. The dissolved carbonate chemistry of seawater is relatively well 252 
parameterized (Zeebe and Wolf-Gladrow 2001), but some modest uncertainties arise from 253 
approximations required for computational tractability (Smith et al. 2018). The least understood 254 
but potentially dominant source of uncertainty pertains to the representation of the microscale 255 
biological, chemical, and physical dynamics of particles, which is an active area of experimental 256 
and observational investigation (Subhas et al. 2022, Fuhr et al. 2022, Hartmann et al. 2023). 257 
While the explicit multiphase modeling of the particles themselves is computationally costly, an 258 
approach wherein the parametrized evolution of inertia-less Lagrangian particles are simulated 259 
may provide a fruitful middle ground, providing a mechanism to realistically determine the 260 
alkalinity release field associated with the advection, mixing, sinking and dissolution of reactive 261 
mineral particles. These questions about particles apply to those released in OAE deployments, 262 
as well as particles that precipitate from seawater in part due to OAE deployments, and finally 263 
the role of ambient biotic and abiotic particles where OAE is deployed. 264 
 265 
2.1.2. Local to regional scales (m to km) 266 

Local to regional scale models that range in horizontal resolution from tens of meters to 267 
hundreds of kilometers are useful for simulating the impact of alkalinity injections beyond the 268 
immediate local area, where conditions do not depend on the details of how the alkalinity was 269 
added and instead are determined by regional-scale currents and other process, including the 270 
potential for biogenic feedbacks. These models are particularly useful to support OAE field 271 
experiments, including planning and observational design, and analysis, integration and 272 
synthesis of observations, and to facilitate interpretation of observations from natural analogs. 273 
Furthermore, local and regional scale models will likely prove to be indispensable for 274 
quantification of OAE effects in research settings, for guiding assessments of its environmental 275 
impacts, and for MRV during the potential implementation of OAE. A skillful model can 276 
simulate when and where changes in carbonate chemistry and the ensuing anomalies in air-sea 277 
CO2 exchange occur and provide an estimate of the spatio-temporal extent of the 278 
biogeochemical properties affected by OAE.  279 
 280 
Regional models have distinct advantages over global models in their ability to resolve the 281 
spatial scales on which OAE would be applied both experimentally and operationally, and their 282 
documented skill in representing coastal and continental shelf processes more accurately 283 
(Mongin et al. 2016, Laurent et al. 2021). Examples of regional model applications in the context 284 
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of OAE include the recent studies by Mongin et al. (2021) and Wang et al. (2023). Mongin et al. 285 
(2021) used a coupled physical-biogeochemical-sediment model tailored to Australia’s Great 286 
Barrier Reef to investigate to what extent realistic OAE applied along a shipping line could 287 
alleviate anthropogenic ocean acidification on the reef. Wang et al. (2023) used a coupled ice-288 
circulation-biogeochemical model of the Bering Sea to study the efficiency of OAE in coastal 289 
Alaska.  290 
 291 
Implementation of a regional model in a target domain requires generation of a grid with 292 
associated bathymetry, specification of boundary conditions (including atmospheric forcing, 293 
information about ocean dynamics along the lateral boundaries of the domain, any fluxes of 294 
biogeochemical properties across the air-sea, sediment-water, and land-ocean boundaries, river 295 
inputs), and generation of initial conditions within the domain (Fennel et al. 2022). Different 296 
circulation models are available for implementation in domains targeted for OAE studies (see, 297 
e.g., Table 1 in Fennel et al. 2022), all with distinct strengths and established user communities. 298 
Particularly relevant in the context of studying coastal applications of OAE is a model’s ability 299 
to accurately represent coastal topography, making unstructured grid models and models with 300 
terrain-following coordinates particularly attractive. Another feature to be considered is a 301 
model’s ability to run in two-way nested configurations. In the more widely applied one-way 302 
nesting of domains, simulated conditions from a larger scale model (referred to as the parent 303 
model) are used to generate the dynamic lateral boundary conditions of a smaller scale, higher 304 
resolution model (the child model), which runs off line from the parent model. With two-way 305 
nesting, both models run simultaneously and information is exchanged continually along their 306 
intersecting boundaries. This allows information generated within the high-resolution child 307 
domain (e.g., the spreading distribution of a tracer or alkalinity addition) to be received and 308 
propagated by the larger-scale parent model. In this context, model simulations are particularly 309 
useful if available in near-real time or in forecast mode. This requires specification of lateral 310 
boundary conditions and atmospheric forcing up to the present and into the future. Global 311 
1/12th-degree nowcasts and 10-day forecasts of ocean conditions are available from the 312 
Copernicus Marine Service (CMEMS 2023) and atmospheric forcing up to the present and 10 313 
days into the future are available from the European Centre for Medium Range Weather 314 
Forecasts (ECMWF 2023). 315 
 316 
One example of a high-resolution local scale model with two-way nested domains is a 317 
framework developed for Bedford Basin in Halifax, Canada (Figure 2, Laurent et al. 2024). The 318 
model framework consists of three nested ROMS models (ROMS is the Regional Ocean 319 
Modelling System; https://myroms.org, Haidvogel et al. 2008, Shchepetkin and McWilliams 320 
2005). The outermost ROMS domain has a resolution of 900 m and is nested one-way within the 321 
data-assimilative global GLORYS reanalysis of physical and biogeochemical properties 322 
(Lellouche et al. 2021). Nested within are two models with increasingly higher resolutions of 323 
200 m and 60 m. Depending on the scientific objective to be addressed, the models can be run in 324 
one-way and two-way nested mode, where two-way nesting is computationally more 325 
demanding, and in hindcast or forecast mode. Implementation of dye-tracers within the model 326 
(Wang et al. 2024) allows one to determine dynamic distribution patterns and residence times.   327 
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 331 
 332 
Figure 2: Nested configuration of three ROMS models for the Bedford Basin and the adjacent 333 
harbor in Halifax Regional Municipality (HRM). a) The highest resolution model (HRM3; 60 m) 334 
includes the 7 km-long and 3 km-wide Bedford Basin and The Narrows, a 20-m shallow narrow 335 
channel that connects the basin to the outer harbor. b) The larger scale model (HRM2, 200 m) 336 
includes Bedford Basin and Halifax Harbor as well as the adjacent shelf. c) The largest-scale 337 
model (HRM3, 900 m) covers the central part of the Scotian Shelf as indicated in e). d) 338 
bathymetry along a section through HRM3 and HRM2, indicated by the black line in b). Lateral 339 
boundaries of HRM3, HRM2, and HRM1 are shown by black boxes in b), c) and e), respectively. 340 
Black arrows indicate the information flow between models in one way nesting mode. The red 341 
arrow indicates that HRM1 and HRM2 can be run simultaneously with bi-directional flow of 342 
information (two-way coupled mode).  343 
 344 
2.1.3. The global scale  345 

A strength of global ocean models is their capacity to comprehensively represent the global 346 
overturning circulation and ocean ventilation. These processes control the time scales over 347 
which waters are sequestered in the ocean interior and determine how long surface waters are 348 
exposed to the atmosphere and can exchange properties, including CO2, before being injected 349 
back into the ocean interior (Naveira Garabato et al. 2017). Similarly, the large-scale overturning 350 
circulation and the patterns associated with ventilation are important to consider in the context 351 
of deploying OAE at scale, as these patterns exert strong control on the efficiency of OAE at 352 
sequestering CO2 (e.g., Burt et al. 2021). 353 
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When global ocean models are dynamically coupled with models of the land biosphere and the 354 
atmosphere, they are referred to as Earth System Models (ESMs) and can be employed to 355 
explore Earth system feedbacks to mCDR. In the case of OAE, the main feedback is the change 356 
in atmospheric pCO2 and air-sea gas exchange that will result when CDR approaches are 357 
implemented at scale. While regional models have to be forced by atmospheric CO2 358 
concentrations, ESMs represent the atmospheric reservoir and are forced by CO2 emissions into 359 
the atmosphere, which then interacts with land and ocean carbon reservoirs. Only the latter 360 
approach can account for OAE-induced reductions in the atmospheric CO2 inventory which, in 361 
turn, would lead to a systematic reduction in air-sea CO2 fluxes. Regional models and global 362 
ocean models that do not explicitly represent the atmospheric CO2 reservoir and instead are 363 
forced by prescribed atmospheric pCO2 cannot simulate the decline in atmospheric pCO2 due to 364 
OAE. Depending on the alkaline material applied, there may also be feedbacks associated with 365 
changes in temperature, albedo, nutrient cycles, and biological responses which can be studied 366 
with the help of ESMs.  367 

Another important strength of global models relates to the fact that anomalies in air-sea CO2 368 
flux generated by OAE deployments will manifest over large spatio-temporal scales because 369 
CO2 equilibrates with the atmosphere via gas exchange slowly. Alkalinity enhanced waters can 370 
be transported far away from injection sites before equilibration is complete (He and Tyka 371 
2023). Consequently, OAE signals may exit the finite domain of regional models prior to full 372 
equilibration with the atmosphere (e.g., Wang et al. 2023). Because global models represent the 373 
entire ocean and can be integrated for centuries and longer, they enable full-scale assessments. 374 

A primary challenge for global models, however, is that their horizontal resolution is 375 
necessarily limited by computational constraints (see example in Figure 3). Most of the global 376 
ocean models contributing the Coupled Model Intercomparison Project version 6 (CMIP6), for 377 
example, have horizontal resolutions of about 1° or roughly 100 km (Heuzé 2021) and do not 378 
accurately represent biogeochemical processes along ocean margins (Laurent et al. 2021). Model 379 
grid-spacing imposes a limit on the dynamical scales that can be explicitly resolved in the 380 
models; this is particularly problematic for coarse resolution global models because mesoscale 381 
eddies—i.e., motions on scales of about 10–100 km—dominate the variability in ocean flows 382 
(Stammer 1997). Since coarse resolution models cannot resolve mesoscale eddies explicitly, the 383 
rectified effects of these phenomena, including their role in transporting buoyancy and 384 
biogeochemical tracers, must be approximated with parameterizations (e.g., Gent and 385 
McWilliams 1990).  386 

Notably, the fidelity of the simulated flow in global models, including the imperfect nature of 387 
these parameterizations, projects strongly on the model’s capacity to accurately simulate 388 
ventilation and the associated uptake of transient tracers, such as anthropogenic CO2 or 389 
chlorofluorocarbons (CFCs), from the atmosphere (e.g., Long et al. 2021). Biases in the uptake of 390 
transient tracers will also have implications for a model’s capacity to faithfully represent the 391 
impact of OAE, where the path of alkalinity-enhanced waters parcels in the surface ocean, and 392 
their subsequent transport to depth is a key control on the efficiency of carbon removal. Biases 393 
in the simulated flow are also an important determinant of the simulated distribution of 394 
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biogeochemical tracers in the model’s mean state. Hinrichs et al. (2023), for example, 399 
demonstrate that inaccuracies in the physical redistribution of alkalinity by the flow is a 400 
dominant mechanism contributing to biases in the alkalinity distributions simulated by CMIP6 401 
models. 402 

 403 

Figure 3: Example of Earth System Model properties and output from the University of Victoria 404 
Earth System Climate Model (Keller et al., 2012, Mengis et al., 2021) including a) the model 405 
bathymetry (depth levels), and b) the simulated present-day dissolved inorganic carbon 406 
concentration (mol m-3) averaged over the upper 50 m of the ocean. Panels c) and d) show 407 
results from a coastal OAE study by Feng et al. (2017) where the change in upper ocean 408 
alkalinity (upper 50 m) and the air-sea flux of CO2 are shown relative to the RCP8.5 control 409 
simulation. Shown is the Oliv100_Omega3.4 simulation from Feng et al. (2017), where 100 µm 410 
olivine grains were added to ice-free coastal grid cells in proportion to RCP 8.5 CO2 emissions 411 
(i.e., 1 mol of alkalinity per mole of emitted CO2) until a sea surface aragonite Ω threshold of 3.4 412 
was reached. 413 

Finally, another important challenge associated with global ocean models is the requirement to 414 
represent the entire global ocean ecosystem with a single set of model parameters (e.g., Long et 415 
al. 2021, Sauerland et al. 2020). In particular, the biological pump is an important control on the 416 
distribution of biogeochemical tracers, including alkalinity and DIC. The magnitude of organic 417 
carbon export, and the magnitude of biogenic calcium carbonate export, are important controls 418 
on the distribution of alkalinity and DIC at the ocean surface and in the interior (e.g., Fry et al., 419 
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2015). These quantities are a product of ecosystem function and, since the global ocean is 420 
characterized by diverse biogeography (e.g., Barton et al., 2013), capturing global variations in 421 
the biological pump presents a challenge. 422 

2.1.4 Integration across scales 423 

Choosing the appropriate modeling tool for a given OAE-related question requires clarity about 424 
the scale of the problem to be addressed and the objectives of the model application. 425 
Approaches for OAE vary significantly with respect to the spatial footprint of alkalinity 426 
increase. Proposed methods for spreading alkalinity feedstocks at the surface ocean include the 427 
addition of reactive minerals (e.g., CaO, Ca(OH)2 or Mg(OH)2) in ship-propeller washes (e.g., 428 
Köhler et al., 2013, Renforth et al., 2017, Caserini et al., 2021) or using other means (e.g., Gentile 429 
et al., 2022) along tracks from commercial or dedicated OAE vessels or through coastal outfalls 430 
(e.g., wastewater-treatment or power plants); the addition of less-reactive minerals to corrosive 431 
or high-weathering environments (e.g., olivine spreading on beaches or mineral addition to 432 
riverine discharge, e.g., Montserrat et al., 2017, Foteinis et al., 2023, Mu et al., 2023); and 433 
electrochemically generated point-sources of alkalinity that are discharged as highly alkaline 434 
seawater (e.g., House et al., 2009) from existing facilities (e.g., desalination and wastewater-435 
treatment plants), dedicated facilities (e.g., Wang et al., 2023), or from an array of smaller 436 
infrastructure (e.g., grids of off-shore wind turbines). Models for OAE research should 437 
represent these footprints of alkalinity increases appropriately for the questions being 438 
addressed. 439 

There are research questions that fall relatively neatly into one of the three scale ranges 440 
described above in sections 2.1.1 to 2.1.3. For example, consideration of the nearfield effects of 441 
different alkalinity feedstocks (e.g., dissolved versus particles) or analysis of the potential 442 
impacts from secondary CaCO3 precipitation due to elevated alkalinity from a point source 443 
require models that resolve the scales of turbulent motion. Examination of the change in air-sea 444 
CO2 flux due to a broad and diffuse alkalinity increase is less demanding on model resolution 445 
and regional scale models are appropriate for this question. Investigation of Earth system 446 
feedbacks requires ESMs. However, there also are many aspects of OAE that require a bridging 447 
of scales. For example, when considering different deployment methods like discharge from 448 
vessels into the ocean surface boundary layer versus additions made through outfalls via 449 
surface or subsurface plumes, modeling requirements vary. In both cases, the resulting 450 
biogeochemical response may be affected by dynamics operating in the nearfield, where 451 
conditions are sensitive to the deployment method and turbulence has to be considered, and the 452 
far-field, where conditions do not depend on the details of how the alkalinity was added and 453 
the air-sea flux of CO2 is instead determined by ambient environmental processes. Another 454 
example is the challenge that anomalies in air-sea CO2 flux generated by OAE deployments will 455 
manifest over large spatio-temporal scales because CO2 equilibrates with the atmosphere via 456 
gas exchange slowly. Some interplay among the modeling tools described in sections 2.1.1 and 457 
2.1.2 is likely going to be required. One straightforward approach would be to parameterize 458 
small-scale processes in the larger-scale models. 459 
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2.2 The range of biogeochemical realism & complexity 472 

Application of biogeochemical ocean models for the purposes of OAE research and verification 473 
requires reevaluation, and likely further development, of several model assumptions and 474 
features related to biogeochemical realism and complexity. For example, the internal sources 475 
and sinks of alkalinity are typically not explicitly represented in ocean models; this may become 476 
necessary in some circumstances but will be challenging (Section 2.2.1). OAE-related 477 
perturbations of alkalinity, other carbonate system properties, and addition of macro- and 478 
micronutrients contained in some alkalinity feedstocks may result in biological and ecosystem 479 
responses that current biogeochemical models are not capable of representing but that would be 480 
relevant for the assessment of environmental impacts of OAE and the verification its CDR 481 
efficiency (Section 2.2.2). Furthermore, depending on the environmental setting, sediments can 482 
be sources or sinks of alkalinity; these sediment-water fluxes need to be appropriately 483 
considered, including the potential impacts of OAE on their magnitude, in order to obtain 484 
complete and trustworthy carbon budgets (Section 2.2.3). Other boundary fluxes that require 485 
accurate specification are alkalinity inputs from rivers and groundwater (Section 2.2.4) and the 486 
air-sea flux of CO2 across the air-sea interface (Section 2.2.5).     487 
 488 
2.2.1 Representing alkalinity in seawater 489 

Alkalinity is an emergent property that depends on the concentrations of numerous chemical 490 
species with distinct internal source and sinks (Schulz et al. 2023; Wolf-Gladrow et al. 2007; 491 
Middelburg et al. 2020). Skillful simulation of alkalinity in seawater may require explicit 492 
representation of its multiple biotic and abiotic sources and sinks, some of which are difficult to 493 
constrain. A major process by which alkalinity is consumed is the production of calcium 494 
carbonate. In the water column, this is predominantly a biotic process, performed by calcifiers, 495 
although “whiting” events, where calcium carbonate precipitates spontaneously from in 496 
ambient seawater can be locally important (e.g., Long et al. 2017).  497 
 498 
Models vary in the degree of mechanistic sophistication with which biogenic calcification is 499 
represented. For example, some models explicitly resolve calcifiers, such as pelagic 500 
coccolithophores (e.g., Krumhardt et al. 2017) and foraminifera (Grigoratou et al. 2022) and, in 501 
some cases, also benthic corals, foraminifera, or calcifying higher trophic levels and thus can 502 
mechanistically account for the associated alkalinity consumption. Alternatively, models can 503 
parameterize biotic production of carbonate, and its subsequent sinking and dissolution, as a 504 
fraction of organic matter production combined with an assumed remineralization profile (e.g., 505 
Schmittner et al. 2008; Long et al. 2021). Dissolution of carbonate minerals produces alkalinity, 506 
at the sediment surface and in the water column as carbonate particles sink. This can be 507 
represented with first-order abiotic dissolution kinetics with a dependence on the saturation 508 
state of ambient water in the water column (e.g., Sulpis et al., 2021), in the sediments (e.g., 509 
Emerson & Archer, 1990) or in micro-environments in aggregates or organisms (Barrett et al., 510 
2014) with systematic differences for different crystal structures, aragonite and calcite (Morse et 511 
al., 1980).  512 
 513 
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Production of alkalinity occurs via uptake of nitrate or nitrite by photoautotrophs, while 520 
remineralization consumes alkalinity when happening aerobically but generates alkalinity 521 
when occurring anaerobically, e.g. via denitrification (Fennel et al. 2008). Biotic production and 522 
consumption of alkalinity is stoichiometrically coupled to the release or uptake of nutrients and 523 
carbon, where non-Redfield processes such as nitrogen fixation or denitrification need to be 524 
specifically considered in the stoichiometric relationships (Paulmier et al., 2009).  525 
 526 
Spontaneous precipitation of carbonate minerals in pelagic environments could occur when 527 
seawater is highly oversaturated with respect to carbonate (Moras et al. 2022) but is, to the best 528 
of our knowledge, not yet included in ocean models. When simulating OAE approaches that 529 
may generate high oversaturation with respect to carbonate, spontaneous precipitation of 530 
carbonates needs to be considered, especially when condensation nuclei are present. 531 
Appropriate approaches will have to be developed, e.g., using near-field models to 532 
mechanistically represent this process and a meta-model approach to develop 533 
parameterizations that are suitable for far-field and larger-scale models. 534 
 535 
Organic compounds produced within the ocean or originating from land can also act as proton 536 
acceptors and contribute organic alkalinity (e.g., Koeve and Oschlies 2012, Ko et al. 2016, 537 
Middelburg et al. 2020) and will impact the carbonate system, the partial pressure of CO2 and 538 
thus the air-sea CO2 flux. Commonly, the contribution of organic alkalinity is deemed small 539 
enough in oceanic environments to be negligible, but this assumption should be reconsidered in 540 
the context of OAE, especially for coastal CDR deployments where the organic contribution to 541 
alkalinity is thought to be larger. To the best of our knowledge, models do not account for 542 
organic alkalinity. A better quantitative understanding of organic contributions to alkalinity is 543 
likely needed to parameterize or mechanistically represent its contribution in models. Similarly, 544 
it may be important in the context of mineral OAE deployments to account for local variations 545 
in [Ca2+] and [Mg2+] to accurately estimate the pCO2 anomalies generated by different OAE 546 
feedstocks. While these constituents have very long residence times in the ocean, and are hence 547 
commonly assumed to vary conservatively in proportion to salinity, variations in their relative 548 
abundance has an impact on the thermodynamic equilibrium coefficients used to solve seawater 549 
carbonate chemistry (Hain et al., 2015). 550 
 551 
2.2.2 Representing biological and ecological processes 552 

A key question related to OAE is whether changes in carbonate chemistry induce differential 553 
responses in organisms. In the pelagic zone, OAE might shift the phytoplankton community 554 
composition, for example, due to distinct physiological sensitivities of different groups (e.g., 555 
Ferderer et al. 2022). Further, if OAE is accomplished via rock dissolution, carbonate versus 556 
silicate rock may impact the relative balance between phytoplankton functional groups (PFTs) 557 
such as calcifiers and diatoms, and changes in Mg and Ca ratios may also influence calcification 558 
(Bach et al., 2019). Additionally, ancillary constituents specific to particular feedstocks may have 559 
biological activity. Silicate rocks include bioreactive metals such as Fe, a micronutrient with the 560 
capacity to stimulate phytoplankton growth, and others that are can be toxic when occurring in 561 
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high concentrations, such as Ni and Cu, and may adversely impact phytoplankton and reduce 562 
primary productivity (Bach et al., 2019). The bioreactivity of these metals may be difficult to 563 
simulate in models as their dissolved concentrations can be partially mediated by complexation 564 
with organic ligands (Guo et al., 2022). Physical impacts of OAE feedstocks may also have 565 
important biological impacts through changes in the propagation of light in the surface ocean, 566 
and direct exposure to mineral particles may have additional impacts, e.g., on zooplankton 567 
through particle ingestion (Harvey, 2008; Fakhraee et al., 2023). Effects of OAE on plankton 568 
have the potential to propagate to higher trophic levels through marine food webs as the 569 
magnitude and quality of net primary productivity shifts and trophic energy transfer is altered 570 
accordingly.  571 
 572 
Simulating this full collection of processes in models is challenging. Dominant modeling 573 
paradigms for simulating planktonic ecosystems include PFT- and trait-based models (e.g., 574 
Negrete-Garcia et al., 2022). In these systems, physiological sensitivities are parameterized 575 
according to transfer functions that modulate rate processes—growth, for instance—on the basis 576 
of ambient environmental conditions. Nutrient limitation of growth is often represented using 577 
Michaelis–Menten kinetics wherein growth rates decline as nutrients concentrations become 578 
limiting. State-of-the-art ESMs represent PFTs with multiple nutrient co-limitation, which is 579 
essential to effectively simulate plankton biogeography of the global ocean. Diatoms, for 580 
example, are capable of high growth rates, enabling them to outcompete other phytoplankton 581 
under high-nutrient conditions, but their range is restricted to high latitudes and upwelling 582 
regions where there is sufficient silicate. If OAE were to modulate the concentration of 583 
constituents represented by multiple nutrient co-limitation models, it is possible such models 584 
could simulate the phytoplankton community response—though it’s important to consider 585 
whether the models provide representations that are sufficiently robust for the magnitude of 586 
OAE-related perturbations. In some cases, models are missing key processes that would be 587 
required to mechanistically simulate certain effects. We are aware of no models that represent 588 
Ni toxicity, for instance. Including these effects, as well as a capacity to simulate secondary 589 
interactions, such as ligand complexation of metals in OAE feedstocks, will require significant 590 
investment in empirical experimentation to understand essential rate processes and 591 
physiological responses. 592 
 593 
Shortcomings in the capacity of models to represent physiological responses to OAE is an 594 
important consideration for the ability of models to faithfully represent ecological impacts. 595 
Notably, electrochemical OAE techniques present a simpler set of processes to consider than 596 
using crushed-rock feedstocks, where ancillary constituents and physical dynamics come into 597 
play. For electrochemical OAE, the most likely biological feedback to consider relates to the 598 
impacts of changing carbonate chemistry on biogenic rates of calcification or phytoplankton 599 
growth rates (Paul and Bach 2020). It is also possible that carbon limitation of phytoplankton 600 
growth (Paul and Bach 2020; Riebesell et al. 1993) may also be important. Empirical research 601 
exploring physiological sensitivities should be used to develop prioritizations of key model 602 
processes comprising early targets for implementation. Model documentations should use 603 
consistent stoichiometric relations to link alkalinity changes to those of nutrients and carbon 604 



16 

(Paulmier et al. 2009) and state the assumptions made about carbonate formation and 605 
dissolution. 606 
 607 
2.2.3 Representing sediment-water exchanges 608 

The exchange of solutes between the sediments and overlying water influences ocean 609 
chemistry, including the properties of the carbonate system (Burdige 2007). Depending on 610 
location and time scale, OAE may affect these exchanges and should be appropriately 611 
considered in models. Sediments influence the marine carbonate system primarily through the 612 
remineralization of organic matter, which returns DIC to overlying water (and alkalinity if this 613 
remineralization occurs anaerobically), and the dissolution of biogenic silicate or carbonate 614 
minerals. CaCO3 is of particular importance as its dissolution releases alkalinity, while its burial 615 
is an alkalinity sink, and the balance between the two is a key control on the ocean’s alkalinity 616 
balance over timescales approaching 104 years (Middelburg et al. 2020). Furthermore, 617 
remineralization and other microbial metabolisms, such as “cable bacteria,” can significantly 618 
lower pore water pH by several pH units below seawater values (Meysman and Montserrat 619 
2017). This can drive dissolution of CaCO3 and generate alkalinity in the sediments, even in 620 
shallow waters when the overlying water is supersaturated (Rau et al. 2012). 621 
 622 
Representing these processes in coastal and shelf sediments (< 200 m) is challenging. Shallow 623 
water depths and high productivity result in a significant delivery of organic matter to the 624 
sediments that is much larger than in the deep ocean. As a result, the relative importance of 625 
sediments in organic matter remineralization is larger and production of alkalinity by anaerobic 626 
metabolisms is more important in these shallow sediments than in the deep ocean (Seitzinger et 627 
al. 2006, Jahnke 2010, Huettel et al. 2014, Chua et al. 2022). In addition, these environments are 628 
dynamic with organic supply and bottom water conditions varying on tidal, seasonal, and 629 
interannual timescales. Accounting for the exchange between sediments and overlying water 630 
and its variability on tidal, seasonal, and interannual timescales will likely be necessary in 631 
regional and global biogeochemical models that aim to simulate alkalinity cycling in coastal and 632 
shelf seas, even for relatively short simulation durations of months to years.   633 
 634 
The choice of approach to modeling sediments may depend on the sediment type. For example, 635 
the mechanisms transporting solutes across the sediment-water interface can be divided into 636 
two categories depending on the sediment’s grain size. In coarse sediments, i.e. permeable 637 
sands, pressure gradients drive flow through the seabed replenishing sediment oxygen content 638 
(Huettel et al. 2014). Organic carbon stores are low and remineralization was long thought to be 639 
primarily aerobic. However, evidence has emerged relatively recently that anaerobic 640 
remineralization in sandy sediments is more important than originally thought (Chua et al. 2022 641 
and references therein). Idealized models that represent the three-dimensional sediment 642 
structure illustrate the importance of turbulence and oscillatory flows in permeable sediments 643 
(see Box 2 in Chua et al. 2022). These models are highly localized and computationally 644 
demanding, prohibiting their coupling with ocean biogeochemical models. Thus, permeable 645 
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sediments are currently not well represented in regional or global ocean biogeochemical 649 
models.  650 
 651 
In cohesive, fine-grained sediments with low permeability, i.e. muds, transport is limited by 652 
diffusion or faunal mediated mixing and exchange processes, i.e. bioirrigation or bioturbation 653 
(Meysman, et al. 2006, Aller 2001). In these environments, detailed multicomponent reactive-654 
transport models of sediment biogeochemistry – so called diagenetic models – can reproduce 655 
carbon remineralization rates partitioned between aerobic and anaerobic pathways, 656 
precipitation/dissolution reactions between sediment grains and porewaters, and the transport 657 
of solutes across the sediment-water interface (Boudreau 1997, Middelburg et al., 2020). These 658 
mechanistic models will be useful for detailed investigations into how perturbations of the 659 
carbonate system in seawater overlying the sediments affect their biogeochemistry and for 660 
addressing questions about the potential influence of particulate alkalinity feedstocks settling to 661 
the seafloor (Montserrat et al. 2017, Meysman and Montserrat 2017). However, typically these 662 
models are one-dimensional and applied to a few representative locations. Coupling fully 663 
explicit diagenetic models to three-dimensional ocean biogeochemical models, while 664 
conceptually straightforward, is computationally prohibitive. Instead, depth-integrated 665 
sediment processes have been implemented as bottom boundary conditions (e.g., Moriarty et al. 666 
2017, 2018, Laurent et al. 2016). For example, Laurent et al. (2016) used a diagenetic model in a 667 
“meta-modeling” approach to estimate bottom boundary nutrient fluxes for a regional scale 668 
biogeochemical model. By parameterizing the diagenetic model with detailed geochemical data 669 
(porewater profiles and nutrient fluxes) from a few individual locations, then forcing it over a 670 
range of expected bottom water conditions, they developed empirical functions relating 671 
sediment fluxes to bottom water conditions that could be used to parameterize bottom 672 
boundary conditions in the water column model. A similar approach could be used in OAE 673 
models to parameterize how sediment biogeochemistry may alter alkalinity fluxes, for example, 674 
how redox sensitive processes, such as coupled nitrification-denitrification or sulfate reduction 675 
coupled to pyrite burial, both of which may produce alkalinity (Soetaert et al. 2007), may 676 
respond to changes in bottom water oxygen or organic matter loading. 677 
 678 
When considering the long-term storage of CO2 in global-scale ESMs, the interactions between 679 
sediments and the deep ocean (> 1000 m bottom depth) may need to be considered. In this 680 
environment most organic matter remineralization occurs in the water column, and the small 681 
amount of organic matter reaching the seafloor is remineralized aerobically with little to no 682 
release of alkalinity. In this case, sediment remineralization can likely be either ignored or 683 
implemented as a reflective boundary condition where the simulated POC flux to the seafloor is 684 
immediately returned as DIC and remineralized nutrients. However, the dissolution or 685 
preservation of CaCO3 in deep sediments is critical to controlling deep water alkalinity and may 686 
be important in model simulations that aim to quantify OAE effects on the timescales associated 687 
with the large-scale global overturning circulation. CaCO3 solubility increases with pressure 688 
and decreasing pH and CaCO3 eventually becomes undersaturated at depth. The depth at 689 
which sinking CaCO3 balances its dissolution is referred to as the carbonate compensation 690 
depth (CCD). An increase in bottom water CO32- or CaCO3 deposition, will deepen the CCD, 691 
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burying CaCO3, trapping alkalinity, and lowering the alkalinity budget of the ocean.  692 
Conversely if CaCO3 rain rate or CO32- concentration decreases, the CCD will shoal and 693 
previously buried CaCO3 will dissolve releasing alkalinity to the deep ocean. CCD 694 
compensation therefore opposes any forcing of the deep ocean carbonate system and therefore 695 
dampens the rise of CO2 in the atmosphere but will also counteract any potential OAE solution 696 
(see Renforth and Henderson 2017 for a detailed explanation). Although most CaCO3 697 
dissolution occurs in the sediments, there is no consensus as to the level of detail this needs to 698 
be represented in models. Some global models employed to investigate large-scale OAE include 699 
calcium carbonate dynamics at the sediment surface (Ilyina et al. 2013) others disregard this 700 
process (Keller et al. 2014).  701 
 702 
Often global models will parameterize CaCO3 burial as a function of saturation state, such an 703 
approach is effective for resolving CCD dynamics over geological timescales (~10,000 y), but not 704 
over the century to millennial timescales of CCD readjustment. Models that fully couple 705 
sediment diagenesis can resolve these dynamics (Gehlen et al. 2008), but the computational 706 
demand can make them ineffective. One solution is the approach of Boudreau et al. (2010) and 707 
(2018). By suggesting that CaCO3 dissolution dynamics are controlled by transport of 708 
dissolution products across the benthic boundary layer, they were able to derive equations 709 
predicting CCD depth and CaCO3 dissolution based on bottom water CO32- and CaCO3 rain rate 710 
and avoiding a detailed representation of the sediments. These equations, combined with model 711 
bathymetry, can parameterize sediment CO32- flux as a boundary condition and suitably account 712 
for transient sediment CaCO3 dissolution in large scale ESMs while avoiding the computational 713 
demands of a fully coupled ocean circulation-diagenesis model. 714 
 715 
2.2.4 Representing river and groundwater fluxes 716 

Regional and global ocean biogeochemical models typically account for river inputs, including 717 
their contributions to alkalinity and DIC. In most models this is done by specifying alkalinity 718 
and DIC concentrations in imposed riverine freshwater fluxes, although accurate prescription of 719 
these concentrations can be challenging. Typically, a combination of direct river measurements, 720 
where available, output from watershed models (e.g., Seitzinger et al. 2010), or extrapolations of 721 
coastal ocean measurements to a freshwater endmember (e.g., Rutherford et al. 2021) are used. 722 
Solute inputs from groundwater are typically ignored but could be important locally. In high-723 
resolution coastal domains near urban areas, sewage input may be an additional important 724 
source of carbon, nutrients, and alkalinity. 725 
 726 
It is important to note that land-based CDR applications may have an important effect on ocean 727 
alkalinity dynamics through riverine and groundwater delivery of solutes. Terrestrial OAE 728 
equivalents broadly referred to as Enhanced Rock Weathering (ERW) rely on the application of 729 
lime or pulverized silicate or carbonate rocks on land and in rivers. These strategies aim to 730 
generate CO2 uptake locally but yield a leaching flux of bicarbonate into freshwater systems and 731 
subsequent transport into the coastal ocean. Field trials and some commercial applications are 732 
currently underway, most of them with the implicit or explicit assumption that the enhanced 733 

Deleted: dissolved inorganic carbon734 
Deleted: dissolved inorganic carbon735 



19 

delivery of alkalinity will generate a carbon removal in the ocean (Köhler et al., 2010; Taylor et 736 
al., 2016; Bach et al., 2019). There is a need for coordinated efforts to improve quantification of 737 
background riverine fluxes and establish initiatives to effectively track the solute additions from 738 
ERW. 739 
 740 
2.2.5 Representing air-sea gas exchange  741 

The calculation of air-sea gas exchange is necessary for the quantification of net carbon uptake 742 
from OAE in models. Biogeochemical models typically represent this exchange using a bulk 743 
relationship that depends on the product of the gas transfer velocity and the effective air-sea 744 
concentration difference (Fairall et al. 2000). However, the gas transfer velocity remains highly 745 
uncertain and is sensitive to a collection of processes that vary across scales, including sea state, 746 
boundary layer turbulence, bubble dynamics, and concentrations of surfactants. The most 747 
widely used parameterizations of the gas transfer velocity use empirical fits to observations to 748 
construct a functional relation dependent on wind speed only, under the premise that 749 
turbulence and bubbles (via the breaking of surface gravity waves) are predominantly 750 
determined by wind stress (Wanninkhof 2014). This neglects processes that could be regionally 751 
important such as convection, modification by biological surfactants, rain and wave-current 752 
interactions, while vastly simplifying the effects of wave breaking and bubbles. Although 753 
different dependencies on wind speed have been proposed (quadratic, cubic, hybrid), 754 
parameterizing the gas transfer coefficient as a quadratic function of the 10-meter wind speed is 755 
the most common (Wanninkhof 1992; Wanninkhof 2014). This relationship is supported by 756 
direct measurements of air-sea flux at intermediate wind speeds (3-15 m/s), but at low wind 757 
speeds (< 3 m/s), non-wind effects can have an important impact on gas transfer. At high wind 758 
speeds (> 15 m/s), breaking waves and bubble injection enhance gas exchange for lower 759 
solubility gasses such as CO2 (Bell et al. 2017). Therefore, quadratic fits tend to underestimate 760 
the gas exchange at low and high wind speeds (Bell et al. 2017). 761 
 762 
More complex air-sea exchange parameterizations account for processes such as bubbles, near 763 
surface gradients and buoyancy driven convection (e.g., Liang et al. 2013, Fairall et al. 2000), but 764 
they depend upon a wider range of input variables. Other considerations in estimating flux 765 
arise from the nonlinear dependence on these variables, e.g., wind speed, which can lead to 766 
underestimates when made using daily averages rather than hourly measurements (Bates and 767 
Merlivat 2001). 768 
 769 
Notably, the gas transfer velocity (kw) determines the kinetics of gas exchange, given a 770 
perturbation in surface ocean pCO2 away from equilibrium. The timescale for CO2 equilibration 771 
over the surface mixed layer can be fully quantified using the following expression, 772 
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where h is the depth of the surface mixed layer and the partial derivative ∂CO2/∂DIC captures 774 
the thermodynamic state of the carbon system chemistry in seawater, specifically with respect 775 
to the amount that dissolved CO2 changes per unit change in DIC (Sarmiento and Gruber 2006). 776 
This property is related to the buffer capacity and varies in roughly linear proportion to the 777 
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carbonate ion concentration. The magnitude of #
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'+,($
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 is typically about 20, which explains 779 

why the equilibration timescale for CO2 is so long. The contribution of uncertainty in the gas 780 
exchange velocity to overall uncertainty in carbon uptake from OAE deployments will depend 781 
in part on the circulation regime involved. For example, in situations where alkalinity-enhanced 782 
water parcels are retained at the surface for timescales that are significantly longer than τgas-ex, 783 
full equilibration will occur and the impact of uncertainty in the gas exchange velocity will have 784 
limited influence on the overall uncertainty. 785 
 786 
Even though OAE-induced additional air-sea CO2 fluxes will, even in hypothetical massive 787 
deployments, amount to at most a few Gt CO2/yr, which is typically not more than a percent of 788 
the atmospheric CO2 inventory, this subtle difference in the treatment of the atmospheric 789 
boundary condition can be significant. Using prescribed atmospheric pCO2 that is unresponsive 790 
to marine CDR-induced air-sea CO2 fluxes has been shown to overestimate oceanic CO2 uptake 791 
by 2%, 25%, 100% and more than 500% on annual, decadal, centennial, and millennial 792 
timescales, respectively (Oschlies 2009). Simulations with prescribed atmospheric pCO2 need to 793 
take such systematic biases into account. 794 
 795 
2.3 Model development needs for OAE research 796 

While there is already substantial capacity for simulating ocean biogeochemical dynamics at 797 
global to regional scales, the discussion above implicates several areas where additional efforts 798 
are required to fully establish a modeling capability suitable for supporting OAE. These fall into 799 
four primary areas: (1) supporting multi-scale simulations with sufficiently high-fidelity flow 800 
fields; (2) faithfully simulating the near-field dynamics associated with alkalinity addition; (3) 801 
capturing feedbacks to OAE owing to biological and geochemical responses; and (4) identifying 802 
whether there are reduced-complexity modeling approaches that might provide sufficiently 803 
robust estimates of the net effects of OAE.  804 

As elucidated above, a primary consideration related to capturing OAE impacts is the fidelity of 805 
the simulated flow. Notably, OAE presents a somewhat novel use case requiring an effective 806 
multi-scale modeling capability. A conceptually straightforward path to improving the 807 
representation of ocean circulation and mixing is to increase the resolution of the model grid. 808 
However, the computational demand of high-resolution simulations can only be met over more 809 
limited-area domains. Since the spatiotemporal footprint of OAE-related perturbations is likely 810 
to be large, there will be a need to represent large regions. An argument might be made, 811 
however, that the circulation in proximity of an OAE site is most important to capture with 812 
high-fidelity. This can be achieved with two-way nested regional models as described in see 813 
Section 2.1.2 but will require further development to couple in the nearfield models described in 814 
Section 2.1.1. Native grid-refinement, e.g. via unstructured grids, is another approach that may 815 
be pursued to effectively support OAE research. 816 

The second area of model development relates to the requirement of faithfully representing the 817 
dynamics associated with alkalinity addition. Regional to global scales are the most relevant for 818 
simulating the air-to-sea exchange of CO2 ensuing from OAE. It is important, however, to 819 
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ensure that local processes affecting the mass fluxes and initial dispersal of alkalinity are 822 
handled appropriately. As illustrated above, DNS or LES simulations (section 2.1.1) can be 823 
leveraged to develop parameterizations for larger-scale models, including for crushed-rock 824 
feedstocks where particle dynamics may be important or techniques involving alkalinity 825 
enhanced streams entering the ocean from outfall pipes. In addition to process fidelity, there are 826 
also numerical constraints to consider. For example, advection schemes used in most ocean 827 
general circulation models struggle to represent sharp gradients; large mass fluxes of alkalinity 828 
into single model grid-points are likely to cause advection errors that may contaminate aspects 829 
of the model solutions making interpretation difficult. More specifically, conservative advection 830 
schemes can be characterized in terms of their accuracy, monotonicity (i.e., ability to preserve 831 
sign), and linearity (i.e., ability to preserve additivity) and there are always tradeoffs to make 832 
between these properties. Research may be required to determine which schemes are best 833 
suited to the particular challenges associated with representing the advection of OAE signals. 834 

The third area of model development relates to our capacity to fully capture the range of 835 
biogeochemical feedback associated with OAE. The class of processes to consider here is 836 
potentially large and many have been touched on in section 2.2.1 to 2.2.3. Precipitation 837 
dynamics, specific elemental components of alkalinity, biogenic responses mediated by 838 
physiological or ecological sensitivities, impacts and processes controlling the cycling of 839 
ancillary constituents, and accurate sediment-water exchange are all areas that merit 840 
consideration. Further efforts are required to understand and prioritize these areas of potential 841 
development and, notably, their relative importance is likely to be regionally dependent. 842 

Finally, it is important that models be tailored to address specific questions of relevance. In this 843 
context, it may be important to consider how much model complexity is required to capture the 844 
effects of perturbations, seeking parsimonious representations that are well-supported by 845 
empirical constraints and invoking wherever possible a separation of concerns to isolate the 846 
factors contributing to uncertainty. For example, there are several near-field considerations that 847 
might be addressed using a combination of local observations and ultra-high-resolution 848 
modeling tools to generate estimates of alkalinity mass fluxes that are subsequently imposed as 849 
forcing in regional- to global-scale models. Another key question is how important it is to 850 
comprehensively simulate the mean state to faithfully capture the response to OAE 851 
perturbations for the purpose of MRV. For example, if it can be documented that biological 852 
feedbacks to OAE are of negligible concern, the core target for simulating OAE effects for MRV 853 
may be to capture the cumulative integral of air-sea CO2 exchange associated with the induced 854 
surface ocean pCO2 anomaly. The mean state of the seawater carbon system is relevant here as 855 
the background DIC and alkalinity fields determine the pCO2 response per unit addition of 856 
alkalinity, but fully prognostic calculations of nutrient cycling may not be necessary. 857 

3 Model validation and integration with observations  858 

Whether a model is useful for OAE research depends on how accurately it represents the 859 
physical, chemical, and biological processes that are relevant to the specific research question to 860 
be addressed. Model validation, the evaluation of a model’s performance, and estimation of 861 
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uncertainties in model output should thus be integral parts of model implementation and 862 
application. It is important to note that any model, even after best efforts have been made to 863 
improve formulations and conduct the most thorough validation, will deviate from reality. Any 864 
model is, by definition, a simplification of the real world and thus its output will be subject to 865 
uncertainties. Deviations of the model state from the real world can be reduced by applying 866 
statistical techniques, collectively referred to as Data Assimilation (DA) methods, that combine 867 
models with observations and yield the best possible estimates. The steps typically involved in 868 
model implementation and validation, and possible integration with observations through data 869 
assimilation are shown in Figure 3. In this section, we summarize the most important 870 
observation needs for model validation (Section 3.1), briefly describe typical metrics for model 871 
validation and articulate a reasonable minimum criterion (Section 3.2), give a high-level 872 
explanation of approaches for the formal statistical combination of models with observations 873 
through parameter optimization and state estimation (Section 3.3), and describe approaches for 874 
the specification of uncertainty in model outputs (Section 3.4). 875 
 876 

 877 
 878 

Figure 3: Typical steps in model implementation and validation. 879 

Initial model implementation 
There are many choices to be made, see 
Sections 2.1, 2.2. This step may include param-
eter optimization, see Section 3.3. 

Unconstrained hindcast

Validation 
See metrics and criteria in Section 3.2.

Does the model have sufficient skill in 
its representation of the relevant 
processes?

No Yes

Model refinement and testing of 
alternative formulations
This typically involves: 
• sensitivity analyses of parameters, parame-
terizations, and model structures; 
• formal parameter optimization; 
• obtaining more observations ideally guided 
by OSSEs (see Section 4.2).

Is there non-deterministic or uncon-
strained variability that hampers the 
model’s utility for the intended applica-
tion?

Yes

Apply DA to produce con-
strained hindcast, nowcast, or 
forecast.

Analyze “forecast” skill by 
assessing model against 
observations not used in DA. 
Is it satisfactory?

Yes

Model is ready to be used 
for its intended application.

No

No

Model is ready to be used for uncon-
strained hindcasts and scenario simula-
tions.

For simulations of OAE impacts, validation of 
simulated anomalies between baseline and 
perturbed simulation is desirable (see Section 
3.2).   



23 

3.1 Observation types for validation 880 

Two fundamental requirements for models to be useful in the context of OAE research are high-881 
fidelity representations of physical transport due to advection and mixing, and of 882 
biogeochemical effects of OAE, most importantly changes in the inorganic carbon properties.  883 

Observations for validation of the simulated physical transport of alkalized waters include 884 
temperature and salinity distributions, direct measurements of currents, surface drifter 885 
trajectories, sea surface height observations from satellite altimetry, and estimates of 886 
geostrophic flow derived from the latter. Additional metrics relevant for assessing the fidelity of 887 
the large-scale overturning circulation in global models include combinations of biogeochemical 888 
concentration and transient tracers. For example, oxygen can be useful for identifying large-889 
scale transport pathways, even though it convolutes dynamical and biological information. 890 
Particularly valuable for assessing large-scale ocean transport on the timescales relevant for 891 
OAE are abiotic transient tracers such as such as chlorofluorocarbons (CFCs), sulfur 892 
hexafluoride (SF6), and possibly the isotopes 39Ar and 14C. Observational approaches for 893 
validation at regional scales include explicit tracer studies for documenting dispersion 894 
properties using Rhodamine dye or SF6. 895 

In addition to the dynamics of the flow, model validation for OAE research requires the 896 
assessment of the fidelity of simulated carbonate chemistry variables (e.g., alkalinity, total 897 
dissolved inorganic carbon or DIC, pH, pCO2) and salinity and temperature, which are used to 898 
calculate the 13 thermodynamic equilibrium constants and conservative chemical species 899 
needed to constrain seawater acid-base chemistry in oxygenated seawater. Depending on the 900 
OAE approach and the model application, assessment may also require observed macronutrient 901 
(e.g., nitrate, silicate, or phosphate), micronutrient (e.g., Fe), and contaminant (e.g., Ni, and Cr) 902 
measurements; bulk seawater properties related to biogeochemical cycling (e.g., dissolved 903 
organic carbon content [DOC], particulate inorganic carbon [PIC], chlorophyll fluorescence); 904 
and biogeochemical rates and fluxes (e.g., net community calcification).  905 

It is not always feasible to obtain the ideal carbonate system observations for model validation. 906 
Temperature and salinity can be measured reliably across all ocean depths and, with greater 907 
uncertainty and only at the ocean surface, remotely from satellites. The technical capacity for 908 
seawater pH measurements is evolving rapidly and sensors and systems now exist for pH 909 
measurements across nearly all depths, though the depth-capable systems require regular 910 
recalibration (e.g., Maurer et al., 2021). Similarly, there are numerous ways to observe surface 911 
ocean pCO2 using a variety of crewed, autonomous, and fixed-location platforms (e.g., ship-912 
based, Saildrone, and moored systems). However, interior-ocean pCO2 observations remain 913 
challenging to obtain due to the need for calibration gasses and a gas-water interface. Alkalinity 914 
titrations are predominantly performed on discrete bottle samples collected by hand, though 915 
autonomous titration systems are under development that enable in situ surface time series 916 
measurements (Shangguan et al., 2022). Microfluidic in situ alkalinity titrators are also under 917 
development that consume less reagent per sample but currently show higher uncertainties 918 
than discrete samples (Sonnichsen et al. 2023). Solid state titrators that generate acid titrant in 919 
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situ show promise for surface and subsurface alkalinity titrations, but these sensors are still 923 
undergoing development and validation (Briggs et al., 2017). DIC observations combine the 924 
limitations of current measurement systems for both the pCO2 and alkalinity, and there are only 925 
a handful of automated DIC titration systems rated for surface ocean measurements (e.g., 926 
Fassbender et al. 2015; Wang et al. 2015; Ringham 2022). Theoretically, measurement of two of 927 
the carbonate system parameters in combination with temperature and salinity and some 928 
additional assumptions allows calculation of the other carbonate system parameters in 929 
seawater. Unfortunately, the pair of pCO2 and pH, which are the most accessible to autonomous 930 
measurement among the carbonate system parameters, provide nearly identical information 931 
about the system. Thus, the results of the calculations that use this pair have higher 932 
uncertainties than other combinations (Dickson and Riley 1979; Millero 2007; Cullison Gray et 933 
al. 2011; McLaughlin et al. 2015; Raimondi et al. 2019) and are therefore not ideal as a pair for 934 
model validation. 935 

3.2 Validation metrics and approach 936 

Validation relies on comparing the model output to observations, often in an iterative loop 937 
where the evaluation of a hindcast simulation is followed by model refinements followed in 938 
turn by a new hindcast and re-evaluation (Figure 3, Rothstein et al. 2006). Several evaluation 939 
metrics are commonly used (see Box 3 in Fennel et al. 2022). The three most common are the 940 
root-mean-square error (RMSE), the bias, and the correlation coefficient. All three are relative 941 
measures without any objective criterion that indicates which range of values is acceptable or 942 
unacceptable. In contrast, the Z-scores, which consider variability within the observational data 943 
set, and the so-called model efficiency or model skill, which quantifies whether the model 944 
outperforms an observational climatology are two metrics with built-in criteria as to whether a 945 
model’s performance is acceptable or not (Fennel et al. 2022). Since no single metric provides a 946 
complete picture of a model’s skill, multiple complementary metrics should always be used in 947 
combination (Stow et al. 2009). Furthermore, different points in space and time, and a breadth of 948 
variable types should be part of any comprehensive validation because a model may provide 949 
accurate estimates for some variables, locations, or times but perform poorly for others (Doney 950 
et al. 2009). 951 

For OAE research, validation can be considered as a two-step challenge. First, it is necessary to 952 
validate unperturbed model baselines to gain confidence that the natural variability is 953 
represented appropriately and to quantify model uncertainties. One should compare model-954 
simulated spatial fields and time-series at strategic locations with appropriate observations to 955 
assess the model’s skill at representing mean distributions as well as the variability for 956 
carbonate chemistry measurements and other relevant properties using several of the 957 
complementary quantitative metrics listed above. A model could be considered as sufficiently 958 
validated when mean distributions, their seasonal variability, and the timing and magnitude of 959 
events (e.g., blooms, physical disturbances) are accurately represented. As described in Section 960 
3.1, insufficient availability of observational constraints on carbonate system parameters 961 
presents a major challenge in this regard. In models applied for OAE research, it is particularly 962 
important to assess whether they realistically capture the distributions and variability of 963 
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seawater properties that govern sensitivity of the seawater carbonate system; recent work by 964 
Hinrichs et al. (2023) shows that the current representation of alkalinity in state-of-the-art 965 
models requires improvements.  966 

The second, even more difficult step is to test whether a model accurately represents alkalinity 967 
additions. OAE-related modeling studies thus far have relied on models that are validated only 968 
for baseline conditions. These are useful as sensitivity studies. However, validation of a model's 969 
ability to accurately represent the perturbations of an alkalinity addition is ultimately needed to 970 
address OAE science questions around environmental impacts and MRV. It is likely that the 971 
metrics described above for baseline validation are not suitable for this task. Validation should 972 
focus on quantifying whether the model accurately captures the anomalies created by OAE. 973 
This requires consideration of the spatial footprint and temporal evolution of perturbations and 974 
ideally a close integration of experimental, observational, and modeling efforts. For example, a 975 
model that is deemed skillful after baseline validation can be used to estimate the appropriate 976 
dosage of alkalinity additions, thus ensuring a measurable signal, and guide the observational 977 
strategy; subsequent validation may indicate model shortcomings that were not obvious in the 978 
baseline validation (e.g., diverging dissipation rates between model and field observations) and 979 
prompt model refinement in an iterative loop of model validation, improvement, and renewed 980 
experimental assessment (Figure 3). 981 

It is important to note that even with repeated steps of validation and model improvement, 982 
there is going to be a limit to the degree of realism that can be achieved with any model. Any 983 
model simulation will be prone to errors and uncertainties. Sources of error include inaccuracies 984 
in model inputs, numerical approximation schemes, insufficient process understanding, and 985 
inaccurate model parameters and parameterizations. 986 

3.3 Data Assimilation 987 

Data assimilation (DA) is the process of improving the dynamical behavior of models by 988 
statistically combining them with observations. There are a variety of DA techniques that rely 989 
on different mathematical and statistical approaches (Carrassi et al. 2018). Originally developed 990 
for numerical weather prediction, DA has been successfully applied to ocean models, including 991 
biogeochemical models (Mattern et al. 2017, Cossarini et al. 2019, Ciavatta et al. 2018, Verdy and 992 
Mazloff 2017, Teruzzi et al. 2018, Fennel et al. 2019) but success critically depends on the 993 
information content of the available observations (Yu et al. 2018; Wang et al. 2020). While DA 994 
has been shown to yield large improvements in important parameters governing 995 
biogeochemical processes (Mattern et al. 2012, Schartau et al. 2017, Wang et al. 2020) and in 996 
model estimates of the physical and biogeochemical model state (Hu et al. 2012, Mattern et al. 997 
2017, Ciavatta et al. 2018), it is only starting to be applied to carbonate system properties (Verdy 998 
and Mazloff 2017, Carroll et al. 2020, Turner et al. 2023, Figure 4).  999 

Application of DA for ocean models is typically applied for one of two purposes: (1) to 1000 
systematically optimize model parameters, e.g., phytoplankton growth and nutrient uptake or 1001 
rates of background dispersion, and (2) to estimate the ocean state, e.g., distributions of 1002 
temperature, phytoplankton biomass, alkalinity (see Fennel et al. 2022 for more details on the 1003 
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practical approaches and examples). The first purpose addresses systematic errors and biases in 1004 
models and is useful when systematically modifying and testing different model formulations 1005 
while the second assumes an unbiased model and addresses unresolved stochasticity, e.g., 1006 
correcting the locations of mesoscale eddies and current meanders. State estimation offers the 1007 
potential to constrain variability such that OAE-induced perturbations of carbonate system 1008 
parameters can be documented even if they are smaller than the natural variability in the study 1009 
region. Joint estimation of physical and biogeochemical properties is common and can yield 1010 
significant improvements for both types of properties (Yu et al. 2018). Hybrid approaches 1011 
combining parameter and state estimation have also been proposed (Kitagawa 1998, Mattern et 1012 
al. 2012, 2014) but are less widely used. 1013 

 1014 

1015 
Figure 4: Example of a DA application for state estimation of carbonate system properties 1016 
within a 3-dimensional model of the California Current System. The symbols show glider data 1017 
and model estimates at the measurement times and locations; one specific data point and its 1018 
associated model estimates are highlighted by red circles. Each data point consists of measured 1019 
pH alongside estimated alkalinity and DIC values (see Takeshita et al. (2021) for data source 1020 
and details). In the model, pH is a diagnostic variable and primarily dependent on the model's 1021 
alkalinity and DIC estimates. (a) When only pH data is assimilated, the model estimates are 1022 
moved closer to the observed pH values by increments in alkalinity-DIC space that degrade the 1023 
model's alkalinity estimates. (b) The model state estimates improve considerably by 1024 
assimilating data for DIC (or alkalinity; not shown) together with the pH observations.  1025 

Successful application of DA critically requires sufficient observations either of the properties 1026 
that the model parameters to be estimated depend on or of the state variables that are being 1027 
estimated. The most commonly used observation type in biogeochemical DA applications is 1028 
satellite-based ocean color observations (Mattern et al. 2017, Ciavatta et al. 2018, Teruzzi et al. 1029 
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2018) which are available at a relatively high temporal resolution and covering large areas of the 1031 
surface ocean. While these observations are useful for informing model estimates of properties 1032 
directly linked to processes involving phytoplankton, they provide little information on the 1033 
carbonate system. Dynamical models are able to quantitatively constrain processes that cannot 1034 
be measured directly, by inferring them from observable properties, but only if the observations 1035 
contain enough relevant information about the processes of interest. Hence, one of the biggest 1036 
challenges facing the application of DA to models of the marine carbonate system, is the 1037 
sparsity of observations of the marine carbonate system. Observations of pH, pCO2, alkalinity, 1038 
and DIC used to be limited to moorings and research cruises but have more recently been 1039 
extended by automated observing systems, such as gliders, BGC-Argo floats and uncrewed 1040 
surface vehicles (Bushinski et al. 2019). Although these measurements are becoming more 1041 
common (Chai et al. 2020), they are still sparse compared to what is typically required for DA 1042 
applications. In this context, an additional challenge is the problem of underdetermination, i.e. 1043 
if multiple processes or properties of interest can cause a similar change in an observable 1044 
property, then observing this property alone may not hold enough information to constrain 1045 
these processes or properties and more observations are needed (see Fig. 4 and code examples 1046 
in Fennel et al. 2022). As new platforms are added to the observing system, DA techniques can 1047 
help guide their optimal deployment and tailor observational programs to the specific needs of 1048 
OAE applications (see Section 4.3 below). Furthermore, statistical and machine-learning 1049 
approaches are being developed (e.g., Lohrenz et al. 2018, Bittig et al. 2018, in prep.) that may 1050 
help overcome the undersampling of carbonate system properties and could feed directly into 1051 
DA applications. 1052 

There is an important subtlety to the application of data-assimilative models when quantifying 1053 
net CO2 uptake due to OAE, which is highly relevant for MRV. When the net CO2 uptake is 1054 
quantified by calculating the difference between two simulations, one with and one without 1055 
OAE (one of these is realistic, the other counterfactual), it is not appropriate to assimilate 1056 
biogeochemical observations of properties affected by the alkalinity enhancement. The 1057 
assimilation of alkalinity-related observations to constrain one of the simulations in the pair 1058 
would eliminate the ability to make comparisons between the two. However, assimilation of 1059 
observations that are unaffected by OAE (e.g., temperature, salinity, oxygen, etc.) can be 1060 
applied to both simulations of the pair. Further research and method development are required 1061 
to identify the best approaches for leverage DA in this context. 1062 
 1063 
3.4 Uncertainty analysis 1064 

Model results should be paired with sound qualitative and quantitative uncertainty estimates, 1065 
especially when used for practical decisions. Estimating the uncertainty of model simulations, 1066 
however, is inherently difficult because typically one is most interested in simulation outputs 1067 
for which observations are not available (e.g., unobserved or insufficiently observed properties 1068 
or fluxes in the past, properties and fluxes in the future); hence, standard procedures and 1069 
metrics for model validation (Section 3.2) are not helpful for this aspect. Uncertainty estimates 1070 
could be based on extensive model parameter and configuration sensitivity studies and 1071 
comparisons with models that include more realistic representations of uncertain or 1072 

Deleted: .1073 
Deleted:  B1074 

Deleted: of DIC, pH, alkalinity, and pCO2 1075 

Deleted: : I1076 
Deleted: be1077 

Deleted:  ¶1078 
In situ measurements of the carbonate system are much 1079 
more limited temporally and especially spatially than 1080 
remote sensing observations from satellites, which are 1081 
the backbone of physical (satellite sea surface 1082 
temperature and sea surface height) and 1083 
biogeochemical data assimilation (see above). 1084 
Observations of pH, pCO2, alkalinity, and DIC used to 1085 
be limited to moorings and research cruises but have 1086 
more recently been extended by automated observing 1087 
systems, such as gliders, BGC-Argo floats and 1088 
uncrewed surface vehicles (Bushinski et al. 2019).1089 



28 

parameterized processes. Furthermore, since specification of uncertainty is an integral part of 1090 
DA, DA methodologies provide a useful framework for estimating uncertainty, especially 1091 
ensemble-based methods. 1092 
 1093 
Any DA application requires uncertainty specification of the observations that are assimilated 1094 
and can provide uncertainty estimates of the results of the assimilation procedure. Specification 1095 
of uncertainty in the input data is necessary to inform the DA machinery about how much 1096 
weight and reach each data point or data type should have in influencing the outcome. The 1097 
more realistic the uncertainties of the input data, the better the DA outcomes in terms of 1098 
explanatory or predictive skill. It is important to note that “better” does not mean more precise 1099 
in this context. Overconfidence in the accuracy of assimilated observations will lead to 1100 
overfitting and a degradation of predictive skill. In the case of parameter optimization, the 1101 
output of the assimilation exercise is a set of optimized parameters. The uncertainty of optimal 1102 
parameters, referred to as a posteriori errors, is determined by a Hessian analysis of the cost 1103 
function in combination with the uncertainty of the input parameters before optimization, the 1104 
so-called a priori errors (Thacker et al. 1989, Fennel et al. 2001). In the case of ensemble-based 1105 
state estimation, the ensemble spread of the reanalyzed model state provides a spatially and 1106 
temporally resolved estimate of the uncertainty of the reanalysis (Yu et al. 2018, Hu et al. 2012). 1107 
  1108 
However, an important caveat is that subjectivity enters the uncertainty specification in all of 1109 
these approaches. For example, in the case of parameter optimization the assumed a priori 1110 
errors, their probability distributions, and the choice of the cost function are subjective and 1111 
influence the a posteriori errors (but interestingly the values of the observations themselves do 1112 
not). In the case of ensemble-based state estimation, the sources of uncertainty inherent in the 1113 
model simulation have to be specified and simulated by generating variations within a model 1114 
ensemble. Sources of uncertainty include errors in atmospheric forcing and boundary 1115 
conditions, model parameters, and structural uncertainty. Uncertainty in forcing and boundary 1116 
conditions is often represented by perturbing the time of sampling, uncertainty in parameters is 1117 
represented by sampling from a probability distribution (based on a priori assumptions about 1118 
the uncertainty of each parameter), and the structural uncertainty is typically represented via 1119 
brute-force inflation factors that amplify ensemble spread. Yu et al. (2019), Li et al. (2016), and 1120 
Thacker et al. (2012) provide examples where different sources of model uncertainty are 1121 
accounted for. While the mechanics by which the model ensemble is generated and spreads 1122 
over time is thus subjective, grossly inappropriate choices will lead to obviously wrong or 1123 
degraded reanalyses. The success of a DA exercise, which is best judged by an evaluation of 1124 
whether the predictive power of the model has improved, thus provides a useful reality check 1125 
on whether the choices for specifying uncertainty were appropriate. 1126 
 1127 
How can the framework for specifying and estimating uncertainty from model ensembles be 1128 
applied in the context of OAE research? Two different cases should be considered here: 1) 1129 
model applications where the absolute value of quantities matters for the research question to 1130 
be addressed and thus the uncertainty of the simulated output, and 2) applications where 1131 
information about the difference between a simulation with and without OAE is of interest and 1132 
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the uncertainty of this difference (e.g., the net CO2 uptake and its uncertainty in the context of 1134 
MRV). Examples of the first case include studies of the stability of added alkalinity (i.e., 1135 
simulation of runaway calcium carbonate precipitation) and studies about the exposure of 1136 
planktonic and benthic communities to high pH. In this case, the ensemble framework 1137 
described above can be applied with the caveat that the specification of all the relevant sources 1138 
of uncertainty is by no means trivial and subjective to some degree. 1139 
 1140 
The second case is highly relevant for MRV of OAE where one is interested in accurately 1141 
quantifying the increase in seawater DIC due to OAE with well characterized uncertainty. In 1142 
this case, one would use two simulations that are based on an identical model set-up with only 1143 
one difference, namely a source of alkalinity is applied to one (i.e., one of these two simulations 1144 
is counterfactual or hypothetical, the other would typically be as realistic as possible). It may be 1145 
tempting, and is conceptually straightforward, to apply the ensemble framework for each 1146 
model of the pair and combine the resulting uncertainties via error propagation. However, in 1147 
practice this would not provide meaningful estimates because there are sources of uncertainty 1148 
that are unaffected by OAE (e.g., atmospheric forcing) and accounting for them may 1149 
significantly overestimate uncertainty in the estimated net CO2 uptake. A more appropriate 1150 
approach would be to construct an ensemble of model pairs that explicitly accounts for 1151 
uncertainty related to the impacts of alkalinity addition. How to specify and simulate the 1152 
sources of uncertainty directly resulting from OAE in practice remains an open research 1153 
question. 1154 
 1155 
4 Model experimentation 1156 

In this section, we lay out general objectives for model experimentation in the context of OAE 1157 
research and provide a short historical view of how these model studies have evolved (Section 1158 
4.1) followed by specific recommendations for Observing System Simulation Experiments 1159 
(Section 4.2) and model intercomparisons (Section 4.3).    1160 
 1161 
4.1 General objectives of model experimentation 1162 

General objectives of OAE modeling include (1) gaining a better understanding of the 1163 
biogeochemistry of OAE, including its effectiveness and side effects, (2) supporting 1164 
experiments, field trials, or commercial deployments including through the optimization of 1165 
observing systems, (3) assessing global carbon-cycle and climate feedbacks, (4) understanding 1166 
the role that OAE can play in climate mitigation efforts, and (5) supporting monitoring, 1167 
reporting, and verification activities. At a conceptual level, model approaches for OAE can be 1168 
classified as belonging into one of two groups: idealized or realistic. Idealized modeling 1169 
approaches are typically driven by research questions of a fundamental nature and aim to 1170 
develop or test hypotheses or provide improved process understanding while strongly 1171 
simplifying a range of potentially complicating factors. They are useful for illustrating cause-1172 
and-effect relationships and the range of plausible outcomes given strong assumptions. In 1173 
contrast, realistic modeling approaches aim to include a broad range of contributing factors as 1174 
accurately as possible and provide detailed hindcasts or predictions that, if the model has skill, 1175 
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can be used for a range of practical applications. In practice, the dividing line between idealized 1176 
and realistic models is blurry. Of course, no model will ever simulate all aspects of reality, 1177 
hence even realistic simulations make many assumptions and are prone to errors from multiple 1178 
sources. It can be effective to apply idealized and realistic approaches in a complementary 1179 
manner and iteratively. 1180 

It is illustrative to review briefly how modeling for OAE research has developed over the course 1181 
of the last decade. Much of the early work on OAE used idealized models. Model simulations 1182 
were designed to investigate whether the theoretical concept of OAE could remove large 1183 
amounts of CO2 on the global scale. Rather than trying to account for the technical and socio-1184 
economic constraints of OAE deployment, the model experiments were designed to investigate 1185 
what would happen if surface alkalinity was homogeneously increased by massive amounts via 1186 
a constant addition rate over extremely large regions of the ocean, e.g., in all sea-ice free waters 1187 
(Paquay and Zeebe, 2013; Keller et al., 2014; Ilyina et al., 2013; Köhler et al., 2010; Köhler et al., 1188 
2013). These simulated OAE deployments will never be realized, but the model results 1189 
suggested that OAE can be viable as a CDR approach. A particular advantage of this idealized 1190 
approach is that the effect of OAE was easy to detect against internal model variability, i.e., the 1191 
signal to noise ratio is high. The next steps in modeling OAE have remained idealized but have 1192 
begun to introduce more constraints and better mechanistic or empirically derived components 1193 
as experimental OAE date becomes available. Recently, modeling studies tailored to specific 1194 
regions and modes of application have been conducted to support field trials or commercial 1195 
deployment (Mongin et al. 2021, Wang et al. 2023). These applications must be as realistic as 1196 
possible. None of the modeling studies published to date have simulated an actual OAE field 1197 
trial.  1198 

4.2 Recommendations for Observing System Simulation Experiments (OSSEs) 1199 

Observing system simulation experiments (OSSEs) use data-assimilative simulations to design 1200 
new, or modify existing, observing systems such that deployments of observing assets, e.g., 1201 
floats, gliders, moorings, or surface vehicles, is optimized. General overviews and best practices 1202 
for OSSEs are provided by Halliwell et al. (2015) and Hoffman and Atlas (2016). Examples of 1203 
applications to biogeochemical models include Ford (2021), Wang et al. (2020), and Denvil-1204 
Sommer et al. (2021). Their goal is to maximize the information gained from a new or modified 1205 
observing system, while keeping the number of required instruments, sensors, or deployments 1206 
– and thereby cost and effort – low. OSSEs are especially valuable tools in the context of OAE 1207 
research because the marine carbonate system is still undersampled, observing systems need to 1208 
be designed and expanded, and new instruments deployed and configured (Boyd et al. 2023).  1209 

In practice, this is done with the help of a pair of two different models or model versions, also 1210 
referred to as twin experiments, as follows. A simulation of one of the models is considered to 1211 
be the “truth.” This simulation is also referred to as the “nature run” and synthetic observations 1212 
are generated by subsampling this nature run. This subsampling can be repeated with different 1213 
sampling schemes (e.g., different variable types, different numbers of profiles, transects, and/or 1214 
fixed location time series, etc.) to represent different configurations of the observing system.  1215 
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Finally, the synthetic observations are assimilated into the other model for which a non-1217 
assimilative simulation, the so-called “free run,” is also available. The skill of this data-1218 
assimilative simulation, also referred to as the “forecast run,” can be assessed against the free 1219 
run using independent observations that are also sampled from the nature run. In this way the 1220 
impact of different sets of observations on the data-assimilative model can be measured and 1221 
assessed. 1222 

While conceptually straightforward, care and consideration are required when setting up 1223 
OSSEs. For example, the choice of the two model versions making up the twin is important. If 1224 
the models chosen for the truth and forecast runs are versions of the same model 1225 
implementation that were generated by perturbing initial, forcing or boundary conditions in 1226 
one of them, the method is referred to as the “identical twin” approach. If two different model 1227 
types are used, they are “non-identical twins.” The intermediate approach where the same 1228 
model type is used but in different configurations (e.g., different physical parameterizations 1229 
and/or spatial resolution) is referred to as fraternal twin. The identical twin approach has been 1230 
more common in oceanic DA applications although atmospheric OSSEs have shown that it can 1231 
provide biased impact assessments (Hoffman and Atlas, 2016) typically because the error 1232 
growth rate between the truth and forecast runs is insufficient. A direct comparison of the non-1233 
identical and identical twin approach for an ocean circulation model of the Gulf of Mexico has 1234 
been conducted by Yu et al. (2019). In their assessment of the impacts of the existing observing 1235 
system (consisting of satellites and Argo floats), the identical twin approach provided overly 1236 
optimistic improvements in model skill after assimilation of data from some observing assets 1237 
(specifically sea-surface height and temperature) but undervalued the contribution from 1238 
temperature and salinity profiles. They concluded that skill assessments and OSSEs using the 1239 
non-identical twin approach are more robust. Similar concerns likely apply to OSSEs for 1240 
biogeochemical properties, but this remains to be studied systematically. 1241 

4.3 Recommendations for intercomparisons 1242 

A common approach to assessing model uncertainty are coordinated, multi-model studies, 1243 
commonly called model intercomparison projects or MIPs. They can be used to explore the 1244 
simulated range of model behaviors, to isolate the strengths and weaknesses of different models 1245 
in a controlled setting, and to interpret, through idealized experiments, inter-model differences 1246 
(IPCC 2013). Carefully designed experiments can also offer a way to distinguish between errors 1247 
particular to an individual model and those that might be more universal and should become 1248 
priority targets for model improvement (IPCC 2013). These studies rely on common agreed-1249 
upon protocols for simulating certain processes and writing of diagnostic output to ensure that 1250 
best practices are followed, and results are comparable (e.g., Griffies et al., 2016). The best-1251 
known model intercomparison project is probably the Coupled Model Intercomparison Project 1252 
(CMIP, Eyring et al., 2016), which is currently finishing up its 6th phase. Within CMIP6, the 1253 
carbon dioxide removal intercomparison project (CDRMIP; Keller et al., 2018) is the first project 1254 
to develop a model intercomparison experiment for ocean alkalinity enhancement. This and 1255 
other MIP examples, including those conducted at smaller region scales (Wilcox et al., 2022), 1256 
provide a blueprint for developing coordinated multi-model experiments.  1257 
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The following key practices have proven useful in previous coordinated multi-model 1258 
comparisons. Since broad participation is typically desired, the protocol should be 1259 
straightforward for modeling groups to implement, otherwise few will have the resources to 1260 
participate. In practice this means avoiding new implementations of complex code or requiring 1261 
too many or too long simulations. If applicable, forcing data should be centrally prepared and 1262 
provided to participants in a standardized way that enables easy modification or reformatting, 1263 
if needed, for use with different models. Using common simulations that modeling groups are 1264 
likely to have completed already, e.g., climate change scenarios, as control runs and 1265 
experimental branching points is helpful for minimizing the number of additional required 1266 
simulations. It is useful to establish common practices that facilitate the production and analysis 1267 
of the model output, e.g., what should be archived and shared (Juckes et. al., 2020) and data 1268 
standards governing the structure and required metadata for model output (Pascoe et al., 2020). 1269 
Shared software to standardize model output, such as the Climate Model Output Rewriter 1270 
(CMOR; https://cmor.llnl.gov/) commonly used in CMIP, can be helpful. To maximize the use of 1271 
model output, it should be made available for public download with digital object identifiers 1272 
(DOIs). The Earth System Grid Federation (ESGF) is an example of such a system (Petrie et al., 1273 
2021). If applicable, preparing and providing quality-controlled observational datasets for 1274 
model evaluation is useful for facilitating analytical efforts (Waliser et al., 2020). Coordinating 1275 
the analysis is helpful to avoid duplicative efforts and ensure consistent application of 1276 
evaluation metrics. Finally, the design of a coordinated multi-model experiment and all its 1277 
procedures should be well documented in publications or permanently archived protocols. It is 1278 
advisable to test the multi-model experiment with a small subset of models, before inviting a 1279 
large number of participants. Furthermore, it is worth remembering that the science questions 1280 
must be appropriate. MIPs require much effort and not every science question needs a MIP to 1281 
be answered. 1282 

5 Summary and Key Recommendations 1283 

A range of modeling tools and analysis methods are available for OAE research to address 1284 
questions from micro- to global scales; however, each of these tools and methods has limitations 1285 
and caveats that model users and users of model-generated outputs need to be aware of. 1286 
Furthermore, this new field of research poses questions and challenges that current tools were 1287 
not designed to address, necessitating further development. 1288 
 1289 
A common objective of all modeling approaches described in this article is to simulate the 1290 
spatio-temporal evolution of carbon chemistry properties in seawater by accounting for the 1291 
physical, chemical, and biological processes that determine this evolution. Idealized models, 1292 
which neglect some aspects of reality in the interest of simplicity and clarity of assumptions, 1293 
have long been used to test basic questions about OAE. As research questions are becoming 1294 
more focussed on the practical aspects, feasibility, and ecosystem impacts of OAE, more realistic 1295 
models are increasingly desirable. A skillful realistic model can provide spatial and temporal 1296 
context for observations, including estimates of properties and fluxes not directly observed. 1297 
Such model will include parameterizations of the relevant processes for the research objective to 1298 
be addressed and will be constrained by observations that contain sufficient meaningful 1299 
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information. However, model formulations of several properties and processes relevant to OAE 1314 
research remain uncertain or highly simplified. For example, presently used model 1315 
representations of alkalinity in seawater are likely inadequate and may require explicit 1316 
representation of at least some of the multiple biotic and abiotic sources and sinks of alkalinity; 1317 
the mechanisms and triggers for spontaneous calcium carbonate precipitation are only 1318 
beginning to be described and not yet represented in models; and the impacts of pH 1319 
perturbations on plankton diversity and trophic interactions remain an active area of study and 1320 
unaccounted in biogeochemical models. Furthermore, it is difficult to obtain solid constraints on 1321 
the seawater carbonate system, especially in sufficient spatial and temporal resolution for 1322 
robust model validation and DA. Theoretically, knowledge of two of the carbonate system 1323 
parameters allows calculation of the others, but unfortunately pCO2 and pH, the pair most 1324 
accessible to autonomous measurement, results in high uncertainties. 1325 

One inherent challenge to OAE research is the multiscale nature of many of the relevant 1326 
questions. Different modelling tools are available for different spatial scales. While some 1327 
research questions may fall neatly within the limited spatial range of a particular model, many 1328 
do not and require a bridging of scales that could be accomplished via new parameterizations 1329 
yet to be developed or dynamic coupling of different modeling tools. It is important to 1330 
emphasize that models have to be tailored to the questions they are meant to address. This 1331 
means considering what level of model complexity is required and seeking parsimonious 1332 
representations that are well-supported by empirical constraints. 1333 
  1334 
It is important to note that even after thorough validation, any model simulation will be prone 1335 
to errors and uncertainties due to inaccuracies in model inputs, structural uncertainty due to 1336 
numerical approximation schemes and insufficient process understanding or representation, 1337 
and inaccurate model parameters and parameterizations.  Deviations between models and 1338 
reality can be reduced by DA, which is typically applied either to systematically optimize 1339 
model parameters or to produce optimal estimates of the ocean state. Optimization of model 1340 
parameters addresses systematic model errors and biases; it is useful for systematic testing of 1341 
different model formulations during model design. State estimation assumes an unbiased 1342 
model and addresses unresolved stochasticity, thus leading to model states that are in better 1343 
agreement with the observed ocean state. However, successful application of DA critically 1344 
requires sufficient observations. Currently, the biggest impediment to implementing data-1345 
assimilative models for OAE research is the sparsity of carbonate system observations. OSSEs, 1346 
data-assimilative simulations that inform how to place observing assets most effectively, will 1347 
prove useful in this context. It should also be noted that assimilation of carbonate system 1348 
parameters is not appropriate when models are applied for MRV. 1349 
  1350 
Uncertainty analysis is a necessary component of any quantitative research and will be an 1351 
essential deliverable for effective approaches to MRV. Ensemble-based DA methodologies 1352 
provide a useful framework for estimating uncertainty. Consideration of this framework 1353 
illustrates the “law of conservation of difficulty” applies here. Quantitative assumptions about 1354 
the uncertainty distributions of input data and input parameters, and of structural uncertainties 1355 
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inherent in the model are required to obtain an uncertainty estimate of the model output, in 1356 
other words, difficult assumptions about errors have to be made somewhere. A common 1357 
approach to assessing model uncertainty is by coordinated, multi-model intercomparison. Such 1358 
studies can be used to explore the range of simulated behaviors and the strengths and 1359 
weaknesses of different models and, by elucidating inter-model differences, they can offer 1360 
guidance on priority targets for model improvement. 1361 
 1362 
Key recommendations arising from this article are as follows: 1363 
 1364 

• Idealized models of particle-fluid interaction are recommended to address questions 1365 
about dissolution and precipitation kinetics at the scale of particles, realistic local-scale 1366 
models are recommended for addressing questions about nearfield processes in the 1367 
turbulent environment around injection sites, and larger-scale regional or global ocean 1368 
models are recommended to support observational design for field experiments, to 1369 
demonstrate possible verification frameworks, and to address questions about global-1370 
scale feedbacks on ocean biogeochemistry. 1371 

• When simulating OAE approaches that may generate high oversaturation with respect 1372 
to carbonate, spontaneous precipitation of carbonates needs to be considered and 1373 
appropriate approaches should be developed, e.g., using near-field models to 1374 
mechanistically represent this process and a meta-model approach to develop 1375 
parameterizations that are suitable for far-field and larger-scale models. 1376 

• Shortcomings in current-generation models in terms of representing physiological 1377 
responses of the plankton community to OAE (especially when using crushed-rock 1378 
feedstocks) need to be recognized, better qualified, and addressed. Empirical research 1379 
exploring physiological sensitivities should be used to develop prioritizations of key 1380 
model processes comprising early targets for implementation.  1381 

• The exchange of solutes between the sediments and overlying water influences the 1382 
seawater carbonate system with DIC from the remineralization of organic matter being 1383 
returned to overlying water (and alkalinity if this remineralization occurs anaerobically), 1384 
dissolution of CaCO3 releasing alkalinity, and burial of CaCO3 acting as alkalinity sink. 1385 
Accounting for these exchanges between sediments and overlying water and its 1386 
variability on tidal, seasonal, interannual, and millennial timescales will likely be 1387 
necessary in regional and global biogeochemical models that aim to simulate alkalinity 1388 
cycling. 1389 

• River inputs of alkalinity and DIC in regional and global ocean biogeochemical models, 1390 
including fluxes resulting from land-based CDR applications, should be accurately 1391 
accounted for. Efforts should be made to improve quantification of riverine fluxes 1392 
resulting from ongoing field trials and commercial applications, and to establish 1393 
initiatives to effectively track the solute additions from terrestrial alkalinity 1394 
enhancements. 1395 
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• When simulating large-scale deployment of OAE in ocean-only models with prescribed 1396 
atmospheric CO2, the subtle changes in the atmospheric CO2 inventory resulting from 1397 
CDR should be accounted for. 1398 

• Models should be tailored to the specific questions they are meant to address while 1399 
seeking parsimonious representations that are well-supported by empirical constraints. 1400 
For example, for the purpose of MRV it may be appropriate to neglect biological 1401 
dynamics since the core target is to capture the net air-sea CO2 exchange associated with 1402 
the OAE-induced surface ocean pCO2 anomaly. 1403 

• Model validation should be an integral part of model implementation and application. 1404 
For OAE research, validation is a two-step challenge. First, it is necessary to validate 1405 
unperturbed model baselines to gain confidence that the natural variability is 1406 
represented appropriately and to quantify model uncertainties. Second, it should be 1407 
verified that the model accurately represents the perturbations of an alkalinity addition.  1408 

• Since no single model validation metric provides a complete picture of a model’s skill, 1409 
multiple complementary metrics should be used in combination. Furthermore, different 1410 
points in space and time, and a breadth of variable types should be part of any 1411 
comprehensive validation. 1412 

• Data assimilation, the process of improving the dynamical behavior of models by 1413 
statistically combining them with observations, should be employed in order to obtain 1414 
the most accurate model simulations possible, e.g., to optimize model parameters or to 1415 
estimate the ocean state. The former addresses systematic errors and biases in models, 1416 
while the latter assumes an unbiased model and addresses unresolved stochasticity.  1417 

• When applying data-assimilative models for quantification of the OAE-induced net CO2 1418 
uptake by calculating the difference between a realistic and a counterfactual simulation, 1419 
it is not appropriate to assimilate biogeochemical observations of properties affected by 1420 
the alkalinity enhancement as this would eliminate the ability to make valid 1421 
comparisons between the two simulation. However, assimilation of observations that 1422 
are unaffected by OAE can be applied to both simulations of the pair. 1423 

• Successful application of DA critically requires sufficient observations either of the 1424 
properties that the model parameters to be estimated depend on or of the state variables 1425 
that are being estimated. Observing System Simulation Experiments are recommended 1426 
to design observing strategies tailored to the needs of specific OAE applications. 1427 

• Model results should be paired with sound qualitative and quantitative uncertainty 1428 
estimates, especially when used for practical decisions. DA methodologies provide a 1429 
useful framework for estimating uncertainty, especially ensemble-based methods. 1430 
Another common approach to assessing model uncertainty are coordinated, multi-1431 
model studies, commonly called model intercomparison projects or MIPs. 1432 
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