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About this publication – Ocean prediction: 
present status and state of the art

Ocean prediction services have been improving and evolving during the last decades and today are a crucial tool 

for decision-making in multiple socio-economic sectors, being the backbone of many applications, including those 

that enhance marine safety, disaster risk reduction, and coastal zone management. This compilation describes the 

actual status of ocean forecasting, detailing its degree of development in the different regions of the world and the 

most recent advances in all the relevant specific aspects associated with the technology, such as artificial intelli-

gence and cloud computing. This publication results from the coordinated work of a group of experts that forms the 

so-called “Ocean Forecasting Co-Design Team”, integrated in the OceanPrediction Decade Collaborative Centre, 

a cross-cutting collaborative centre of the UN Decade of Ocean Science for Sustainable Development. It has been 

prepared in close collaboration with several Decade Programmes, which are closely linked to OceanPrediction DCC, 

such as Oceanpredict/ForeSea, OceanPractices, and DITTO. The result is a complete picture of the situation of 

ocean prediction that demonstrates its relevance and will foster future developments to overcome the present-day 

limitations. This compilation will be followed by a second one where gaps and ways forward on ocean forecasting 

and its applications will be explored.
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About State of the Planet 
State of the Planet (SP) is a journal dedicated to the publication of scientific synthesis reports and assessments on 

all subjects of the Earth and environmental sciences. In a rapidly changing world, expert-based assessments of ac-

ademic findings curated for a wider audience to support decision making, science communication, education, and 

funder mandates are becoming more and more widespread. Such reports are extensive science community efforts 

offering timely, state-of-the-art insight into a specific field of the Earth sciences. State of the Planet is open to any 

reporting and assessment initiative by (inter-) governmental agencies, environmental services, learned societies or 

associations of researchers that aim to publish on a regular basis. 
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Abstract. Operational ocean forecasting systems (OOFSs) have proven to be immensely valuable today. Nu-
merous successful and inspiring services are operating in various regions of the world, contributing to cutting-
edge applications within the marine community. This success lays a strong foundation for building a global
community around ocean forecasting. However, the development and enhancement of existing forecasting sys-
tems remain challenging due to the absence of best practices, standards, and community-endorsed architectures.
The OceanPrediction Decade Collaborative Center (DCC) and its associated Decade actions aim to address these
challenges by leveraging the UN Decade of Ocean Science for Sustainable Development (2021–2030) and the
concept of digital twinning. This paper introduces the OceanPrediction DCC and outlines the forward-looking
strategies to achieve these ambitious goals. The special issue introduced by this paper is part of this broader
effort.

1 Introduction

The United Nations Decade of Ocean Science for Sustainable
Development (2021–2030), also referred to as “the Decade”,
was proclaimed by the 72nd session of the UN General
Assembly on 5 December 2017. Coordinated by the IOC-
UNESCO, the Decade seeks to promote large-scale, trans-
formative change to shift from the “ocean we have” to the
“ocean we want”. The Decade supports the development
of ocean data, information, and knowledge systems, driving
them toward higher levels of readiness, accessibility, and in-
teroperability. The scale of this effort must be exponentially
greater than anything previously undertaken.

To guide the Decade’s implementation, the IOC (Intergov-
ernmental Oceanographic Commission) has developed an
Implementation Plan (IOC-UNESCO, 2021), supported by
contributions from member states, UN agencies, intergovern-
mental organizations, nongovernmental organizations, and
relevant stakeholders. The OceanPrediction Decade Collab-
orative Center (DCC) is a cross-cutting structure within this
plan that operates globally, fostering collaboration among the
Decade actions related to ocean prediction.

Mercator Ocean International has been entrusted by the
IOC-UNESCO to coordinate the OceanPrediction DCC, with
the mission “to achieve a predicted ocean through a shared
and coordinated global effort within the framework of the
UN Ocean Decade.” The center implements a community-
driven agenda that allows the ocean prediction community to
collaborate on activities such as communication, outreach,
training, cost sharing, joint workshops, and the standard-
ization of language and outputs. Additionally, it facilitates
the co-design of an architecture necessary for developing a
global ocean prediction system.

The center acts as a global convener of multidisciplinary
ocean prediction expertise, collaborating with intergovern-
mental programs (e.g., GOOS, ETOOFS, IODE, OBPS) to
establish agreements on operational infrastructure, terminol-
ogy, and standards needed to deliver unified services from
multiple geographic and thematic nodes

2 OceanPrediction DCC objectives

The objectives of the OceanPrediction DCC (https://www.
unoceanprediction.org/en, last access: 6 March 2025) are as
follows.

Published by Copernicus Publications.
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– To provide a collaborative backbone structure and a col-
lective voice for the ocean prediction community, sup-
porting the Decade’s implementation, focusing on the
following.

– Creating a global, inclusive forum (spanning the
coastal to deep sea, nowcasting to climate, biology
to physics, public to private, users to scientists) and
other tools to facilitate dialogue and information
exchange.

– Implementing capacity development and ocean lit-
eracy initiatives.

– Promoting operational ocean forecasting systems
(OOFSs) as a crucial tool for the blue economy and
ocean policy.

– To develop a global technical and organizational struc-
ture centered on the following.

– Co-designing, in collaboration with Ocean Decade
actions and other key stakeholders, a new scenario
for ocean forecasting that facilitates data sharing
and interoperability while leveraging digital twin
technologies.

– Identifying needs and coordinating the develop-
ment of new tools, standards, and best practices
for the implementation and improvement of Ocean
Forecasting Services and its applications, with a fo-
cus on a science-to-service framework and promot-
ing interoperability and integration.

– Aligning Decade actions with the objectives of
ocean forecasting and fostering collaboration be-
tween Decade initiatives and other relevant actors.

– To support the Decade Coordination Unit (head of the
Decade) by collaborating with other Decade collabo-
rative centers and coordination offices, ensuring align-
ment and monitoring of Decade actions to secure their
long-term legacy.

3 OceanPrediction DCC in the UN “Decade
ecosystem”

OceanPrediction DCC will closely coordinate with the Data
Sharing DCO (led by IODE) and the Observations DCO (led
by GOOS) to establish a framework for developing ocean
monitoring and forecasting services throughout the Decade.
OceanPrediction DCC shall be responsible for promoting
collaboration between Decade programs and their relevant
Decade projects, as well as Decade contributors when these
fall under the scope of work, all done in coordination with
the mentioned DCOs.

The Decade implementation plan links each DCC and
DCO to specific Decade programs, named “primary attach-
ments”. In the case of OceanPrediction DCC, these are the
following.

– FORESEA has the following overarching goals: (1) to
improve the science, capacity, efficacy, use, and impact
of ocean prediction systems and (2) to build a seamless
ocean information value chain, from observations to end
users, for economic and societal benefit. These transfor-
mative goals aim to make ocean prediction science more
impactful and relevant.

– Ocean Practices for the Decade Programme (“Ocean-
Practices”) will support all ocean stakeholders in secur-
ing, equitably sharing, and collectively advancing this
methodological heritage.

– Digital Twins of the Ocean (DITTO) will establish and
advance a digital framework on which all marine data,
modeling, and simulation along with AI algorithms and
specialized tools including best practices will enable
shared capacity to access, manipulate, analyze, and vi-
sualize marine information.

– Global Environment Monitoring System for the Ocean
and Coasts (GEMS Ocean) is designed to boost
its multi-stakeholder partnership convened by UNEP,
bringing together experts from earth observation, mon-
itoring, and modeling communities, together with end
users and a broad range of stakeholders to provide fit-
for-purpose key information for policymaking.

– Ocean Acidification Research for Sustainability
(OARS) will foster the development of the science
of ocean acidification including the impacts on ma-
rine life and sustainability of marine ecosystems in
estuarine–coastal–open-ocean environments.

– The NASA Sea Level Change Science Team has been
conducting interdisciplinary sea level science by col-
lecting and analyzing observational evidence of sea
level change, quantifying underlying causes and driv-
ing mechanisms, and producing projections of future
changes in sea level.

– France’s Priority Research Program “Ocean of Solu-
tions” aims to address ocean-related societal challenges
through integrated research.

The collaboration with these programs will be particularly
intensive, but additional collaborations with other programs
will be established as “secondary attachments”.

4 OceanPrediction DCC collaborative structure

To achieve its objectives, OceanPrediction DCC will estab-
lish two global collaboration structures:

– A decentralized regional structure, consisting of re-
gional teams that focus on community development and
capacity-building efforts.

State Planet, 5-opsr, 1, 2025 https://doi.org/10.5194/sp-5-opsr-1-2025
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– A central structure, comprising the Ocean Forecast-
ing Global Co-design Team (OFCT) and a central of-
fice, which will liaise with various UN, EU, and na-
tional bodies. The OFCT focuses on co-design align-
ment and consists of experts covering different aspects
of the ocean forecasting value chain (Alvarez Fanjul et
al., 2022).

Having different teams for technical aspects and community
building will allow efficient management: a smaller special-
ists team able to deliver technical results on time and a larger
geographically based structure able to integrate the commu-
nity and catalyze the governance and organizational compo-
nent.

4.1 The regional teams

The OceanPrediction DCC regional teams have the following
objectives:

– Act as regional nodes of OceanPrediction DCC.

– Contribute to the coordination and cooperation with
ocean forecasting-related Decade actions in the region.

– Identify gaps and ways forward in the regional land-
scape of ocean forecasting.

– Support OceanPrediction DCC in the design and organi-
zation of regional events for capacity building, ocean lit-
eracy, and other purposes, such as courses, workshops,
and hackathons.

– Advocate for regional implementation of best practices,
standards, and tools derived from OceanPrediction ac-
tivity.

– Collaborate with the other OceanPrediction DCC re-
gional teams to support global actions.

– Support OceanPrediction DCC in obtaining information
for the building of an atlas describing the situation of
ocean forecasting around the globe (including services,
institutions, interested persons, experts, and any other
relevant data).

– Promote the use of OOFS in each region for decision-
making purposes, including a sustainable blue economy,
as well as technical, policy, and legal aspects.

The regional team distribution is based on both UNEP
(United Nations Environment Programme) regional seas
and GOOS Regional Alliances (GRAs), clustering some re-
gions. The concept of the regional teams was announced at
the OceanPrediction DCC kick-off meeting, an event that
demonstrated the appetite for this initiative, with 1800 reg-
istered participants from all continents. At this moment we
are building these teams, and several leaders are volunteer-
ing worldwide to chair each region.

– Region 1: the western Pacific and marginal seas of
South and East Asia. Chair: Swadhin Behera (JAM-
STEC Japan).

– Region 2: Indian seas, covering South Asian Seas and
the ROPME sea area. Chair: Sudheer Joseph (INCOIS
India).

– Region 3: African seas. Chair: Kouadio Affian (Ivory
Coast – Chair of IOC Africa). For this region, we have
decided to have several co-chairs and a subregional di-
vision to address the differences in technical develop-
ment.

– Region 4: Mediterranean and Black Sea. Chair:
Emanuela Clementi (MONGOOS/CMCC – Italy).

– Region 5: the northeastern Atlantic. Chairs: Ghada al
Serafy and Loreta Cornacchia (EuroGOOS coastal WG,
Deltares).

– Region 6: South and Central America. Chairs: Clemente
Tanajura (Universidade Federal da Bahia) and Boris De-
witte (CEAZA).

– Region 7: North America. Chairs: Patrick Hogan
(NOAA), and Fraser Davidson (DFO).

– Region 8: the Arctic. Chair: Heather Reagan (NERSC
Norway).

– Region 9: the Antarctic. Chair: Stuart Corney (UTAS –
Australia).

4.2 The Ocean Forecasting Co-Design Team

Ocean forecasting systems (OFSs) have proven invaluable
for understanding the ocean and providing critical infor-
mation for decision-making. However, challenges remain in
areas like standardization, interoperability, and integration.
Building an OFS from scratch, without guidance, is a daunt-
ing task, often resulting in isolated systems with limited in-
tegration into a larger framework.

This situation hampers the proliferation of forecasting ser-
vices, especially in technologically less advanced countries,
and hinders the growth of the ocean forecasting commu-
nity and collective knowledge. The Ocean Forecasting Co-
Design Team (https://www.unoceanprediction.org/en/about/
technical, last access: 6 March 2025) is an international
group of experts working under OceanPrediction DCC co-
ordination, collaborating to overcome these limitations by
developing a new ocean forecasting architecture. This team
comprises worldwide specialists whose collective expertise
covers the whole value chain. It will leverage existing tech-
nologies and initiatives, such as the digital twins, and the
IPCC activities on standardization, interoperability, and in-
tegration.

https://doi.org/10.5194/sp-5-opsr-1-2025 State Planet, 5-opsr, 1, 2025
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As an initial step, the team assembled the current special
issue and evaluated the status of operational ocean forecast-
ing systems from both user and expert perspectives (Cilib-
erti et al., 2023). The team’s primary objective is to design a
unified ocean forecasting architecture that leverages the con-
cept of digital twinning (Tzachor et al., 2023). This architec-
ture aims to facilitate a simpler, modular, and more robust
system development in the future. A key aspect of this de-
velopment will be the establishment of well-defined building
blocks, which will take the form of standards, tools, and best
practices. While this new framework will benefit all forecast-
ing services, it will be especially impactful for organizations
that are just beginning their activities.

The Ocean Forecasting Co-Design Team’s role is to iden-
tify this architecture and define the essential building blocks
needed for its expansion. This effort will support the various
Decade programs by providing clear development targets.
However, the team’s role is not to “code” these components
directly but rather to inspire and guide the implementation of
these targets by Decade programs.

5 Next steps

The OFCT will continue its activities, and, in the future, it
is planned to address the identification of gaps in ocean fore-
casting and the priorities for further development. The results
of these works will be published in subsequent special issues.
These efforts form part of a wider strategy to promote ocean
forecasting worldwide, which is summarized in the virtuous
loop shown in Fig. 1.

The Ocean Prediction DCC’s community, organized
around the regional teams and integrating the Decade pro-
grams related to ocean forecasting, will be at the center of
all the developments. This community will be articulated
through the OceanPrediction DCC web page (https://www.
unoceanprediction.org/en) and, more specifically, around a
forum, where the community will share experiences and ad-
dress doubts, as well a an atlas that will serve to identify who
is who.

The description of the virtuous loop can start with the
knowledge required to understand ocean forecasting tech-
niques and their degree of development and implementation.
The publications presented in this special issue and the future
gap analysis mentioned above are part of this effort, which
is centralized around the ETOOFS guide (Alvarez-Fanjul et
al., 2022). This is a GOOS publication that compiles the ba-
sic knowledge related to the different aspects of ocean fore-
casting. Now the guide has been transformed into a wiki site
under the OceanPrediction DCC website. This will permit
the update of content by the addition of community contribu-
tions.

This compilation of common knowledge will serve as a
valuable tool for capacity development, and therefore it will
facilitate the construction of new operational services and

Figure 1. OceanPrediction DCC’s virtuous loop towards the pro-
motion of ocean forecasting.

the improvement of existing ones. To additionally facilitate
this task, the OFCT has delivered the so-called “Architecture
Guide”, available at the resource center of the OceanPredic-
tion DCC website. This document describes all the compo-
nents and “internal wiring” required to implement a robust
forecasting service. The architecture is based on “building
blocks”, which will take the form of data standards and tools.

Once a system is implemented, it is required to operate
it properly. To facilitate this task, the OFCT has developed
the Operational Readiness Level (ORL; Alvarez Fanjul et al.,
2024). This is a new tool to promote the adoption and imple-
mentation of best practices in ocean forecasting. Thanks to
its application, system developers will be able to assess the
operational status of an ocean forecasting system. Improving
the ORL qualification of a service is a means to implement
best practices and standards in ocean forecasting, improving
the system.

The ORL comprises three independent digits designed to
certify the operational status of an ocean forecasting system.
Each digit ranges from 0 (minimum) to 5 (maximum), with
decimal numbers being allowed. These digits correspond to
distinct aspects related to operations: the first digit reflects
the reliability of the service, the second monitors the level of
validation for the service, and the third assesses the various
degrees of product dissemination achievable by the system.

In the last conceptual step of the virtuous loop, the data
will be integrated into interoperable frameworks, such as

State Planet, 5-opsr, 1, 2025 https://doi.org/10.5194/sp-5-opsr-1-2025
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Digital Twins of the Ocean. This will allow a richer exploita-
tion of the data, extracting more information useful for sci-
ence and decision-making. The knowledge generated in this
way will be incorporated into our common knowledge, clos-
ing the loop.

We intend for this compilation to become a relevant part of
the shared knowledge that forms part of this loop, describing
where ocean forecasting stands today. By examining current
methods and new developments, we highlight how impor-
tant ocean forecasting is for keeping our marine environment
healthy and productive for future generations.
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Abstract. The capacity in monitoring and forecasting the global ocean is increased nowadays, thanks to the
advancements in observing and in modelling the main physical ocean processes and dynamics. This has led to
the growth of core services, devoted to providing free and open data, science-driven, and based on users’ needs.
Here we illustrate the fundamental steps that have been developed, over the last decades, for improving the ocean
value chain – from access to upstream data like observations to the delivery of products to users for downstream
services and applications, with description of worldwide state-of-the-art operational ocean forecasting systems at
a global scale. We also provide some examples on core service organisation, like the Copernicus Marine Service
and many others, which are available today and operating for the provision of near-real-time predictions.

1 Introduction

Effective monitoring and prediction of the global ocean is
nowadays a crucial and demanding need for supporting a
wide range of applications – from maritime safety and trans-
ports to search and rescue and from offshore industry oper-
ations to addressing climate change, including management
and planning of fisheries, ecosystems and aquaculture activ-
ities. It implies coordinated actions among marine core ser-
vices and users through downstream applications as in the
“butterfly” diagram shown in Fig. 1 from Alvarez Fanjul et
al. (2022): it positions the marine core service as one of the
pillars of the whole value chain, in charge of providing high
quality information of the ocean state by combining observa-
tions and numerical modelling, delivered to users in a timely
manner for the implementation of tailored tools for decision-
making.

Therefore, a core service should have by definition the fol-
lowing characteristics:

– It feeds from ocean observations, from both satellite and
in situ sources.

– It provides reliable access (production requirements are
defined and information provided to users on target
delivery time, timeliness and monitoring of dedicated
key performance indicators (KPIs)) to both quality-
controlled measured and forecasted ocean data.

– It is user-driven, and specific support to the users is pro-
vided.

– It generates data useful for final and intermediate users,
enabling the latter to produce tailored information for
final users.

– The development, evolution and operations are done
under well-controlled planning, ensuring availability,
timeliness and quality of the resulting products.

The concept of a “core service” was developed in the frame-
work of the Copernicus programme, but the idea of provid-
ing reliable and up-to-date information on the state of the

Published by Copernicus Publications.



CHAPTER2.1

2 Y. Drillet et al.: Core services: an introduction to global ocean forecasting

Figure 1. The ocean value chain (from Alvarez Fanjul et al., 2022).

environment is universal. There are other global ocean ser-
vices, such as the Global Ocean Observing System (GOOS),
which also provide information on the state of the world’s
oceans and seas. However, the specific services offered and
the way in which they are organised may differ between pro-
grammes, so not all of them can be considered core services
in the sense developed by Copernicus. Here we define a core
service as the provision of open and free data together with
dedicated user support with the characteristics described in
the next section.

In this chapter, we will focus on the general characteristics
of existing global ocean forecasting systems and their col-
location in the framework of marine core services and exist-
ing international initiatives that support scientific networking
and activities for improving and advancing numerical ocean
predictions.

2 Global ocean forecasting systems: where we are
today

The last decade has been characterised by vibrant advance-
ments in numerical ocean modelling and observational net-
works that have opened new opportunities for improving
global ocean monitoring and forecasting. The last review on
the status of ocean forecasting systems described in Tonani
et al. (2015) outlined that 12 global systems were regularly
operating up to 2015 across the world – from France, UK,
Norway and Italy to the USA, Canada and Brazil; from Aus-
tralia to Japan; and from China to India – with an increase of
30 % with respect to 2009, when only 7 were providing fore-
cast products. These actions were and still are supported by
an international coordinated effort promoted by the Global
Ocean Data Assimilation Experiment (GODAE) over three
main steps.

– Phase 1 – the experiment (Bell et al., 2009). GODAE
started in 1998 and developed over 10 years, with the
main scopes of the following:

– applying state-of-the-art ocean models and data as-
similation methods for producing short-term fore-
cast and for providing initial and boundary condi-
tions for regional-to-coastal subsystems and

– providing global ocean analysis to understand the
ocean state, to improve predictability, and to sup-
port the design and the effectiveness of the global
ocean observing system.

– Phase 2 – “science to underpin societal needs” (Bell
et al., 2015; Schiller et al., 2015). Following the first
step, over the next 10 years, GODAE OceanView con-
solidated the coordination by launching new activities
devoted to developing predictive systems to meet users’
needs. Such activities included the following:

– the consolidation and improvement of global (and
regional) systems;

– the scientific evolution for the next generation of
systems;

– the exploitation of this capacity in other contexts,
like ocean reanalysis, weather forecasting, seasonal
and decadal prediction, climate change, and coastal
impacts;

– the assessment and the design of the ocean observ-
ing network.

– Phase 3 – advancing the science of ocean predic-
tion with OceanPredict. In 2019, GODAE OceanView
became OceanPredict, with the main scope to en-
hance ocean prediction within an overall operational
oceanography context (The OceanPredict – Strategy
2021–2030, 2021), by working on five major drivers
(https://oceanpredict.org/about/strategy/goals/, last ac-
cess: 30 April 2025):

– data assimilation – to improve ocean forecasting
and also data assimilation capacity;
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– verification – for monitoring and demonstrating im-
proved accuracy and utility of ocean analysis and
forecasting products resulting from OceanPredict
contributions, by coordinating regular system inter-
comparisons and verifications;

– observing system evaluations – for contributing to
projects and assessment to better determine obser-
vation impact and feeding back to the observing
system community information about opportunities
for further improving the impact of observations on
forecasting skill;

– models – collaborating with R&D groups through
OceanPredict task teams to improve ocean predic-
tions in shelf seas and coastal environment, for bio-
geochemical variables and for coupled environmen-
tal prediction systems;

– visualisation – collaborating with ocean product de-
velopers and ocean services to improve visualisa-
tion and accessibility tools for predictions and ob-
servations.

The GODAE/OceanPredict Science Team, which includes
more than 30 experts that are leaders in the field of opera-
tional oceanography from national, international and inter-
governmental organisations, is in charge of maintaining up-
dated information about the current global ocean forecasting
capacity of the physical and biogeochemical components, in-
cluding technical description of the systems and available
viewing services. In Alvarez Fanjul et al. (2022), detailed
complementary inventories of global ocean systems available
worldwide are given. Table 1 summarises services provided
by the operational centres (technical characteristics of opera-
tional ocean forecasting systems are given in Alvarez Fanjul
et al. (2022), showing that state-of-the-art ocean model and
data assimilation methods are used to produce standard prod-
ucts including main Essential Ocean Variables (EOVs)).

3 The Copernicus Marine Service as reference core
service and its offer for the global ocean

In the framework of the EU Copernicus programme, the
Copernicus Marine Service is organised to provide opera-
tional service to external users and to get user feedback to
improve an user-driven service. It has been defined with the
following specificities:

– Free access to reliable up-to-date and historic data is
key for enhanced knowledge and better understanding
of our oceans.

– Copernicus Marine Service provides data from satel-
lites, in situ sensors and numerical models covering the
global ocean and the European regional seas and asso-
ciated product quality information.

– Information on past, present and future trends is made
available to empower all users who want to drive the
Blue Economy, for scientific innovation and to support
sustainable ocean initiatives.

– Anyone can use the data – scientists, policy-makers,
entrepreneurs and ordinary citizens, from all over the
world.

– Services and training are tailored and adapted to differ-
ent levels of expertise and familiarity with ocean data.

– Users can get help from the Copernicus Marine User
support team.

– Interoperability between different producers is ensured
between all the products available in the catalogue and
to allow connection between the producers.

– Standards (including best practices) are defined and ap-
plied by the producers for the products (resolution, fre-
quency, variable, time series, forecast length, etc.), the
format, the quality information and the timeliness.

User feedback is organised within the core service by col-
lecting and analysing information on access to data, the ser-
vices offered and user support through surveys and train-
ing sessions, as well as through a user uptake programme
in the form of projects and thanks to a group of experts (i.e.
the Champion User Advisory Group) that analyses and sum-
marises needs.

Access to the Copernicus Marine Product Catalogue is
possible through https://marine.copernicus.eu/ (last access:
30 April 2025).

Copernicus Marine Service is organised around Thematic
Assembly Centers (TACs) and Monitoring Forecasting Cen-
ters (MFCs) (Fig. 2). TACs process data acquired from satel-
lite ground segments and in situ platforms to produce real-
time (today) and reprocessed (30-year historic) products.
They are organised by thematic hubs including sea ice, wind,
sea level, in situ, ocean colour, sea surface temperature, wave
and multiple observations. MFCs run ocean numerical mod-
els assimilating data provided by TAC data to generate re-
analysis (30 years in the past), analysis (today) and 10 d
forecasts of the ocean. They are organised in geographical
areas, including the global ocean and European seas such
as the Arctic Ocean, the Baltic Sea, the Atlantic European
North-West Shelf, Iberian–Biscay–Irish seas, the Mediter-
ranean Sea and the Black Sea.

Focusing on global ocean forecasting systems, the Coper-
nicus Marine Service, through the GLO MFC, provides ma-
rine data (waves, currents, temperature, salinity, sea level and
biogeochemistry) for the world’s oceans, Atlantic, Indian,
Pacific, Arctic and Antarctic, and the European seas. The
past, present and future are covered by these data, providing
information for 30 years in the past up to 10 d in the future.
The portfolio of products (as summarised also in Table 1)
includes the following:
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Table 1. Updates on the inventories as given in Alvarez Fanjul et al. (2022) and by OceanPredict (https://oceanpredict.org/science/
operational-ocean-forecasting-systems/ocean-products-services/, last access: 30 April 2025), with focus on provided Essential Ocean Vari-
ables (EOVs) and summary of offered service.

System EOV Service

GIOPS (Global Ice Ocean
Prediction System)
1/4° resolution

Temperature, salinity, sea surface height,
zonal and meridional velocity components,
sea ice concentration, sea ice thickness,
northward sea ice velocity.

Daily means and 3 h average surface fields. From 2014 to
present
https://science.gc.ca/site/science/en/concepts/
prediction-systems/
global-ice-ocean-prediction-system-giops (last access:
30 April 2025)

ESSO-INCOIS (Earth System
Science Organisation–Indian
National Centre for Ocean
Information Services)
1/4° resolution

Temperature, salinity, sea surface height,
zonal and meridional velocity components,
mixed layer depth.

6 h average hourly fields for 5 d forecast
https://incois.gov.in/ (last access: 30 April 2025)

MOVE (Multivariate Ocean
Variational Estimation)
nested grid from 1° at a global
scale to 1/33° around Japan

Temperature, salinity, sea surface height,
zonal and meridional velocity components,
sea ice concentration.
Daily mean

Daily mean from October 2020 to present, 31 d forecast
for the North Pacific and 11 d forecast with a higher
resolution for the Japan area.
https://www.jmbsc.or.jp/jp/online/file/f-online23100.html
(last access: 30 April 2025) (in Japanese)

OceanMAPS (Ocean
Modelling, Analysis and
Prediction System)
1/10° resolution

Temperature, salinity, sea surface height,
zonal and meridional velocity components.

Daily means. From 2007 to present
https://research.csiro.au/bluelink/global/forecast/ (last
access: 30 April 2025)

GLO MFC (Global
Monitoring Forecasting
Center from Copernicus
Marine Service)
1/12° resolution

Temperature, salinity, sea surface height,
zonal and meridional velocity components,
mixed layer depth, bottom temperature.
Chlorophyll, dissolved inorganic carbon in
sea water, iron, oxygen, nitrate, phosphate,
silicate, primary production, alkalinity, pH,
surface partial pressure of carbon dioxide
in sea water, volume attenuation coefficient
of downwelling radiative flux.
Significant wave height, wave period, peak
period, wave direction, wave maximum
height, Stokes drifts, swell significant
heights, swell wave directions.

Hourly, daily and monthly means from 2020 to +10 d for
the physical component; daily and monthly means from
2021 to present for the biogeochemical component;
hourly instantaneous from 2021 to +10 d for the wave
component
https://marine.copernicus.eu/about/producers/glo-mfc
(last access: 30 April 2025)

FOAM (Forecast Ocean
Assimilation Model)
1/12° resolution

Temperature, salinity, sea surface height,
zonal and meridional velocity components,
sea ice concentration, sea ice thickness, sea
ice velocity.

Daily forecasts out to 7 d producing data with daily and
3 h frequency.
https://www.metoffice.gov.uk/research/weather/
ocean-forecasting/ocean-development (last access:
30 April 2025)

GOFS3.1 (Global Ocean
Forecasting System)
1/12° resolution

Temperature, bottom temperature, salinity,
sea surface height, zonal and meridional
velocity components, sea ice concentration,
sea ice thickness, sea ice velocity.

3 h means. From 2018 to +4 d
https://www.hycom.org/dataserver/gofs-3pt1/analysis
(last access: 30 April 2025)

GOFS16 (Global Ocean
Forecasting System)
1/16° resolution

Temperature, salinity, sea surface height,
zonal and meridional velocity components.

Daily means of +5 d
https://gofs.cmcc.it/ (last access: 30 April 2025)

NMEFC (National Marine
Environmental Forecasting
Center)
1/12° resolution

Temperature, salinity, velocities, sea ice. Daily means and 5 d forecast.
https://www.nmefc.cn/ybfw/seacurrent/Global (last
access: 30 April 2025)
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Figure 2. Organisation of Copernicus Marine Service including
Thematic Assembly Centers (TACs), which provide ocean observa-
tions, and Monitoring and Forecasting Centers (MFCs), which pro-
vide reanalysis and forecast at a global scale and for the European
seas. Exchanges with users happen through the Central Information
System (CIS).

– Near-real-time (NRT) datasets provide physics and
waves at 1/12° resolution and biogeochemistry at
1/4°, forced by ECMWF IFS atmospheric forecasting
product (see https://www.ecmwf.int/en/elibrary/81235-
evaluation-ecmwf-forecasts-including-2021-upgrade
(last access: 30 April 2025) for a description of the
systems and their evolution).

– Global Ocean Physics Analysis and Forecast, run
by Mercator Ocean International, provides analy-
sis and forecast of the 3D ocean regularly every
day. The time series is aggregated in time to reach
a full 2 years’ time in a sliding window to +10 d.
The core model is based on NEMO (Nucleus for
European Modelling of the Ocean v3.6, coupled to
LIM3 sea ice model): it assimilates temperature and
salinity profiles as well as sea surface temperature,
sea ice concentration and sea level anomaly data,
provided by corresponding TACs using the SAM2
data assimilation scheme. Details are given in Le
Galloudec et al. (2023) and Lellouche et al. (2023).
An example of the sea surface temperature forecast
field is given in Fig. 3.

– Global Ocean Biogeochemistry Analysis and Fore-
cast, run by Mercator Ocean International, provides
analysis and forecasts of the 3D global ocean up-
dated weekly. The time series is aggregated sim-
ilarly to the physical system. The core model is
based on NEMO v3.6 online coupled to PISCES for
the biogeochemical component: it assimilates satel-
lite ocean colour provided by the OC TAC using
the SEEK (Singular Evolutive Extended Kalman)
data assimilation scheme. Details are given in
Lamouroux et al. (2023) and Lamouroux and To-
nani (2023).

– Global Ocean Waves Analysis and Forecast, run by
Météo-France, provides analysis and forecasts of
the global ocean sea surface waves. The core model
is MFWAM, with spectral resolution of 24 direc-
tions and 30 frequencies: it uses optimal interpola-
tion for the assimilation of significant wave height
from altimeters. Details are given in Dalphinet et
al. (2023) and Aouf (2023).

– Multi-Year (MY) datasets provide physics at 1/12°
resolution, biogeochemistry at 1/4°, and waves at
1/5°, forced by ECMWF ERA5 atmospheric reanalysis
(Hersbach et al., 2020).

– Global Ocean Physics Reanalysis, run by Mer-
cator Ocean International, provides reanalysis of
the global ocean covering the altimetry period
(from 1993 onward). The core model is based on
NEMO v3.1, coupled to LIM2 (Louvain-la-Neuve
Sea Ice Model) and implementing the SAM2 (Sys-
tem assimilation Mercator) scheme for the assimi-
lation of reprocessed observations such as satellite
sea surface temperature, sea ice concentration, sea
level anomaly, in situ temperature and salinity pro-
files. Details are given in Drevillon et al. (2023a,
b).

– Global Ocean Biogeochemistry Hindcast, run by
Mercator Ocean International, provides biogeo-
chemical hindcasts for the global ocean over a pe-
riod starting in 1993. The core model is based
on NEMO v3.6 coupled to PISCES. Details are
given in Le Galloudec et al. (2022) and Perruche
et al. (2019).

– Global Ocean Waves Reanalysis, run by Mercator
Ocean International, has provided the global wave
reanalysis since 1993. The core model is MFWAM,
coupled to an optimal interpolation scheme for the
assimilation of significant wave height provided by
altimeters. Details are given in Law-Chune (2023)
and Law-Chune et al. (2023).

4 Other worldwide ocean services

The list of operational oceanography centres and associated
services is evolving rapidly, and the centralisation and
updating of this information is one of the important activities
for international coordination and is carried out within
the framework of OceanPredict (https://oceanpredict.
org/science/operational-ocean-forecasting-systems/
ocean-products-services/) and the Decade Collaborative
Centre for Ocean Prediction, where a dedicated atlas is pro-
vided (https://www.unoceanprediction.org/en/atlas/people?
lat=16.46769474828897&lng=23.5546875&zoom=2, last
access: 30 April 2025).
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Figure 3. Sea surface temperature as predicted by the Global Ocean Physical Analysis and Forecasting System on the 27 March 2024:
visualisation provided by the Copernicus Marine Service – MyOcean Pro Viewer.

– The National Oceanic and Atmospheric Administra-
tion (NOAA) is the reference agency in the USA that
provides understanding and predictions of changes oc-
curring in climate, weather, ocean and coasts, sharing
knowledge and information and conserving and man-
aging coastal and marine ecosystems and resources.
The NOAA’s National Ocean Service operates with
the Center for Operational Oceanographic Products
and Services (CO-OPS) for gathering accurate, re-
liable and timely water-level and current measure-
ments. The NOAA’s National Weather Service (https:
//oceanservice.noaa.gov/, last access: 30 April 2025)
provides, through the Environmental Modeling Cen-
ter, the Global Real-Time Ocean Forecast System prod-
ucts (https://polar.ncep.noaa.gov/global/, last access:
30 April 2025), delivered via FTP. Visualisation of now-
cast/forecast products and reference metrics are pro-
vided as well through a dedicated web page, available
at https://polar.ncep.noaa.gov/global/.

– From the collaboration between Environment and Cli-
mate Change Canada, Fisheries and Oceans Canada,
and National Defence departments, the Government of
Canada supports the Canadian Operational Network
of Coupled Environmental PredicTion Systems (CON-
CEPTS; https://science.gc.ca/site/science/en/concepts,
last access: 30 April 2025) for the monitoring of the
met-oceanographic conditions in the country. CON-

CEPTS provides operational access to real-time fore-
casts through dedicated web services (i.e. geospatial
web services and third-party websites), including bul-
letins produced with static images. CONCEPTS in-
cludes prediction systems like the Global Ice Ocean Pre-
diction System (GIOPS) with delivery of 10 d forecast
of daily ocean and sea ice analysis, together with re-
gional systems (e.g. the Regional Ice Ocean Prediction
System (RIOPS) and the Regional Deterministic Pre-
diction System Coupled over the Gulf of St. Lawrence
(RDPS-CGSL)) and a dedicated one for the Great
Lakes (i.e. the Water Cycle Prediction System Coupled
over the Great Lakes (WCPS-CGL), https://science.gc.
ca/site/science/en/concepts/prediction-systems, last ac-
cess: 30 April 2025).

– The European Centre for Medium-Range Weather
Forecasts (ECMWF) develops and maintains an oper-
ational system called OCEAN5 (https://www.ecmwf.
int/en/research/climate-reanalysis/ocean-reanalysis,
last access: 30 April 2025), a global eddy-permitting
ocean-sea ice ensemble with five members from
1979 to present. It includes a behind-real-time (BRT)
component to produce ocean reanalysis from 1979
to present (ORAS5; https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-oras5?tab=overview, last
access: 30 April 2025) and a real-time (RT) component,
initialised from the last BRT analysis to compute an
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analysis up to real time every day using a variable
assimilation window. Data are accessible through
the Copernicus Climate Data Store and are used for
performing past reconstruction of the ocean climate
state at a global scale.

– The Australian Government Bureau of Meteorology is
Australia’s national weather, climate and water agency
(http://www.bom.gov.au/?ref=hdr, last access: 30 April
2025). It provides marine and ocean products such as
wind maps, tide predictions, sea temperature and cur-
rents, wave maps, and seasonal ocean temperature. The
service is for citizens and society, so the communication
is done through VHF, radio and radiofax, internet, and
satellite.

– The Japan Meteorological Agency (JMA; https://
www.jma.go.jp/jma/indexe.html, last access: 30 April
2025) is the reference Japanese agency for monitor-
ing weather, earthquakes and volcano activities. The
ocean component of the JMA carries out oceanographic
and marine meteorological observations in the west-
ern North Pacific and seas adjacent to Japan. Addition-
ally, it operates with a set of operational ocean data
assimilation and prediction systems named MOVE for
preventing coastal disasters; supporting fishery, marine
transportation and marine industry; and providing the
oceanic initial conditions for the coupled atmosphere–
ocean forecasting systems (Hirose et al., 2019; Fujii et
al., 2023; Yamanaka et al., 2023).

– The China Meteorological Administration (CMA; https:
//www.cma.gov.cn/en/, last access: 30 April 2025) is
an operator, service-provider and regulator in weather
forecasting and warning, climate prediction and pub-
lic meteorological services. The National Meteoro-
logical Centre (NMC) undertakes the responsibility
of issuing forecasts and warnings for 13 different
types of hazardous weather conditions within the
next 24 h. These include typhoons, heavy rain, se-
vere convective weather, blizzards, cold waves, gales
at sea, sandstorms, low temperatures, high tempera-
tures, frosts, ice storms, heavy fog, and haze. The Bei-
jing Climate Centre operates its own global ocean sys-
tem for the monitoring of the ocean climate events
like El Niño in the central and eastern equato-
rial Pacific (https://www.cma.gov.cn/en/forecast/news/
202402/t20240229_6093860.html, last access: 30 April
2025).

– The National Marine Environmental Forecasting Center
(NMEFC; http://www.nmefc.cn/hailiu/quanqiu.aspx,
last access: 30 April 2025) is the national operation and
research centre for marine environmental forecasting
and marine hazard warning and provides advisory
information for public policy, decision-making, and

socio-economic and sustainable development, which
is a public institution directly under the Ministry of
Natural Resources of China.

– Mercator Ocean International (MOi; https://www.
mercator-ocean.eu/, last access: 30 April 2025) is a
non-profit organisation, in the process of transform-
ing into an intergovernmental organisation, providing
ocean-science-based services of general interest fo-
cused on the conservation and the sustainable use of
the oceans, seas and marine resources. After running
the European MyOcean projects since 2009, Mercator
Ocean was officially appointed by the European Com-
mission on 11 November 2014 to implement the Euro-
pean ocean-monitoring service, the Copernicus Marine
Service, as part of the European Earth observation pro-
gramme, Copernicus.

– The Met Office (https://www.metoffice.gov.uk/, last ac-
cess: 30 April 2025) is the UK’s national weather and
climate service and produces operational global and re-
gional ocean forecasts on a daily basis using the FOAM
system as well as waves, storm surge and ecosystem
predictions. The research effort is reinforced by a close
collaboration with academic groups, including those in
the National Partnership for Ocean Prediction (NPOP).

– The CMCC (https://www.cmcc.it/, last access: 30 April
2025) Foundation (Euro-Mediterranean Center on Cli-
mate Change) is an international, independent, multi-
disciplinary research centre that studies the interaction
between climate change and society. They produce ad-
vanced climate research developing cross-cutting and
multidisciplinary analyses and data that combine first-
class climate modelling with climate change impact
modelling and environmental economics.

– ESSO-INCOIS (https://incois.gov.in/portal/aboutus,
last access: 30 April 2025) was established as an
autonomous body in 1999 under the Ministry of Earth
Sciences (MoES) and is a unit of the Earth System
Science Organisation (ESSO). ESSO-INCOIS is man-
dated to provide the best possible ocean information
and advisory services to society, industry, government
agencies and the scientific community through sus-
tained ocean observations and constant improvements
through systematic and focussed research.

5 Conclusion

The development of operational ocean analysis and forecast-
ing systems began in the late 1990s for institutional and ex-
pert users. The first systems produced analyses and forecasts
of the physical ocean at intermediate resolutions (between 1°
and 1/4°) and frequencies that were daily at best. The out-
put from these systems was made available directly on super-
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computers or on archive centres or ftp servers. The progress
made in production systems was accompanied by progress
in dissemination systems, visualisation tools, data processing
and the support provided to users in order to create what are
currently called core services. The horizontal resolution of
global models now reaches a few kilometres, and the tempo-
ral resolution of forecasts updated daily can be hourly, with
assimilated data and model forcings also having progressed
in line with the targeted resolutions. Data are now distributed
on cloud servers in optimised formats, enabling large vol-
umes of data to be viewed and handled efficiently. Standard-
isation of the associated documentation and monitoring of
operational production and user support mean that these op-
erational products can be used more easily. The number of
users of operational oceanography products has risen sharply,
with some core services currently able to serve several tens
of thousands of users. Digital Twin Ocean’s developments
will make it possible to integrate new technologies and, in
the near future, will represent an important evolution in the
core service for operational oceanography.
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Abstract. Operational ocean forecasting systems provide important information on physical and biogeochem-
ical variables across global, regional, and coastal scales. Regional systems, with higher resolution than global
models, capture small-scale processes like eddies and usually include tides but lack detailed land–sea interac-
tions essential for coastal areas. These models, often nested within global systems, vary in spatial resolution
(1–20 km) and may include biogeochemical components. While regional systems focus on physical parameters
such as sea surface height, temperature, salinity, and currents, only a few incorporate biogeochemical processes.
The growing demand for biogeochemical data has prompted advancements and more systems will include this
component in the coming years.

This paper provides a preliminary overview of the current status of regional forecasting systems, discussing
examples such as the Copernicus Marine Service from OceanPredict, analysing the offer in terms of covered
regions, resolution, and catalogues of ocean variable products.

1 Introduction

Numerous oceanographic systems are providing data on
physical and biogeochemical variables, spanning global, re-
gional, and coastal scales. It can be challenging to precisely
define the characteristics of a regional oceanographic sys-
tem versus a global or coastal system, as there may be some
overlap in the information they provide and the regions they
cover. Regional models typically offer greater detail than
global models due to their higher resolution and ability to
capture small-scale processes such as eddies, fronts, and lo-
cal features. This approach avoids the significant computa-
tional costs associated with running a global system at high
resolution. Additionally, most regional models incorporate
tides, which are not always included in global models. More-
over, they can be optimized for specific areas, which may
have unique oceanographic characteristics and require higher

resolution or tailored parameterizations (Tonani et al., 2015).
However, they do not include the processes of land–sea in-
teraction that are important for coastal areas, e.g. the dynam-
ics of nearshore currents, sediment transport, delta and estu-
ary processes, and some biogeochemical processes, typically
solved by coastal systems. In addition, the spatial scale is
a factor in differentiating global, regional, and coastal. Re-
gional systems are directly nested into global systems and
may or may not have nested coastal systems. In recent years,
various approaches have been developed to increase model
resolution only where needed, leveraging unstructured grid
models. These models show great promise in balancing the
need for high-resolution detail with manageable computa-
tional costs. As a result, the distinction between regional
and coastal models has become less defined. However, dif-
ferences in the processes resolved and key parameterizations
remain essential for accurately representing coastal dynam-
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ics and processes versus regional. Another promising devel-
opment is the use of machine-learning-based forecasting sys-
tems and hybrid models. Once properly trained, these sys-
tems can deliver accurate forecasts while significantly reduc-
ing computational costs. Although most of these systems are
still under development or in pre-operational stages, they are
expected to be integrated into the landscape of operational
forecasting systems in the near future.

Several regional forecasting systems have been developed
across the world and are currently in operation (Tonani et
al., 2015; Schiller et al., 2018; Alvarez Fanjul et al., 2022).
A brief overview of the main characteristics of these sys-
tems is presented in Sects. 2 and 3. Section 4 provides de-
tails on the regional systems described by OceanPredict (To-
nani et al., 2015; Bell et al., 2015) and the Copernicus Ma-
rine Service (Le Traon et al., 2019), considered a representa-
tive overview of the systems currently in operation. Provid-
ing an exhaustive account of all the regional forecasting sys-
tems is outside the scope of this document and would require
a dedicated survey. This need is fulfilled by the Atlas ini-
tiative (https://www.unoceanprediction.org/en/atlas/, last ac-
cess: 22 February 2025), launched a few months ago by
the OceanPrediction Decade Collaborative Centre (Ocean-
Prediction DCC), aiming to map all the operational forecast-
ing centres and their characteristics.

2 General characteristics

There are several factors that determine the spatial scale of
a regional ocean forecasting system, including the region’s
size, bathymetry, and oceanographic characteristics, as well
as the system’s purpose. Operational systems currently have
resolutions ranging from approximately 1 to 20 km. Usu-
ally, larger regions do not need the same fine resolution as
smaller regions and can therefore cope with a coarser reso-
lution. Shelf sea regional systems may require a finer spatial
resolution compared to larger regions such as the North At-
lantic basin. For example, in shelf areas, smaller grid cells
of around 1 km are necessary, whereas in the North Atlantic,
larger grid cells of 10 km or more are enough.

The resolution needed by a model grid for resolving the
baroclinic eddy dynamics can be computed as a function of
the first baroclinic Rossby radius of deformation, Rd. A well-
established metric used for assessing this relationship (Hall-
berg, 2013) is Rh = Rd

√
(�x2 + �y2)/2, where Rd is the

first baroclinic Rossby radius of deformation and �x and �y

represent the horizontal grid spacing of the model. A model
is defined as eddy-resolving when Rh > 2; otherwise, it is
eddy-permitting.

The choice between a regional, global, or coastal oceano-
graphic system will depend on a variety of factors, including
the specific operational needs of the user, the oceanographic
characteristics of the region of interest, and the computa-
tional resources and data availability. Regional forecasting

systems must be tailored to the specific processes character-
izing their target areas. This requires selecting appropriate
parameterizations and designing system components accord-
ingly. In some cases, coupling additional components may
be justified if the resulting improvement in forecast accuracy
outweighs the associated computational costs.

Design, components, and configurations of these systems
can vary widely. Most of them use an ocean general cir-
culation model such as NEMO (Madec and NEMO Sys-
tem Team, 2022), ROMS, or HYCOM and data assimilation
components based on the Kalman filter or variational meth-
ods. Additionally, some systems include wave and biogeo-
chemical model components. These model components can
be stand-alone or coupled in various configurations. Most
of them rely on atmospheric fields at the ocean–atmosphere
boundaries because they are not coupled with an atmospheric
model. Biogeochemical components are a standard feature
in all the European systems of the Copernicus Marine Ser-
vice, but they are missing in most other systems. Some coun-
tries, such as India, are currently developing a biogeochemi-
cal component for future use.

Regional models are often nested into a global system or
another regional system, a parent model, providing them with
lateral boundary forcing. Many systems, in turn, provide lat-
eral boundaries and initialization fields to coastal systems.

Most systems provide deterministic forecasts, although a
few already have the ability to produce ensemble forecasts.
There is a growing interest in developing systems that can
produce ensemble forecasts.

The forecast production is daily for most systems, al-
though some run them twice per day. The forecast lead time
is typically between 5 and 10 d (short to medium range)
(WMO, 2021). The time resolution of their products varies
from hours to days, with some fields delivered at a higher
frequency of 15 min.

Ultimately, the spatial and temporal scales of a regional
ocean forecasting system, as well as the selection of its com-
ponents, will depend on the region’s specific needs and char-
acteristics.

3 Oceanographic information provided by regional
systems

Regional oceanographic services play a crucial role in mea-
suring the essential ocean variables (EOVs) defined by the
Global Ocean Observing System (GOOS). EOVs are classi-
fied into four categories: physics, biology and ecosystems,
biogeochemistry, and cross-disciplinary. This description is
mainly focused on short-term forecasting products because
most systems do not provide long climatological series of the
past to understand how ocean conditions are changing over
time. Several regional reanalysis studies exist, but obtaining
information about the services delivering these data can be
challenging. The Copernicus Marine Service offers an oper-
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Table 1. Summary of the regions covered by regional ocean forecasting systems based on the information available from OceanPredict and
the Copernicus Marine Service. The last column describes the ocean essential variables (defined by GOOS) provided by each system.

Country/provider Geographical area/system Resolution Essential ocean variables

Australia – Bluelink Relocatable regional model along
Australian coast

∼ 2 km Physics (T , S, currents, SSH, waves)
Biogeochemistry under development

Brazil – REMO – Atlantic Ocean
– Brazilian continental margin
(METAREA V)

– 1/12°
– 1/24°

Physics (T , S, currents, SSH)

Canada – Concept
RIOPS

– Arctic
– North Atlantic and Great Lakes

– 1/4°
– 1/36°

Physics (T , S, currents, SSH, sea ice)

China – NMEFC – Northwest Pacific
– Bohai Sea, Yellow Sea, and East
China Sea
– South China Sea

– 1/20° (1/36°)
– 1/30°
– 1/30°

Physics (T , S, currents, SSH)

Europe – Copernicus Marine
Service

– Arctic Sea
– Baltic Sea
– Northwest European Shelf
– Iberian–Biscay–Irish Sea
– Mediterranean Sea
– Black Sea

– 3–6 km
– ∼ 2 km
– ∼ 2 and 7 km
– ∼ 2–3 km
– ∼ 5–3 km
– ∼ 3 km

Physics (T , S, currents, SSH, sea ice,
waves)
Biogeochemistry (nutrients, oxygen,
carbonate system, organic carbon,
optics)
Biology (plankton)

India – INCOIS – Indian Ocean (INDOFOS)
– Local Indian Ocean regions
(HOOFS)
– Indian Ocean nested into global
(ITOPS-IO)

– 1/12°
– 1/48°
– 1/16°

Physics (T , S, currents, SSH)
Biogeochemistry under development

Japan – MOVE/MRI.COM – Japanese area
– North Pacific

– 1/33° × 1/50°
– 1/10° × 1/11°

Physics (T , S, currents, SSH)

Republic of Korea – North Pacific
– The Yellow and East China Sea
(KOOFS)

– 1/28°
– 3 km

Physics (T , S, currents, SSH)

US – NOAA West Coast Operational Forecast
System (WCOFS)

4 km Physics (T , S, currents, SSH)

ational service for reanalysis produced by all its regional sys-
tems, updated at least annually. However, additional services
are also available. In this context, the Ocean Prediction DCC
Atlas will be instrumental in providing detailed and struc-
tured information on these systems. While regional forecast-
ing systems primarily focus on physical parameters such as

temperature, salinity, currents, and sea level, some also in-
clude wave and sea ice components to provide comprehen-
sive information about the ocean’s physical characteristics.

It is important to clarify that most regional systems fore-
cast sea level, also referred to as sea surface height. This
represents the distance between the ocean surface and a ref-
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erence mean sea level. This reference mean sea level de-
pends, at each individual grid point, on the model domain
and its physics (barotropic vs. baroclinic, consideration of
tides, wind parameterization), as well as on the physics and
characteristics of the parent model. This should be consid-
ered when comparing model data with observations (e.g. tide
gauge data usually refer to national or local datums) or other
models (e.g. regional versus coastal models). Additionally,
approximations made by the models and their parameteriza-
tion, as well as data assimilation schemes, can impact the
accuracy of this information. Except for the Copernicus Ma-
rine Service, most regional systems do not deliver informa-
tion on biogeochemistry and biology. These models are com-
putationally very expensive due to the high number of vari-
ables and processes they take into account, in most cases
preventing them from providing the level of detail and ac-
curacy that users require. However, despite these limitations,
there is a growing recognition of the importance of mon-
itoring and understanding biogeochemical variables in the
ocean as confirmed by the steady increase in the demand for
biogeochemical products from the Copernicus Marine Ser-
vice. Additional regional systems, i.e. INDOFOS in India
and CSIRO-Bluelink in Australia, are currently developing a
biogeochemical model that will be coupled to their systems.

4 Operational regional systems across the world

Different countries and organizations have developed re-
gional ocean forecasting systems. The European Copernicus
Marine System (Le Traon et al., 2019), since 2015, has a
set of regional systems that cover all the European seas, the
Arctic Ocean, and the northeastern Atlantic. Australia has
a relocatable regional system for refining its global model
around its own region. Other countries such as Brazil (Franz
et al., 2021; Lima et al., 2013), Canada, China, India, Japan
(Sakamoto et al., 2019), Republic of Korea, and the US have
regional ocean forecasting systems or a set of them, covering
the ocean and seas surrounding their coasts.

These systems use different data sources and modelling
techniques, but they also have many similarities. Table 1 pro-
vides a non-exhaustive summary of the regional systems as
described by OceanPredict and by the Copernicus Marine
Service.

As described in Sect. 1, their geographical extension can
vary from relatively small surfaces to extended areas and
their horizontal grid resolution is usually of the order of 2–
20 km. They do all provide the standard physical variables,
but only a few also provide biogeochemical information.

Differences also exist in the level of operational readiness
among the systems described, as well as in their product val-
idation procedures and data dissemination policies. Not all
this information has an open and free access policy, but all
the regional systems play an important role in monitoring and
forecasting the ocean.
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Abstract. Coastal services are fundamental for society, with approximately 60 % of the world’s population liv-
ing within 60 km of the coast. Thus, predicting ocean variables with high accuracy is a challenge that requires
numerical models able to simulate processes from the mesoscale to the submesoscale, to capture shallow-water
dynamics influenced by wetting–drying and resolve the ocean variables in very high resolution spatial domains.
This paper introduces key aspects of coastal modelling, such as vertical structure of the mixed layer depth, pa-
rameterization of bottom roughness, and the dissipation of kinetic energy in coastal areas. It stresses the need
for models to account for the nonlinear interactions between tidal currents, wind waves, and small-scale weather
patterns, emphasizing their significance in refining coastal predictions. In addition, observational advancements,
such as high-frequency (HF) radar and satellite missions like Surface Water and Ocean Topography (SWOT),
provide unique opportunities to observe coastal dynamics. This integration enhances our ability to model phys-
ical and dynamical peculiarities in coastal waters, estuaries, and ports. Coastal models not only benefit from
such high-resolution observations but also contribute to evolving observational systems, creating feedback loops
that refine monitoring and prediction capabilities. Modelling strategies are also examined, including downscal-
ing and upscaling approaches, and numerical challenges like implementing robust data assimilation schemes
to refine estimations of coastal ocean states are addressed. Emerging techniques, such as advanced turbulence
closure models and dynamic vegetation drag parameterization, are highlighted for their role in enhancing the
realism of modelled coastal processes. Furthermore, the integration of atmospheric forcing, tidal asymmetries,
and estuarine dynamics underlines the necessity for models that span the complexities of the coastal continuum.
It also demonstrates the critical importance of accurately modelling coastal and estuarine systems to capture
interactions between mesoscale and submesoscale processes, their connections to broader oceanic systems, and
their implications for sustainable coastal management and climate resilience. This work underscores the poten-
tial of advancing coastal forecasting systems through interdisciplinary innovation, paving the way for enhanced
scientific understanding and practical applications.
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1 Introduction

High-resolution observation and modelling are needed so
that marine services can be compliant with small-scale pro-
cesses in the ocean, particularly in coastal areas where these
processes have a significant impact on dynamics and bio-
geochemistry (Fig. 1). The importance of high resolution in
coastal services is underscored by the coastal ocean’s sig-
nificance to humanity, not least because about 60 % of the
world’s population lives within 60 km of the coast (Rao et
al., 2008). These areas are highly dynamic, subject to both
direct and indirect anthropogenic impacts, respectively, such
as eutrophication, overfishing, offshore wind farm develop-
ment, dredging, and pollution; global warming; sea-level
rise; and changes in meteorological and hydrological condi-
tions. These combined influences frequently trigger regime
shifts, coastal erosion, flooding, and the introduction of inva-
sive species, underscoring the vulnerability and complexity
of these systems.

Accurately predicting ocean variables in coastal environ-
ments is challenging due to the need to resolve mesoscale
to submesoscale dynamics and their interactions with atmo-
spheric and hydrological processes. The inherent variability
of these systems requires models that can account for a wide
range of phenomena, including tidal asymmetries, wetting–
drying cycles, nonstationary river and atmospheric forcing,
and nonlinear feedback mechanisms between tidal currents
and wind waves (Staneva et al., 2017). These processes influ-
ence mixing, ocean circulation, and the accuracy of sea sur-
face temperature predictions. Thus, high-resolution models
are indispensable for capturing the fine-scale interactions that
drive coastal dynamics and shape biogeochemical responses.

Observational data play a pivotal role in advancing coastal
modelling. High-frequency (HF) radar and novel high-
resolution satellite missions offer unprecedented opportuni-
ties to observe and understand coastal processes with fine
spatial and temporal resolution (De Mey-Frémaux et al.,
2019). These data sources are integral to improving the rep-
resentation of physical and biogeochemical variability in the
models, bridging the gap between observations and predic-
tive frameworks. By integrating data from remote sensing
and in situ platforms, coupled with advanced data assimila-
tion techniques, models can better capture the complexity of
estuarine and nearshore processes.

Science-based services in the coastal ocean are essential
for ensuring efficient management, sustainable use of coastal
systems, and the development of strategies that are adaptable
to the changing climate, including sea-level rise. These ef-
forts, for example, align with the marine strategy framework
directive in the European context (Hyder et al., 2015).

The aim of this paper is to introduce high-resolution ocean
forecasting services that address the challenges of coastal
dynamics by improving predictions of physical and biogeo-
chemical processes. It focuses on the integration of advanced
modelling techniques and modern observational tools to en-

hance understanding of small-scale dynamics and their con-
nections to larger ocean systems. The paper first describes
the spatial scales and processes that high-resolution models
address, focusing on local, regional, and transitional zones. It
then explores advanced observational tools, such as satellite
missions and HF radars, and their role in improving coastal
forecasts. Following this, the discussion highlights numerical
modelling techniques, including turbulence modelling and
bottom drag parameterization, which are essential for captur-
ing small-scale coastal dynamics. It also examines the role
of data assimilation techniques and Observing System Ex-
periments in improving prediction accuracy and guiding the
design of observation networks. Finally, the paper concludes
with a summary of findings, identifies current challenges, and
outlines future directions for advancing coastal forecasting
systems. By addressing these topics, the paper aims to sup-
port the development of more robust and adaptable tools for
coastal forecasting, which are critical for sustainable man-
agement and improving resilience to environmental changes.

2 Typical spatial scales and processes solved by
high-resolution services

High-resolution services in the coastal ocean operate at vari-
ous spatial scales depending on the specific applications and
objectives. These scales can range from local to regional lev-
els, aiming to capture fine-scale processes and variations.
Here are some typical spatial scales for high-resolution ser-
vices:

1. Local scale. At the local scale, high-resolution services
focus on small coastal areas, such as individual bays, es-
tuaries, or nearshore zones. These services aim to pro-
vide detailed information and predictions for specific lo-
cations of interest. Spatial resolutions in this range can
be on the order of metres to a few kilometres, allow-
ing for precise observations and modelling of localized
processes.

2. Coastal scale. High-resolution services at the coastal
scale cover larger coastal regions, spanning multiple
bays, estuaries, and coastal zones. These services pro-
vide a broader view of the coastal environment and
its dynamics. Spatial resolutions in this range typically
range from metres to a kilometre, enabling the capture
of coastal- to regional-scale variations and interactions.

3. Transition zones. Transition zones refer to areas where
coastal and open-ocean processes interact. These zones
often exhibit complex dynamics and are of particular
interest for high-resolution services. Spatial resolutions
in transition zones can vary depending on the specific
characteristics and objectives, but they generally aim
to capture the intricate interactions between coastal and
open-ocean processes.
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Figure 1. Schematic representation of the coastal zone, hazards (e.g. HAB, harmful algae bloom), metocean and biogeochemical variables,
and observations and applications (adapted from Melet et al., 2020).

A collection of 11 recent studies on operational coastal ser-
vices utilizing high-resolution models offers significant in-
sights into the relevant spatial scales, objectives, and ap-
plications, thereby strengthening the analysis in this con-
text (Sotillo, 2022). Eddies or isolated vortices, meandering
currents, or fronts and filaments are characteristic features
of oceanic mesoscale processes. These processes typically
exhibit spatial scales ranging from 10 to 500 km, depend-
ing on geographic latitude and stratification, and timescales
ranging from several days to approximately 100 d. Subme-
soscale processes in the ocean, on the other hand, are char-
acterized by smaller scales, typically ranging from 1 to
10 km (McWilliams, 2016). These scales are smaller than
the Rossby radius of deformation. Submesoscale processes
also have shorter temporal scales, usually lasting only a few
hours, and their relative vorticity is greater than the Coriolis
parameter f . In contrast, for mesoscale motion, the relative
vorticity is comparable to f . Overall, studying and observ-
ing submesoscale processes require advanced techniques and
methods to overcome their small scale and rapid variability,
but their understanding is crucial for comprehending the in-
tricate dynamics of the ocean.

The surface and bottom mixed layers in the open ocean
occupy just a tiny part of the ocean volume because these
layers are much thinner than the almost viscousless ocean in-
terior. However, in the coastal zone, drag parameterizations
become increasingly important in shallow water and even
more so where the impact of vegetation is significant. Fur-
thermore, a large part of kinetic energy in the ocean is dis-
sipated in the coastal zone, which necessitates an adequate
modelling of this important small-scale process, vital for the
global energy balance (Munk and Wunsch, 1998). To accu-
rately represent the coastal dynamics and the fine structure

of these layers, models need to resolve the vertical structure
of the mixed layers. This requirement necessitates the use of
turbulence closure models, which account for the effects of
turbulence and mixing in these regions. Additionally, models
for coastal processes need to consider the impact of bottom
drag. The parameterization of bottom roughness, often based
on the grain size distribution, allows for the inclusion of bot-
tom drag effects. In cases where vegetation is present, drag
parameterizations become even more important. A signifi-
cant portion of the kinetic energy in the ocean is dissipated in
the coastal zone. Therefore, it is crucial to adequately model
these small-scale processes in order to maintain a balanced
representation of the global energy dynamics. Understanding
and accurately simulating the dissipation of kinetic energy in
coastal areas contribute to a comprehensive understanding of
the ocean’s energy budget.

In shallow water, the variability of surface elevation
caused by tides and storms becomes comparable to the water
depth itself. In some coastal areas, shallow-water tides play a
significant role in the overall tidal dynamics. To improve the
accuracy of tidal predictions in shelf regions, it is necessary
to consider higher harmonics and assess the ability of ocean
models to fully resolve the tidal spectrum.

Some important processes, such as the nonlinear feed-
back between strong tidal currents and wind waves, can-
not be ignored in the coastal zone (Staneva et al., 2016a, b,
2017). Wave–current coupling tends to decrease strong winds
through wave-dependent surface roughness (Wahle et al.,
2017), affects mixing and ocean circulation, and improves
predictions for sea surface temperature. Further examples of
the value of the incorporation of coupling in the numerical
models in the coastal ocean are given by De Mey-Frémaux
et al. (2019). These scientific developments of operational
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oceanography are in pace with the trend in the Earth sys-
tem modelling to seamlessly couple different environmental
prediction components of atmosphere, waves, hydrology, and
ice.

The small spatial scales that are characteristic of coastal
and estuarine systems require coastal models to consider
ageostrophic (deviating from the Earth’s rotation) and three-
dimensional dynamics, primarily driven by boundary-layer
processes (Fringer et al., 2019). Understanding these small-
scale processes is crucial, particularly the interactions be-
tween mesoscale and submesoscale dynamics and their con-
nection to larger-scale processes. It is essential to improve
the representation of exchanges between the coastal and open
ocean, as well as their coupling with estuaries and catch-
ment areas, in order to capture the complexity of coastal sys-
tems. Accounting for high-resolution atmospheric forcing in
the coastal models is essential for accurately capturing local
meteorological dynamics, including wind patterns, temper-
ature gradients, and precipitation rates. Such detailed atmo-
spheric data drive fundamental processes like heat and mo-
mentum fluxes, profoundly influencing coastal hydrodynam-
ics, sediment transport, and ecosystem responses. The im-
plementation of a novel high-resolution atmospheric forcing,
combined with the refinement of bulk formulae for surface
flux computations, significantly enhances the performance of
various high-resolution modelling systems for port environ-
ments (García-León et al., 2022). Coastal models need to ac-
curately account for frictional balances, taking into consider-
ation the effects of friction on the movement of water. They
must also address wetting and drying processes, as well as
hydrological forcing, to capture the transitions between shal-
low environments and larger regional scales. By incorporat-
ing these factors, models can provide a more realistic repre-
sentation of coastal dynamics. In addition, the grid charac-
teristics used in coastal models should be carefully selected
to accurately represent the dominant spatial scales present in
the coastal environment. Choosing grid resolutions that cap-
ture the essential features of the coastal system is crucial for
obtaining reliable and meaningful results.

In the coastal ocean, characteristic timescales are sig-
nificantly shorter compared to the global ocean. These
timescales, typically around 1 d, are determined by various
processes, including tides, inertial motion, diurnal cycles,
and synoptic weather patterns. The fast-paced dynamics of
the coastal ocean require models to accurately capture these
shorter time scales. In estuaries, the periodicity becomes
more complex due to strong tidal asymmetries and the pres-
ence of secondary circulation patterns. The interactions be-
tween tidal forcing, river flow, and estuarine geometry result
in intricate and variable periodic patterns (as shown in Cam-
puzano et al., 2022, for the Western Iberian Buoyant Plume;
Sotillo et al., 2021a, for the whole European Atlantic façade;
and Pein et al., 2021, for the Elbe Estuary). The periodic-
ity observed in coastal seas is mainly influenced by exter-
nal forcing signals, such as atmospheric conditions or remote

ocean signals. These external signals propagate in the coastal
models through the specification of lateral boundary condi-
tions, which is a crucial aspect of modelling in coastal areas.
Unlike global models that can operate without open bound-
aries, coastal models require careful consideration of these
boundary conditions to accurately represent the interactions
between the coastal and open ocean.

The predictability limit of models depends on the geophys-
ical processes. For synoptic processes in the open ocean, this
limit is on the order of weeks to months. For the coastal
ocean, it is on the order of hours to days. The loss of pre-
dictability, associated with nonlinear processes, is exempli-
fied by the growth of errors in predictive models. Assimila-
tion of data containing spatial and temporal scales below the
predictability limit is needed to address this issue. Simula-
tions at grid resolutions that would sufficiently resolve the
coastal submesoscale would require horizontal grid resolu-
tions of approximately 1–10 m in estuaries and 0.1–1 km in
coastal shelf domains. However, achieving such high reso-
lutions poses significant computational challenges and re-
source demands.

By employing high-resolution services with appropriate
spatial scales, scientists and stakeholders can gain a more de-
tailed and accurate understanding of coastal processes, im-
prove forecasting capabilities, and support effective coastal
management and decision-making.

3 State-of-the-art data and tools for coastal
forecasting

3.1 Required observations

Observing systems are spatiotemporally sparse in coastal re-
gions compared to the small scales of ecosystem variabil-
ity found there. A crucial challenge in observations is ad-
dressing the variety of important spatial and temporal scales
within the coastal continuum, which encompasses the seam-
less transition from the deep ocean to estuaries through the
shelf. In order to achieve this, observations should sample
the multiscale, two-way interactions of estuarine, nearshore,
and shelf processes with open-ocean processes. Addition-
ally, they need to account for the different pace of circula-
tion drivers, such as fast atmospheric and tidal processes, as
well as the slower general ocean circulation and climate forc-
ing. It is also important to accurately sample the gradients
of biological production, ranging from mesotrophic estuaries
to oligotrophic oceans. Given the current situation, observa-
tional practices and strategies need to be strongly coupled
with numerical modelling to effectively extract the informa-
tion contained in the data and advance the quality of coastal
services.

Most global and regional prediction products use a com-
bination of satellite observations and in situ observations.
Traditionally, in situ observations constituted the major data
source for coastal ocean monitoring. During the end of the
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past century, satellite observations contributed significantly
to the understanding of spatial variabilities. Novel instru-
ments, such as the acoustic Doppler current profiler (ADCP),
which measures current profiles throughout the water col-
umn, enhanced our understanding of current shear and bot-
tom stress. Nowadays, high-resolution numerical simulations
in the coastal ocean are keeping pace with high-resolution
observations. A similar trend is observed in coastal waters,
estuaries, and ports, which are rich in different activities and
interests: fishing, recreational activities, search and rescue,
protection of habitats, storm forecasts, and maritime indus-
tries, as well as routine maintenance operations (De Mey-
Frémaux et al., 2019).

The coastal ocean observations only are not sufficient to
fully support the present-day need for high-quality ocean
forecasting and monitoring because measurements may rep-
resent very localized and short-scale dynamics, and it is not
straightforward to know how fully they describe the complex
coastal system. Therefore, recent practices employ the syn-
ergy between observations and numerical modelling, which
ensures valuable research advancements and practical im-
plementations (Kourafalou et al., 2015a, b). The core com-
ponents of operational oceanographic systems consist of a
multi-platform observation network, a data management sys-
tem, a data assimilative prediction system, and a dissemina-
tion/accessibility system (Kourafalou et al., 2015a; De Mey-
Frémaux et al., 2019; Davidson et al., 2019). By combining
observations and models through data assimilation methods,
ranging from coastal to global and from in situ to satellite-
based, we can assess ocean conditions and create reliable
forecasts. This integration adds value to coastal observations
and enables a wide range of applications (De Mey-Frémaux
et al., 2019; Ponte et al., 2019), as well as providing decision-
making support. For a comprehensive review of ocean moni-
toring and forecasting activities in both the open and coastal
oceans, please refer to Siddorn et al. (2016).

High-frequency radars (HFRs) offer unique spatial resolu-
tion by providing reliable directional wave information and
gridded data of surface currents in near-real time. The use
of HFR networks has become an essential element of coastal
ocean observing systems, contributing to high-level coastal
services (Stanev et al., 2016a; Rubio et al., 2017; Reyes et al.,
2022). The outputs from prediction systems extend the util-
ity of HFR observations beyond the immediate observation
area (Stanev et al., 2016b), enabling adequate estimates even
where no direct observations have been made. This demon-
strates how models connect observations, synthesize them,
and assist in the design of observational networks. In turn,
observations can guide the development of coastal models
(De Mey-Frémaux et al., 2019).

Alongside ADCP data, HFR data are used for skill assess-
ment of operational wave and circulation models (Lorente
et al., 2016). Another valuable source of fine-resolution data
in the coastal region is provided by colour data from satel-
lites. In terms of sea-level observations, some challenges as-

sociated with the use of altimeter data in the coastal zone
are expected to be overcome through the use of wide-swath
Surface Water and Ocean Topography (SWOT) technology.
SWOT is a landmark satellite mission that delivers two-
dimensional sea surface height observations at high resolu-
tion across a 120 km swath. It represents a major step forward
in resolving mesoscale and submesoscale features critical to
coastal dynamics. Recent Observing System Simulation Ex-
periments (OSSEs) have demonstrated that wide-swath al-
timetry substantially enhances ocean forecasting capabilities.
For instance, a constellation of two SWOT-like wide-swath
altimeters provides a ∼ 14 % reduction in sea surface height
forecast error compared to a 12-nadir altimeter constella-
tion and also improves estimates of surface currents and La-
grangian trajectories (Benkiran et al., 2024). These results
highlight the importance of SWOT-type observations for re-
solving small-scale coastal variability and improving model–
data integration.

Further advances in coastal observations are enabled by
autonomous platforms such as Slocum gliders. These glid-
ers can carry a wide array of physical and biogeochemi-
cal sensors and perform repeated transects, thus providing
high-resolution observations of dynamic features such as ed-
dies, frontal systems, and upwelling events. Their operational
flexibility and ability to collect subsurface data make them
valuable for both sustained monitoring and adaptive sam-
pling strategies (Rudnick, 2016; Testor et al., 2019). In par-
allel, satellite technologies continue to evolve. Moreover, the
Japanese geostationary meteorological satellite Himawari-8
provides high-frequency (every 10 min) and high-resolution
(up to 500 m) visible and infrared imagery. These capabili-
ties allow for near-real-time monitoring of sea surface tem-
perature (SST), making it possible to track rapidly evolving
coastal phenomena such as diurnal warming, river plumes,
and thermal fronts (Kurihara et al., 2016).

These complementary in situ and remote sensing plat-
forms represent essential components of integrated coastal
observing systems, supporting the growing demand for ac-
curate forecasts, early warnings, and data-driven decision-
making tools.

3.2 Numerical models

Addressing specific processes in the coastal ocean and accu-
rately modelling the transition between regional and coastal
scales cannot be achieved solely by adjusting the model reso-
lution. Certain processes, such as shallow-water tides, which
are often overlooked in global and regional forecasting, play
a dominant role in coastal ocean dynamics. The previous
sections have highlighted the importance of a tailored ap-
proach in observational practices and numerical models for
the coastal ocean. For further information on other popu-
lar coastal models, refer to the comprehensive discussion by
Fringer et al. (2019).
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Table 1. Circulation models in alphabetical order, which can be used for coastal and regional studies and/or provision of services.

Model Citation C: coastal,
R: regional,
G: global

Finite-volume (FV)
or finite-element
(FE)

ADCIRC Luettich et al. (1992);
Westerink et al. (1994)

C FE

COAWST Warner et al. (2008, 2010) C/R FV

COMPAS Herzfeld et al. (2020) C/R FV

CROCO Marchesiello et al. (2021) C/R FV

Delft3D Deltares (2012) C FV

FVCOM Chen et al. (2003) C/R/G FV

GETM Burchard and Bolding (2001) C FV

MITgcm Marshall et al. (1997) C/R/G FV

MPAS Ringler et al. (2013) R/G FV

NEMO Madec et al. (2016) C/R/G FV

POMS Blumberg and Mellor (1987);
Mellor (2004)

C/R FV

ROMS Shchepetkin and McWilliams (2005) R FV

SCHISM Zhang et al. (2016b) C/R/G FV/FE

SELFE Zhang and Baptista, 2008 C FV/FE

SHYFEM Umgiesser et al. (2004) C FE

SUNTANS Fringer et al. (2006) C FV

TRIM/UnTRIM Casulli (1999);
Casulli and Zanolli (2002, 2005)

C FV

3.3 Fine-resolution nested models and their
downscaling and upscaling

High-resolution coastal services must properly resolve in-
teractions between various coastal processes, including
nearshore, estuarine, shelf, drying, and flooding dynamics.
Achieving this requires a resolution of approximately 10–
100 m. Simultaneously, it is essential to capture open-ocean
processes at a resolution of around 1 km or coarser. Com-
mon approaches employed in addressing this challenge in-
clude downscaling and multi-nesting techniques (e.g. Debreu
et al., 2012; Kourafalou et al., 2015b; Trotta et al., 2017), as
well as the use of unstructured-grid models (e.g. Zhang et al.,
2016a, b; Federico et al., 2017; Stanev et al., 2017; Ferrarin
et al., 2018; Maicu et al., 2018). Another important aspect to
consider is upscaling (Schulz-Stellenfleth and Stanev, 2016),
which becomes relevant when addressing the two-way inter-
action between coastal and open-ocean systems.

Most coastal models are one-way nested, relying heavily
on forcing data from larger-scale models as the coastal sys-
tem is primarily influenced by the atmosphere, the hydrology,

and the open ocean. Enhancing the horizontal resolution of
the North Sea operational model from 7 to 1.5 km (Tonani
et al., 2019) has shown improvements in off-shelf regions,
but biases persist over the shelf area, indicating the need for
further enhancements in surface forcing, vertical mixing, and
light attenuation.

An important consideration in downscaling and coastal
modelling is the treatment of open boundary conditions
(OBCs), which play a critical role in determining model fi-
delity near the boundaries. OBCs are typically derived from
larger-scale models but often require case-specific tuning
to ensure dynamic consistency and minimize reflection or
spurious signals. The choice and configuration of OBCs
– such as Flather-type, radiation conditions, or relaxation
zones – can significantly affect the transport and energy bal-
ance within the coastal model domain. Given the diversity
of physical processes and geometries encountered in coastal
environments (Marchesiello et al., 2001). Models equipped
with a wide suite of configurable boundary condition types
offer a practical advantage, particularly in multi-scale cou-
pled frameworks. Ensuring consistency across nested do-
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mains while preserving physical realism remains an ongoing
challenge, motivating continued development and intercom-
parison of OBC strategies in operational and research set-
tings.

While the downscaling of information from coarser global
or regional models to high-resolution coastal models is well
established, the reverse process of upscaling is more chal-
lenging and continues to be a subject of research. Two-way
nested models allow assimilated information from coastal
observations, typically not assimilated by larger-scale fore-
casting systems, to propagate beyond the coastal region while
maintaining dynamic consistency. This upscaling capability
has the potential to benefit regional models. Coastal observa-
tions have demonstrated their potential to improve boundary
forcing or surface wind forcing in regional models.

The coupling of a coarse-resolution regional model with
a fine-resolution coastal model using a two-way nesting ap-
proach has been studied in the context of the straits connect-
ing the North Sea and the Baltic Sea. The intricate topog-
raphy and narrow cross-sections of the straits result in the
dominance of small-scale motions, which play a vital role in
the exchange between the two seas and significantly influ-
ence Baltic Sea stratification. The two-way nesting method,
designed to exchange information between the child model
in the straits and the parent model in the seas, incorporates
elements of data assimilation and allows for different vertical
discretizations in each model. The Adaptive Grid Refinement
in FORTRAN (AGRIF), originally developed by Debreu et
al. (2008, 2012), has found wide application as a library for
seamless spatial and temporal refinement over rectangular re-
gions in the NEMO modelling framework (Madec and the
NEMO System Team, 2024; Debreu et al., 2008)

Recent advancements in two-way nesting frameworks
have demonstrated their effectiveness in improving multi-
scale model accuracy. The implementation of a general two-
way nesting framework has enhanced the exchange of phys-
ical properties between nested grids while preserving nu-
merical stability and computational efficiency. Additionally,
the integration of two-way nesting in a global ocean model
has significantly improved surface tidal accuracy, refining
regional tidal dynamics without compromising large-scale
coherence (Herzfeld and Rizwi, 2019; Jeon et al., 2019).
Further applications of AGRIF have demonstrated improve-
ments in hydrodynamic simulations and the estimation of en-
vironmental indicators in coastal systems, underscoring its
potential to refine fine-scale hydrodynamics while ensuring
consistency with larger-scale ocean processes (Petton et al.,
2023).

The organization of these multi-model studies is identified
by the coastal modelling community as a need. Firstly, to
tackle common assessments of the wide range of overlapping
(global, basin, or regional and local) models that are avail-
able for users in some coastal zones. Secondly, these multi-
model validation exercises, comparing the performance of
global/regional “core” model forecasts (i.e. from services

such as the Copernicus Marine one) and coastal model so-
lutions, nested into the former, are useful to identify the po-
tential added value (and the limitations) of performed coastal
downscaling with respect to the “parent” core operational so-
lutions, in which high-resolution coastal models are nested.

Frishfelds et al. (2025) highlight the benefits of on-demand
coastal modelling employing two-way nesting, emphasizing
its capacity to dynamically refine coastal processes while
maintaining consistency with larger-scale ocean simulations.
This approach enhances the accuracy and reliability of high-
resolution forecasting systems, facilitating improved repre-
sentation of fine-scale coastal dynamics.

In that sense, these multi-model intercomparison exercises
are key elements for many initiatives, such as the Hori-
zon Europe project, FOCCUS (2025), that have enhanced
existing coastal downscaling capabilities at their core, de-
veloping innovative coastal forecasting products based on
a seamless numerical forecasting from regional models of
the Copernicus Marine Service covering the EU regional
seas to member states’ coastal forecasting systems. Espino et
al. (2022) emphasized the significance of extending Coper-
nicus Marine Environmental Monitoring Service (CMEMS)
products to coastal regions, highlighting the integration of
high-resolution models and observational data to improve
coastal forecasting capabilities. Their work underscores the
importance of tailoring operational ocean models to better
capture nearshore dynamics, ensuring more accurate and ac-
tionable predictions for end-users.

Furthermore, and from an end-user perspective, multi-
model studies focused on extreme event simulations provide
valuable input on the performance of operational forecasting
systems. For instance, Sotillo et al. (2021b) examined Gloria,
the record-breaking western Mediterranean storm, by evalu-
ating five different model systems, including Copernicus Ma-
rine Service products (global, regional Mediterranean, and
Atlantic IBI solutions) alongside two coastal nested models.
Such studies play a crucial role in assessing model accuracy,
leveraging local HF radar observations, and informing future
improvements to regional and coastal forecasting services.
In addition, it contributed to an increase in the knowledge
about the model systems in operations and an outline of fu-
ture model service upgrades (both in the regional and coastal
services), aimed at achieving a better coastal forecasting, es-
pecially during the extreme events.

3.4 Unstructured-grid models for cross-scale coastal
dynamics

The use of unstructured-grid models is crucial for cross-
scale modelling and effectively addressing the interactions
between estuaries and the open ocean. One key aspect
is the accurate representation of freshwater transformation
from rivers, which is often oversimplified in ocean models
by specifying river runoff as a point source. Unstructured-
grid models, while often employing lower-order spatial dis-

https://doi.org/10.5194/sp-5-opsr-4-2025 State Planet, 5-opsr, 4, 2025



CHAPTER2.3

8 J. Staneva et al.: Solving coastal complexity through ocean forecasting

cretizations due to interpolation complexities on irregular
meshes, provide enhanced flexibility in resolution placement
and transition zones. This allows them to effectively capture
subtidal, tidal, and intermittent processes in coastal and es-
tuarine environments, supporting a more realistic representa-
tion of estuarine dynamics and improved coupling with estu-
arine models.

Compared to curvilinear and Cartesian grids, unstructured
grids excel in resolving complex bathymetric features with-
out significant grid stretching. Since bathymetry plays a fun-
damental role in governing the dynamics of estuaries and
the near-coastal zone, unstructured-grid models offer greater
accuracy and computational efficiency in numerical fore-
casting. Their flexibility also enables more effective reso-
lution of multiscale dynamic features. Fine spatial resolu-
tion in unstructured-grid models allows for the resolution
of secondary (transversal) circulation in estuaries and straits,
thereby improving mixing and enhancing the representation
of long-channel changes in stratification, as demonstrated
by Haid et al. (2020). Zhang et al. (2016a) have empha-
sized the role of cross-scale modelling in capturing multi-
scale hydrodynamic interactions, particularly in tidal straits,
where unstructured-grid models enhance the representation
of exchange flows and stratification dynamics. As Ilicak et
al. (2021) have shown, these advancements contribute to
more precise simulations of estuarine and strait dynamics.
Recent research has further elucidated the mechanisms gov-
erning secondary circulation in tidal inlets. Chen et al. (2023)
demonstrated that subtidal secondary circulation can arise
due to the covariance between eddy viscosity and velocity
shear, even in predominantly well-mixed tidal environments.
This finding highlights the necessity of incorporating high-
resolution turbulence parameterizations within unstructured-
grid models to accurately capture submesoscale and cross-
channel processes, thereby improving the fidelity of numeri-
cal simulations in complex coastal and estuarine systems.

However, the construction of grids and the need to ensure
reproducibility in unstructured-grid modelling still present
challenges. Grid generation is not always fully automated,
and subjective decisions are often made based on the spe-
cific research problem, applications, and intended services.
The development of more objective grid construction meth-
ods and reproducibility standards is an ongoing concern
in unstructured-grid modelling (Candy and Pietrzak, 2018).
One significant advancement is the introduction of the JIG-
SAW mesh generator (Engwirda, 2017), which enables the
creation of high-quality unstructured grids designed to sat-
isfy specific numerical requirements. JIGSAW produces cen-
troidal Voronoi tessellations with well-centred, orthogonal
cell geometries that are particularly suitable for mimetic
finite-volume schemes. JIGSAW incorporates mesh opti-
mization strategies tailored to geophysical fluid dynamics
and has been increasingly adopted in ocean modelling ap-
plications.

Moreover, the generation of unstructured meshes is a crit-
ical component in configuring coastal and estuarine ocean
models, as it directly influences numerical accuracy, com-
putational efficiency, and the ability to represent complex
shoreline and bathymetric features. Tools such as Ocean-
Mesh2D offer MATLAB-based workflows for high-quality,
two-dimensional unstructured mesh generation, facilitating
user control over mesh density and coastal geometry resolu-
tion (Roberts et al., 2019). Similarly, OPENCoastS provides
an open-access, automated service that streamlines the setup
of coastal forecast systems, integrating mesh generation,
model configuration, and forecast production (Oliveira et al.,
2019, 2021). The OCSMesh software developed by NOAA
represents another important advancement. It enables data-
driven, automated unstructured mesh generation tailored for
coastal ocean modelling, offering a robust framework to en-
sure mesh quality, reproducibility, and interoperability with
NOAA modelling systems (Mani et al., 2021). Together,
these developments represent the ongoing progress toward
objective, reproducible, and user-oriented mesh generation
in support of high-resolution coastal ocean modelling.

3.5 Observing System Simulation Experiments,
Observing System Experiments, and data
assimilation

Data assimilation in coastal regions presents challenges due
to the presence of multiple scales and competing forcings
from open boundaries, rivers, and the atmosphere, which are
often imperfectly known (Moore et al., 2019). Data assim-
ilation is particularly challenging in tidal environments (es-
pecially for meso- and macro-tidal environments and not so
in micro-tidal coastal zones; De Mey et al., 2017; Stanev et
al., 2011; Holt et al., 2005). Studies by Oke et al. (2002),
Wilkin et al. (2005), Shulman and Paduan (2009), Stanev et
al. (2015, 2016a), and others have demonstrated the value of
assimilating HF radar observations to improve the estimation
of the coastal ocean state.

Observing System Simulation Experiments (OSSEs) and
Observing System Experiments (OSEs) are widely used
techniques for assessing and optimizing ocean observational
systems. OSSEs involve numerical simulations that test the
potential impact of hypothetical observations on forecast
models before actual observations are made, enabling im-
proved planning and cost-effective observational strategies.
In contrast, OSEs assess the impact of existing observa-
tions by systematically removing certain datasets from as-
similation systems and evaluating the resulting degradation
in model performance. OSSEs and OSEs have the capability
to incorporate diverse observing systems, including satellite-
based observations, HF radars, buoys with low-cost sensors,
and autonomous vehicles. These approaches are useful for
refining data assimilation techniques and guiding the de-
velopment of future observational networks. For further de-
tails, we refer readers to Oke and Sakov (2012) and Fujii et
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al. (2019), who provide comprehensive discussions on the
methodologies and applications of OSSEs and OSEs in oper-
ational oceanography. An in-depth review of OSSE method-
ologies, as well as insights into how OSSE and OSE method-
ologies contribute to improving ocean forecasting, design-
ing observational systems, and refining numerical models, is
given in Zeng et al. (2020). These approaches can help iden-
tify gaps in existing coastal observing networks, assess oper-
ational failure scenarios, and evaluate the potential of future
observation types. Pein et al. (2016) used an OSE-type ap-
proach to investigate the impact of salinity measurements in
the Ems Estuary on the reconstruction of the salinity field,
identifying observation locations that are more suitable for
model–data synthesis. This type of analysis can contribute to
the design and optimization of both existing and future ob-
servational arrays, especially in coastal regions where fine
resolution is required.

3.6 Riverine forcing and its role in coastal ocean
modelling

Rivers play a critical role in shaping coastal circulation and
stratification by delivering freshwater, nutrients, and sed-
iments that influence estuarine and shelf dynamics. The
treatment of riverine inputs in ocean models remains a
key source of uncertainty, especially when estuarine plume
dynamics and mixing processes are unresolved. In many
coarse-resolution systems, river discharge is prescribed via
simplified surface or salinity fluxes, which may misrepre-
sent the spatial structure and strength of river plumes (Sun
et al., 2017; Verri et al., 2020). To address this, high-
resolution and regional-scale models increasingly incorpo-
rate momentum-carrying river inflows or artificial estuar-
ine channels (Herzfeld, 2015; Sobrinho et al., 2021). For
instance, Nguyen et al. (2024) demonstrated how high-
resolution modelling in the German Bight captures the hy-
drodynamic and biogeochemical responses to extreme river
discharge events, showing significant implications for salin-
ity, stratification, and nutrient dispersion during floods. These
findings underscore the importance of resolving riverine in-
flow variability and extreme events in coastal ocean predic-
tion systems.

Recent work has also focused on operational strategies
for river forcing (Matte et al., 2025 in this report), includ-
ing real-time discharge data integration (e.g. from GloFAS;
Harrigan et al., 2020) and estuary box models that approxi-
mate sub-grid plume behaviour (Sun et al., 2017). These ap-
proaches aim to enhance predictive capabilities while main-
taining computational feasibility in global-to-coastal mod-
elling chains. Choosing the appropriate river input strategy is
therefore application-dependent and strongly influenced by
spatial resolution and target phenomena.

3.7 Integration of AI in coastal modelling and forecasting

The integration of artificial intelligence (AI) and machine
learning (ML) techniques in ocean and coastal forecasting
has rapidly evolved, providing novel methodologies for im-
proving predictive accuracy, computational efficiency, and
data assimilation in operational models. Recent advances in
AI-based approaches for parameterizing subgrid-scale pro-
cesses, hybrid modelling techniques, and ensemble forecast-
ing highlight the transformative potential of these methods in
coastal modelling (Heimbach et al., 2025 in this report).

Machine learning applications in coastal ocean modelling
primarily focus on two domains: (1) enhancing conventional
physical models by integrating ML-based parameterizations
and error corrections and (2) fully data-driven approaches
that employ neural networks as surrogate models (Zanna and
Bolton, 2020; Bolton and Zanna, 2019). The former lever-
ages ML techniques to optimize numerical model perfor-
mance by improving subgrid parameterizations, bias correc-
tion, and data assimilation strategies, while the latter explores
the potential of deep learning algorithms such as Fourier neu-
ral operators (FNOs) and transformer-based architectures for
high-resolution ocean forecasting (Bire et al., 2023; Wang et
al., 2024).

Data assimilation, a critical component of operational
forecasting, benefits from AI-enhanced methodologies that
improve state estimation and predictive skill. AI-driven data
assimilation frameworks, such as the combination of deep
learning with variational assimilation (4D-VarNet) (Fablet
et al., 2023), have demonstrated superior performance in
coastal and regional models. Hybrid approaches incorporat-
ing AI techniques into numerical models have been applied
to refine coastal simulations, allowing for better representa-
tion of multi-scale interactions (Brajard et al., 2021). Fur-
thermore, convolutional neural networks (CNNs) have been
successfully used for downscaling sea surface height and cur-
rents in coastal areas, addressing challenges related to obser-
vational gaps and improving model resolution (Yuan et al.,
2024).

Coastal high-resolution models often suffer from errors
stemming from inaccuracies in numerics, forcing (e.g. open
boundaries, meteorological inputs), and unresolved physi-
cal processes. AI-based methods have been increasingly ap-
plied to address these challenges, particularly in the realm
of subgrid-scale parameterization. AI-enabled parameteriza-
tions of mesoscale and submesoscale processes using deep
learning techniques, such as residual networks and genera-
tive adversarial networks (GANs), have shown promising re-
sults in reducing bias in numerical simulations (Gregory et
al., 2023; Brajard et al., 2021). Additionally, hybrid meth-
ods combining physics-based models with ML correction
schemes have demonstrated improved predictive skill for re-
gional and coastal ocean models (Perezhogin et al., 2023).

The use of ML for extreme event prediction has gained
increasing attention in the context of operational coastal
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forecasting. AI models trained on historical storm data and
high-resolution numerical simulations have been utilized to
enhance storm surge predictions and improve early warn-
ing systems (Xie et al., 2023). Transformer-based models,
originally developed for atmospheric forecasting, have been
adapted for ocean applications, achieving competitive skill in
eddy-resolving ocean simulations (Wang et al., 2024).

The integration of AI in ensemble forecasting further con-
tributes to uncertainty quantification, providing probabilistic
predictions for extreme coastal events. Bayesian inference
techniques, combined with ML-based ensemble prediction,
offer a framework for optimizing multi-model ensembles and
reducing systematic errors in operational forecasts (Boual-
lègue et al., 2024; Penny et al., 2023). The synergy between
ML-driven emulators and traditional ensemble forecasting
techniques has the potential to enhance coastal hazard pre-
dictions, particularly in regions prone to high-impact events.

Despite the advancements in AI for coastal modelling, sev-
eral challenges remain. The interpretability and robustness of
ML-based solutions need further improvement, particularly
for operational applications requiring high levels of reliabil-
ity (Bonavita, 2024). Additionally, integrating ML models
with real-time observational data streams, including remote
sensing and high-frequency radar (HFR) networks, remains
an ongoing area of research (Reichstein et al., 2019). The ex-
tension of ML-based ocean forecasting to seasonal and inter-
annual timescales also poses challenges related to long-term
stability and physical consistency (Beucler et al., 2024).

4 Summary and outlook

The critical importance of high-resolution coastal modelling
is demonstrated in addressing the complexities of dynamic
coastal systems. Coastal areas are shaped by the interplay of
mesoscale and submesoscale processes, strong tidal currents,
atmospheric and hydrologic forcing, and significant anthro-
pogenic pressures. Advanced techniques, including turbu-
lence closure models for capturing vertical mixing and pa-
rameterizations of bottom roughness and vegetation drag for
representing energy dissipation, are essential for accurately
modelling these systems. The nonlinear interactions between
tidal currents and wind waves emerge as a particularly influ-
ential factor, affecting ocean circulation and improving the
accuracy of sea surface temperature predictions.

It is shown that the integration of high-resolution obser-
vational data, such as HF radar for surface currents and the
SWOT satellite mission for sea surface topography, has the
potential of substantially enhancing the resolution and relia-
bility of coastal models. These data facilitate a detailed char-
acterization of processes in transition zones spanning estuar-
ies, nearshore areas, and the open ocean. Improved coupling
between regional and local models has advanced the repre-
sentation of boundary conditions and enabled simulations of

small-scale dynamics, essential for capturing the complexity
of the coastal continuum.

The application of data assimilation techniques addresses
the rapid variability inherent in coastal processes, highlight-
ing the challenges and limitations of predictability in these
highly dynamic environments. Strategies to extend the accu-
racy of short-term and localized forecasts are provided, lever-
aging multiscale data integration to refine predictions. The
ability to simulate interactions between atmospheric con-
ditions, hydrological inputs, and oceanographic processes
strengthens the foundation for more accurate modelling. This
contribution underscores the importance of bridging observa-
tional and modelling gaps to achieve a comprehensive un-
derstanding of coastal systems. It highlights the necessity
of integrating small-scale dynamics with broader processes
to better inform sustainable coastal management practices.
By aligning advanced techniques with high-resolution data,
this work offers a pathway for more robust representations
of coastal ocean dynamics and supports informed decision-
making in the face of growing environmental and societal
challenges.

Several directions for advancing coastal ocean modelling
to address evolving environmental and societal challenges
are highlighted. Future efforts should focus on integrating
emerging observational technologies, such as high-resolution
satellites (e.g. SWOT), autonomous platforms like gliders
and drones, and hyperspectral imaging. These tools, com-
bined with machine learning techniques for data analysis, can
bridge gaps in spatial and temporal data coverage, providing
a richer understanding of coastal dynamics.

Developing coupled modelling systems that seamlessly in-
tegrate atmospheric, hydrological, and oceanographic pro-
cesses will be essential for capturing the complexities of the
land–ocean continuum. Incorporating river runoff, estuarine
dynamics, and nearshore processes into such systems will
significantly enhance the scope and accuracy of predictions.
Addressing computational challenges associated with high-
resolution modelling is equally critical; this includes leverag-
ing high-performance computing and cloud-based process-
ing and optimizing numerical schemes to achieve efficient
and precise simulations.

Improving data assimilation techniques through ensem-
ble approaches and probabilistic forecasting is another prior-
ity. These methods will better integrate multiscale observa-
tional data, reduce uncertainties, and enhance the reliability
of predictions in dynamic environments. Concurrently, there
is a pressing need to explore the impacts of climate change
on coastal systems, including sea-level rise, increased storm
intensity, and shifting precipitation patterns. Understanding
these impacts will guide the development of adaptive strate-
gies and strengthen resilience in vulnerable coastal zones.

The future of coastal modelling also depends on foster-
ing interdisciplinary collaboration, engaging expertise from
oceanography, meteorology, hydrology, and ecology. By
aligning scientific research with societal needs and practical
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applications, collaborative frameworks can ensure the rele-
vance and effectiveness of modelling efforts. Additionally,
applying artificial intelligence to optimize model parameter-
ization, grid design, and predictive analyses will unlock new
capabilities for simulating small-scale processes like sedi-
ment transport and ecosystem responses.

Finally, enhancing global and regional coordination for
coastal monitoring and modelling will be vital. Strengthen-
ing networks to ensure consistency in data and modelling
approaches can foster international collaboration, facilitating
the exchange of best practices and resources. These collec-
tive advancements promise to deepen our understanding of
coastal systems and provide robust tools to manage and pro-
tect these critical areas sustainably in the face of ongoing and
future challenges.
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biogeochemical processes, numerical strategies must be employed. The authors provide an outlook on the status
of operational ocean forecasting systems in eight key regions including the global ocean: the West Pacific and
Marginal Seas of South and East Asia, the Indian Seas, the African Seas, the Mediterranean and Black Sea,
the North East Atlantic, South and Central America, North America (including the Canadian coastal region, the
United States, and Mexico), and the Arctic.

The authors initiate their discussion by addressing the specific regional challenges that must be addressed and
proceed to discuss the numerical strategy and the available operational systems, ranging from regional to coastal
scales. This compendium serves as a foundational reference for understanding the global offering, demonstrating
how the diverse physical environment – ranging from waves to ice – and the biogeochemical features besides
ocean dynamics can be systematically addressed through regular, coordinated prediction efforts.

1 Introduction

The vast and dynamic nature of the world’s oceans plays
a critical role in shaping global climate, supporting biodi-
versity, and sustaining human economies. Accurate ocean
forecasting is essential for a variety of applications, includ-
ing maritime navigation, fisheries’ management, disaster pre-
paredness, and climate research. As such, the ability to pre-
dict ocean conditions with precision is of paramount impor-
tance to scientists, policymakers, and coastal communities
alike.

Over the past few decades, significant advancements have
been made in the field of ocean forecasting, driven by im-
provements in observational technologies, numerical model-
ing, and computational capabilities. Satellite remote sensing,
autonomous underwater vehicles, and enhanced buoy net-
works have expanded our ability to monitor oceanic param-
eters with unprecedented resolution and coverage. Concur-
rently, sophisticated numerical models, integrating physical,
chemical, and biological processes, have improved the accu-
racy and reliability of ocean predictions.

Despite these advancements, the status of ocean forecast-
ing varies widely across different regions of the world. Fac-
tors such as technological infrastructure, scientific expertise,
and financial resources influence the development and imple-
mentation of forecasting systems. Some regions have estab-
lished comprehensive and highly accurate forecasting capa-
bilities, while others struggle with limited data availability
and outdated methodologies.

This paper aims to provide a comprehensive overview of
the current state of ocean forecasting services across various
regions globally (reanalysis services are not contemplated).
By examining the technological, scientific, and operational
aspects of forecasting systems in different parts of the world,
we seek to identify both the strengths and gaps in existing
capabilities.

The main inventory for operational ocean forecasting ser-
vices existing today is the atlas of these services hosted on the
OceanPrediction Decade Collaborative Center (DCC) web-
site (https://www.unoceanprediction.org/en/atlas, last access:
8 May 2025) In this already growing inventory more than 150

worldwide systems are described in detail showing a compre-
hensive picture of the activity in this field (Fig. 1).

The following sections describe, starting with global sys-
tems and analyzing region by region, the situation across dif-
ferent regions of the world ocean.

2 Global ocean forecasting services

Historically, global ocean forecasting efforts were initially
focused on naval operations and scientific research, with
early models developed to support strategic planning and
military navigation. The advent of global observing sys-
tems, such as satellite altimetry and Argo floats, provided
unprecedented datasets, leading to significant improvements
in model accuracy.

With the establishment of initiatives such as the Global
Ocean Data Assimilation Experiment (GODAE) in the late
1990s and early 2000s, operational oceanography moved to-
ward a coordinated, global-scale framework. These efforts
laid the foundation for modern global ocean forecasting ser-
vices, which now provide continuous, high-resolution fore-
casts tailored for various sectors, including fisheries, ship-
ping, offshore energy, and climate services.

Today, global operational ocean forecasting systems are
operated by multiple institutions worldwide, using state-of-
the-art ocean circulation and sea ice models coupled with
data assimilation techniques. These models are forced by at-
mospheric reanalysis and forecast systems, integrating satel-
lite and in situ observations to improve the accuracy of pre-
dictions. The outputs of these systems are crucial for under-
standing ocean dynamics, predicting extreme events such as
hurricanes and marine heat waves, and supporting policy de-
cisions related to climate change adaptation and marine re-
source management.

Table 1 shows the global systems already registered in
the OceanPrediction DCC Atlas and their main characteris-
tics. All the detailed information about these systems can be
found at the OceanPrediction DCC Atlas. To the knowledge
of the authors, only a few systems remain to be incorporated
into this inventory: LICOM, operated by the Institute of At-
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Table 1. Global ocean forecasting services on the OceanPrediction DCC Atlas.

System Organization Forecasted Essential Ocean
Variables (EOVs)

Numerical
model(s)

Horizontal
grid type

Maximum
resolution

Global Ocean Analysis
and Forecast System
(Copernicus Marine
GLO-MFC)

Mercator Ocean
International

Currents, salinity, sea ice
concentration, temperature, sea
state (waves), biogeochemistry
variables

NEMO, MFWAM,
and PISCES

Regular 9 km

FIO Ocean Forecasting
System

First Institute of
Oceanography

Currents, ocean surface heat
flux, salinity, sea ice
concentration, sea state (waves),
temperature

MOM – GFDL and
MASNUM wave
model

Curvilinear
(MOM) and
Regular
(MASNUM)

10 km

neXtSIM-F Nansen
Environmental and
Remote Sensing
Center

Sea ice concentration neXtSIM – Next
Generation Sea Ice
Model

Regular 4 min

Global FOAM Met Office Currents, salinity, sea ice
concentration, sea surface height
(sea level), temperature

NEMO and
WAVEWATCH III

Curvilinear 7 km

INCOIS global HYCOM Indian National
Centre for Ocean
Information Services

Currents, salinity, sea surface
height (sea level), temperature

HYCOM – HYbrid
Coordinate Ocean
Model

Regular 25 km

MOVE-JPN Meteorological
Research Institute

Currents, ocean surface heat
flux, ocean surface stress,
salinity, sea ice concentration,
sea surface height (sea level),
temperature

MRI.COM V4 TriPolar
coordinate
system

15 min

Real-Time Ocean
Forecasting System
(RTOFS)

National Oceanic
and Atmospheric
Administration

Currents, salinity, temperature HYCOM TriPolar
coordinate
system

9 km

Hurricane Forecast
Analysis System (HAFS)

National Oceanic
and Atmospheric
Administration

Currents, salinity, sea state
(waves), temperature

HYCOM Curvilinear 1 km

INPE wave prediction
system

National Institute for
Space Research

Sea state (waves) WAVEWATCH III Regular 15 min

INCOIS-WAVEWATCH
III

Indian National
Centre for Ocean
Information Services

Sea state (waves) WAVEWATCH III Regular 8 km

Global Ocean Forecasting
System GOFS16

Centro
Euro-Mediterraneo
sui Cambiamenti
Climatici

Currents, ocean surface heat
flux, salinity, sea ice
concentration, sea surface height
(sea level), temperature

NEMO TriPolar
coordinate
system

3 km

Global Ice Ocean
Prediction System

Environment and
Climate Change
Canada

Currents, salinity, sea surface
height (sea level), temperature,
sea ice properties (concentration,
thickness, snow depth,
temperature, internal pressure)

NEMO and CICE TriPolar
coordinate
system

12 km

Chinese Global
Operational
Oceanography Forecasting
System

National Marine
Environmental
Forecasting Center

Currents, salinity, sea ice
concentration, sea surface height
(sea level), temperature

MaCOM Unstructured 5 min

JCOPE-FGO Japan Agency for
Marine-Earth
Science and
Technology

Currents, salinity, sea state
(waves), sea surface height (sea
level), temperature

POM Regular 10 km
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Figure 1. The OceanPrediction DCC Atlas (https://www.unoceanprediction.org/en/atlas/models, last access: 8 May 2025).

mospheric Physics (China), and NAVY-ESPC and GOFS3,
both developed by the Naval Research Laboratory (USA).

Other interesting characteristics can be derived from the
replies not shown in the area. For the circulation models, the
number of vertical layers ranges from 29 to 98, Z coordinates
being the most used system (four systems). All the systems
(except some wave systems) use data assimilation, but only
two make use of ensemble techniques.

The data sources employed for assimilation change from
one system to another, the ones used being ARGO profiles,
satellite altimetry, satellite sea surface temperature (SST),
buoy data, drifters, XBT, and gliders. Six systems use dy-
namic coupling between different models or model compo-
nents. All systems, but one, provide third parties with data,
directly or after a specific request. Surprisingly, almost half
of the systems declare not being validated operationally. The
forecast horizon is usually between 5 and 10 d.

It is interesting to note that in regions where regional and
coastal systems are scarce, global services have become a
main source of information for many applications. In African
seas, for example, outputs from the global services are dis-
seminated on a local web portal. Bandwidth is cited as the
most common problem affecting the accessibility of global
forecast services. Some countries provide bulletins in pdf
format, and some add local value to global services by de-
veloping and disseminating optimized metrics. Examples of
the variety of use types are provided here:

– Mauritius (using Copernicus Marine Global Ocean
Monitoring and Forecasting (GLO-MFC) products).
The Mauritius Oceanography Institute provides a web
portal, available at https://moi.govmu.org/gmes/forecast
(last access: 8 May 2025) (affiliated with GMES and

Africa) that outputs a regional subset of global sea-state
forecasts. Monthly bulletins are targeted at users from
the marine and fisheries’ realm for monitoring purposes
and are a source of information for researchers and the
scientific community.

– Kenya (using INCOIS). The Kenyan Meteorological
Department provides daily and weekly marine fore-
cast bulletins (https://meteo.go.ke/, last access: 8 May
2025).

– Mozambique (using INCOIS). The Integrated Ocean
and Information System for Mozambique is developed
by the INCOIS project Hyderabad and the Regional In-
tegrated Multi-Hazard Early Warning System (RIMES).

– South Africa (using the NCEP Global Ensemble Fore-
cast System – Wave (GFS-Wave), available at https:
//www.nco.ncep.noaa.gov/pmb/products/gfs/, last ac-
cess: 8 May 2025, and Copernicus Marine GLO-MFC
products). The South African Weather Service uses the
National Centers for Environmental Prediction – Global
Forecast System (NCEP GFS), as well as currents from
the Copernicus Marine Service forecasts, to run an oper-
ational regional and coastal wave and storm surge model
(Barnes and Rautenbach, 2020). Additionally, they dis-
seminate regional information based on Copernicus Ma-
rine forecasts.

– South Africa (using Copernicus Marine GLO-MFC
products). Regional value was added to Copernicus Ma-
rine products, e.g., marine heat waves, location of the
Agulhas Current (e.g., distance from shore), and SST
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anomalies in an operational service. The tools are cur-
rently being integrated into the web portal.

3 West Pacific and Marginal Seas of South and East
Asia

In the West Pacific and Marginal Seas of South and East Asia
(WPMSEA), ocean forecasting systems are particularly im-
portant due to the region’s vulnerability to tropical cyclones,
tsunamis, and other oceanic phenomena, as well as socio-
economic development needs.

Regional and coastal forecasts

In this region, it is very frequent that the regional systems
also include nested coastal applications, so the description is
merged into a single section.

The Japan Coastal Ocean Predictability Experiment
(JCOPE; https://www.jamstec.go.jp/jcope/htdocs/e/jcope_
consortium.html, last access: 8 May 2025) system, devel-
oped by the Japan Agency for Marine-Earth Sciences and
Technology (JAMSTEC) based on the Princeton Ocean
Model (POM; Blumberg and Mellor, 1987), is a dynamic
ocean monitoring and forecasting system (Miyazawa et al.,
2009, 2021). Originally tailored for the western North Pa-
cific at eddy-resolving resolutions, JCOPE is now extended
to cover the global ocean with a new eddy-resolving quasi-
global ocean reanalysis product, the JCOPE Forecasting
Global Ocean (JCOPE-FGO). The model covers the global
ocean from 75° S to 75° N except for the Arctic Ocean, with
a horizontal resolution of 0.1° × 0.1° and 44 sigma levels.
The validation against observational data demonstrates
JCOPE-FGO’s effectiveness, while assessments using
satellite data show its capability in representing upper-ocean
circulation (Kido et al., 2022). The significance of river
forcing for accurately representing seasonal variability is
emphasized by highlighting the inclusion of updated global
river runoff in JCOPE-FGO and its significant impacts on
near-surface salinity.

Kyushu University in Japan operates several real-time
ocean forecasting systems based on the Research Insti-
tute for Applied Mechanics Ocean Model (DREAMS;
https://dreams-c1.riam.kyushu-u.ac.jp/vwp/html/vwp_
about.html.ja, last access: 8 May 2025) system. This
3-dimensional ocean model is formulated in spherical
coordinates with a horizontal resolution of approximately
1.5 km and features 114 vertical levels (Liu and Hirose,
2022). Its domain covers a rectangular region southwest of
Japan, including part of the East China Sea Shelf and the
deep Okinawa Trough.

The Mass Conservation Ocean Model (MaCOM) model
(Feng et al., 2024) is a newly established and operated global
circulation model developed at National Marine Environ-
mental Forecasting Centre (NMEFC) in China (Fig. 2). This
model adopts a complete physical framework, the key fea-

tures of which are mass conservation, enthalpy conservation,
and salt conservation, and which is based on pressure coordi-
nates. The MaCOM system is used from global (∼ 10 km) to
coastal (∼ 100 m) forecasts and replaces several previously
used models in NMEFC. The LASG/IAP Climate System
Ocean Model (LICOM) Forecast System (LFS) is another
forecast system from China that maintains a horizontal res-
olution of 3600 × 2302 grids (1/10°) and 55 vertical levels.
Assessments indicate that LFS performs well in short-term
marine environment forecasting. For example, LFS is also
able to forecast the marine heat waves around the China Sea,
especially in the South China Sea and East China Sea (Yi-
wen et al., 2023). The surface wave–tide–circulation coupled
ocean model developed by the First Institute of Oceanogra-
phy (FIO-COM) is another global model with an emphasis
on tidal mixing (Qiao et al., 2019). The model is developed in
close partnership with the Intergovernmental Oceanographic
Commission of UNESCO Sub-Commission for the Western
Pacific (WESTPAC). MaCOM ocean forecast systems also
provide regional as well as coastal forecasts on scales from
kilometers to meters with various applications from oil spill
forecasts and fishery to ice drifts and marine heat waves.

The BMKG Ocean Forecast System (BMKG-OFS; https:
//maritim.bmkg.go.id/ofs, last access: 8 May 2025) is an ad-
vanced forecasting system developed by Indonesia’s Meteo-
rological, Climatological, and Geophysical Agency (BMKG)
to provide accurate and timely oceanographic information
for the Indonesian seas (Fig. 3). Launched in 2017, BMKG-
OFS offers up to 7 d forecasts on various ocean parame-
ters, including wind, waves, swell, currents, sea temperature,
salinity, tides, sea level, and coastal inundation. The system
utilizes the WAVEWATCH III model to predict sea wave con-
ditions and the Finite Volume Community Ocean Model (FV-
COM) to provide information on ocean currents, salinity, and
sea temperature at various depths. There is a plan to improve
the horizontal and vertical resolutions and an atmospheric-
ocean-wave model.

Two major South Korean institutes, the Korea Hy-
drographic and Oceanographic Agency (KHOA) and
the Korea Institute of Ocean Science and Technology
(KIOST) (whose details are provided in the OceanPre-
dict National Report, 2020, https://oceanpredict.org/science/
operational-ocean-forecasting-systems/system-reports/, last
access: 14 May 2025), operate ocean forecasting systems
to support various activities. Since 2012, KHOA has oper-
ated the Korea Ocean Observing and Forecasting System
(KOOFS), consisting of nested ocean and atmospheric mod-
els with horizontal resolutions ranging from 4 to 25 km.
These models generate daily forecasting data covering re-
gional, sub-regional, coastal, and port areas, with resolutions
as fine as 0.1 km for major port areas.

Since 2017, KIOST has also operated the Ocean Pre-
dictability Experiment for Marine environment (OPEM) (Jin
et al., 2024), a regional ocean prediction system that pro-
vides weekly 10 d forecasts for the western North Pacific and

https://doi.org/10.5194/sp-5-opsr-5-2025 State Planet, 5-opsr, 5, 2025



CHAPTER3.1

6 M. Cirano et al.: A description of existing operational ocean forecasting services around the globe

Figure 2. Surface currents derived from the MaCOM system (source: https://english.nmefc.cn/ybfw/seacurrent/WestNorthPacific, last ac-
cess: 8 May 2025).

has shown strong performance in simulating ocean condi-
tions around the Korean Peninsula, particularly in response
to extreme events such as typhoons and coastal upwelling.
In 2020, a sub-coastal model with a resolution of ∼ 300 m
was established, nested within the coastal model, which itself
has a resolution of 1 km. In addition to these major oceano-
graphic centers, some universities are also developing coastal
forecasting systems.

Bluelink (https://research.csiro.au/bluelink/global/
forecast/, last access: 8 May 2025) is an Australian ocean
forecasting initiative established in 2003 through a collabo-
ration between the Commonwealth Scientific and Industrial
Research Organisation (CSIRO), the Bureau of Meteorol-
ogy, and the Australian Department of Defence. It aims to
develop and maintain world-leading global, regional, and
littoral ocean forecast systems to support defense applica-
tions and provide a national ocean forecasting capability
for Australia. Bluelink’s operational system, the Ocean

Modelling and Analysis Prediction System (OceanMAPS;
http://www.bom.gov.au/marine/index.shtml, last access:
8 May 2025), provides 7 d forecasts of ocean conditions,
including currents, temperature, salinity, and sea level, on
a near-global scale. These forecasts are crucial for various
sectors, including maritime industries, defense applications,
and climate research, aiding in decision-making and en-
hancing safety at sea (Brassington et al., 2023). Version 4,
operational since 2022, uses the ensemble Kalman filter
(EnKF).

4 Indian Seas

Forecasting Essential Ocean Variables (EOVs) for the In-
dian Seas comes with several hurdles compared to other re-
gions due to the complex nature of the ocean dynamics and
the specific characteristics of the Indian Ocean region such
as the land-locked northern boundary. Major processes that
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Figure 3. Significant wave height derived from BKMG-OFS system (source: https://peta-maritim.bmkg.go.id/ofs/, last access: 14 May
2025).

make forecasting difficult in the region include the monsoon
system, which brings abrupt and significant variability in
wind patterns, precipitation, and oceanic processes. The In-
dian Ocean is characterized by seasonally reversing circula-
tion patterns under the influence of monsoonal winds, coastal
upwelling, and interactions with neighboring ocean basins.
Comprehensive and high-quality observational data for ini-
tializing and validating ocean forecast models are scarce, par-
ticularly in remote areas and during extreme weather events.
The Indian Seas have a complex coastline with extensive es-
tuaries, deltas, and coral reef systems. Coastal processes, in-
cluding tides, waves, and sediment transport, interact with
ocean circulation and impact nearshore areas. Accurately
representing these coastal processes in forecasting models
poses challenges due to the high spatial variability and the
need for high-resolution data and modeling techniques.

4.1 Regional systems

The Indian National Centre for Ocean Information Services
(INCOIS) operates two regional ocean forecasting systems
utilizing the Hybrid Coordinate Ocean Model (HYCOM)
and the Regional Ocean Modeling System (ROMS). The re-
gional INCOIS-HYCOM has the highest resolution of ap-
proximately 6.9 km, followed by regional INCOIS-ROMS
with approximately 9.2 km resolution. Regional INCOIS-
HYCOM is forced with atmospheric variables from the
NCEP GFS and uses and assimilates sea surface temperature
(SST) data derived from the Advanced Very High Resolution

Radiometer (AVHRR) sensor, along-track sea level anoma-
lies, and in situ profiles from various observing platforms
using the Tendral Statistical Interpolation (T-SIS) scheme
data assimilation (DA) method (Srinivasan et al., 2022), tak-
ing boundary conditions from INCOIS global HYCOM de-
scribed earlier (Table 1).

ROMS from INCOIS uses atmospheric forcing from the
National Centre for Medium Range Weather Forecasting
(NCMRWF; https://www.ncmrwf.gov.in/, last access: 8 May
2025) Unified Model (NCUM) atmospheric system. It as-
similates SST and vertical profiles of temperature and salin-
ity from in situ platforms using a local ensemble transform
Kalman filter (LETKF) DA method. Data visualization and
products from these models are available through a web
interface (https://incois.gov.in/portal/osf/osf.jsp, last access:
8 May 2025) to users, and data are made available to users
on request.

INCOIS also provides operational wave forecasts through
its integrated Indian Ocean Forecasting System (INDOFOS;
https://incois.gov.in/portal/osf/osf_rimes/index.jsp, last ac-
cess: 8 May 2025). These forecasts are essential for mar-
itime safety, navigation, and various ocean-based activi-
ties. INCOIS utilizes the third-generation wind wave model
WAVEWATCH III (Tolman, 2009) (Fig. 4).

4.2 Coastal systems

INCOIS ROMS-Coastal is the only coastal model identi-
fied for the Indian Seas. It has approximately 2.3 km spa-
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Figure 4. Example of wave forecast produced by INCOIS.

tial resolution, which is forced with the same NCUM atmo-
spheric variables as in the case of ROMS and does not as-
similate any data but takes initial and boundary conditions
from the 9.2 km regional setup of ROMS. Data visualiza-
tion and products are made available through a dedicated IN-
COIS web portal, available at https://incois.gov.in/portal/osf/
osf.jsp (last access: 8 May 2025), and data are available to
users on request.

5 African Seas

The African Seas can be subdivided into six regions, based
on distinct ecosystem characteristics: the Canary Current
large marine ecosystem (LME), the Guinea Current LME,
the Benguela Current LME, the Agulhas–Somali Current
LME, the Red Sea LME and the Mediterranean Sea LME.
Aside from the Mediterranean Sea LME, which will be dis-
cussed separately, an overview of the landscape with respect
to operational ocean forecast services will be provided be-
low. Operational ocean modeling is a developing field, with
limited capacity in most parts of Africa. Operational services
in these regions therefore depend largely on core global prod-
ucts and vary in levels of complexity, from disseminating lo-
cally relevant information via monthly bulletins to limited
area forecast models that use global products at their bound-
aries. While various types of ocean forecast services exist to
support national priorities, two consortia have been devel-
oped through Global Monitoring for Environment and Se-
curity (GMES; https://gmes.rmc.africa/, last access: 8 May
2025) and Africa to provide more regional support for marine

and coastal operations. These are Marine and Coastal Opera-
tions for Southern Africa and the Indian Ocean (MarCOSIO;
https://marcosio.org/, last access: 8 May 2025) and Marine
and Coastal Areas Management in North and West Africa
(MarCNoWA; https://geoportal.gmes.ug.edu.gh/#/, last ac-
cess: 8 May 2025). These platforms currently make use of
global services for Earth observations (EOs) as well as ma-
rine forecast products that in some cases are optimized for
local conditions.

5.1 Regional systems

There are a limited number of regional forecast systems op-
timized specifically for African Seas.

– The Iberia Biscay Irish Marine Forecasting Centre (IBI-
MFC; https://marine.copernicus.eu/about/producers/
ibi-mfc, last access: 8 May 2025) Ocean Physics,
Waves and Biogeochemistry Analysis and Forecast
products, provided by the Copernicus Marine Service,
are suitable for use by regional services in north and
northwest Africa.

– The INCOIS project Hyderabad and the Regional In-
tegrated Multi-Hazard Early-Warning System (RIMES;
https://rimes.int/, last access: 8 May 2025) have devel-
oped an integrated high-resolution regional ocean fore-
casting system that encompasses the ocean regions of
Madagascar, Mozambique, and the Seychelles.

– The Integrated Red Sea Model (iREDS-M1) has been
developed by the King Abdullah University of Science
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and Technology in Saudi Arabia. Its atmospheric and
ocean (wave and general circulation) models are run-
ning on an operational basis to provide short-range fore-
casts for the Red Sea (Hoteit et al., 2021).

– The South African Weather Service (SAWS; https://
www.weathersa.co.za/; last access: 8 May 2025) pro-
vides regional wave, wave–current interaction and tide
forecasts, downscaled from global services, none of
which are assimilative (Barnes and Rautenbach, 2020).
They also provide an empirically derived algorithm-
based forecast of the sea ice edge for METAREA VII
(de Vos et al., 2021).

– The MarCNoWA focuses on delivering Earth observa-
tion (EO) services to coastal and marine environments
and fisheries:

– provision of potential fishing zone charts overlaid
with vessel traffic,

– monitoring and forecasting of oceanography vari-
ables,

– forecast of ocean conditions,

– oil spill monitoring,

– generation of coastal vulnerability indices and map-
ping of coastal habitats.

Through a network of national stakeholders, regional
fisheries and environmental bodies, academia, private
sector, and researchers, the project is to impact de-
cision making in the beneficiary countries. It down-
scales Copernicus Marine products and provides fore-
casts (Forecasts – Global Monitoring for Environment
and Security & Africa, https://gmes.rmc.africa/, last ac-
cess: 14 May 2025).

– The forecasting system GCOAST (Geesthacht Cou-
pled cOAstal model SysTem; https://www.hereon.
de/institutes/coastal_systems_analysis_modeling/
research/gcoast/, last access: 8 May 2025), devel-
oped by Hereon, is implemented at regional scale
for the western coast of Africa. GCOAST (available
at https://www.hereon.de/institutes/coastal_systems_
analysis_modeling/research/gcoast/index.php.en, last
access: 8 May 2025) is built upon a flexible and
comprehensive coupled model system, integrating the
most important key components of the regional and
coastal systems and, additionally, allowing information
from observations to be included. The operational
modeling system is developed based on a downscaling
approach from the Copernicus Marine GLO-MFC
forecast products at 1/12° resolution, focusing on the
western African coast. The wind wave model is based
on WAM (WAve Modeling). The atmospheric forcing
is taken from ECMWF.

5.2 Coastal systems

Operational ocean forecast services for African coasts in-
clude the following:

– The National Coastal Forecasting System for
Mozambique (FEWS-INAM) provides 3 d ocean
and meteorological forecasts in the form of daily
bulletins and text messages to support operations
at sea. It uses global NCEP GFS data to provide
meteorological and wave boundaries and GLOS-
SIS (https://www.deltares.nl/en/expertise/projects/
global-storm-surge-information-system-glossis, last
access: 8 May 2025) for the storm surge boundary
conditions. The forecasts include wave information,
tide and surge water levels, and atmospheric weather
information. This system was developed by a consor-
tium, including Mozambique’s Met Office INAM31,
Deltares, UK Meteorological Office, and the DNGRH.

– SAWS provides higher-resolution wave forecasts, op-
timized for key coastal regions as well as storm surge
forecasts. The information is disseminated on their
web portal (https://marine.weathersa.co.za/Forecasts_
Home.html, last access: 14 May 2025)

– The SOMISANA (A sustainable Ocean Modelling Ini-
tiative: a South African Approach, available at https:
//somisana.ac.za/, last access: 8 May 2025) has de-
veloped two limited-area downscaled bay-scale opera-
tional forecast systems for key areas around the South
African coastline, which are (i) Algoa Bay and (ii) the
southwest cape coast. The models run daily and pro-
vide 5 d forecasts of currents, temperature, and salin-
ity through the water column (Fig. 5). The models are
forced by the GFS atmospheric forecasts at the surface
and by the Global Ocean Analysis and Forecast sys-
tem provided by Copernicus Marine Service at the lat-
eral boundaries. The model outputs can be explored at
https://somisana.ac.za/. The validation reports are avail-
able for the two operational forecast models.

– Coastal and fluvial flood forecasting has been devel-
oped in response to the extreme storm surge and flood-
ing events on the KwaZulu-Natal coast of South Africa
by Deltares and the local municipality (details available
in the informative leaflet at https://publications.deltares.
nl/EP4040.pdf, last access: 8 May 2025). The coastal
(Delft3d) and fluvial (SWMM) models are run in fore-
cast mode (Delft-FEWS) every 6 h and provide 3 d fore-
casts. As inputs, they use global forecast services from
the ECMWF and the NCEP.

The coastal forecasting system developed in response
to extreme storm surge, waves, and flooding events along
the eastern coast of Ghana utilizes advanced modeling
techniques and global forecast services. The coastal model
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Figure 5. The web portal of the bay-scale forecast system developed by the SOMISANA team in South Africa. The web portal allows
users to explore the variables as well as scrutinizing various depth levels of the forecasts. The insets show the oil spill tracking functionality,
developed using the OpenDrift software, that allows for the seamless integration of the global and regional, bay-scale forecasts in tracking
the spill.

employed in this system is a flexible and modular modeling
platform GCOAST for regional and coastal applications.
The hydrodynamical model is based on SCHISM (Semi-
implicit Cross-scale Hydroscience Integrated System
Model; https://ccrm.vims.edu/schismweb/, last access:
8 May 2025), which is coupled with the wind wave model
(WWM). The coastal forecasting modeling platform en-
sures a flexible grid for the eastern coast of Ghana, with a
resolution ranging from 50 m in the estuaries up to 1 km.
The system is designed to provide both hindcasts and
forecasts. For hindcast simulations, it uses the GLORYS12
reanalysis (Global Ocean Physics Reanalysis, product
ID: GLOBAL_REANALYSIS_PHY_001_030; available
at https://data.marine.copernicus.eu/product/GLOBAL_
MULTIYEAR_PHY_001_030/description, last access:
8 May 2025). For forecasts, it uses the GLO-MFC (product
ID: GLOBAL_ANALYSIS_FORECAST_PHY_001_024).

Atmospheric forcing is provided by the ECMWF operational
forecast products. At the boundaries, the model is coupled
to the Global Ocean Physics Reanalysis GLORYS12 pro-
vided by the Copernicus Marine Service (as part of the
GLO-MFC product catalogue) and produced by Mercator
Ocean International. The coastal forecasting system incor-
porates tidal forcing from the Finite Element Solution 2014
(FES2014; Lyard et al., 2021) global ocean tide model,
which provides tidal elevations and currents on a 1/16°
grid and has demonstrated significant improvements over
previous versions, particularly in coastal and shelf regions.
This comprehensive approach ensures that stakeholders
receive timely and accurate information to prepare and
respond effectively to extreme events along the eastern
coast of Ghana. In addition to its predictive capability, the
system also supports environmental resilience. It integrates
mangrove vegetation into the modeling platform to assess
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and promote nature-based solutions for coastal protection.
This component enables the evaluation of scenarios in
which mangrove cover is varied to estimate its potential
to mitigate wave energy and reduce coastal erosion. The
implementation builds on the findings of recent studies
demonstrating the buffering role of mangroves against
hydrodynamic forces in the coast of Ghana, contributing to
sustainable coastal management strategies. These insights
guide the design of adaptive coastal management strategies
based on nature-based interventions (Jayson-Quashigah et
al., 2025).

6 Mediterranean and Black Sea

The beginning of the 21st century can be considered the start-
ing point of the Mediterranean and Black Sea’s operational
forecasting services thanks to the favorable conjunction of
several aspects:

– A general concept of operational oceanography was
emerging worldwide.

– The advent of new ocean monitoring technologies al-
lowed for multiplatform systems, including both in situ
monitoring and satellite remote sensing, that in addi-
tion to the development of internet network connections
started providing open data with a near-real-time avail-
ability (Tintorè et al., 2019).

– The development of numerical modeling and prediction
systems gave rise to the release of the first ocean fore-
cast of the Mediterranean Forecasting System (MFS) in
2000, which provided regular and freely available 10 d
predictions of the Mediterranean Sea dynamics with a
spatial resolution of 7 km (Pinardi et al., 2003).

– The first Black Sea nowcasting and forecasting systems,
developed during the first decade of 2000, were imple-
mented in the framework of the ARENA (http://old.ims.
metu.edu.tr/black_sea_goos/projects/arena.htm, last ac-
cess: 8 May 2025) and of the EU FP6 ECOOP (Euro-
pean COastalshelf sea OPerational observing and fore-
casting system) projects.

– The Mediterranean scientific community started to get
organized to establish a Mediterranean Operational
Oceanography Network (MOON), which in 2012 be-
came the Mediterranean Operational Network for the
Global Ocean Observing System (MonGOOS; https://
mongoos.eurogoos.eu/, last access: 8 May 2025). Also,
the Black Sea Community, within the Global Ocean
Observing System, has been established into the Black
Sea GOOS (https://eurogoos.eu/black-sea/, last access:
8 May 2025).

In the following, some details on the services implemented
in the Mediterranean and Black Sea are provided at regional

scale, for the whole basins, and at coastal scale (here the
global services are not considered since these basins have
strongly regional dynamics and maintain a connection to the
global ocean through the narrow Strait of Gibraltar, in the
case of the Mediterranean Sea, therefore, this section will
only consider regional and coastal services).

6.1 Regional systems

There are a limited number of regional forecast systems op-
timized specifically for African Seas.

During the last decades, major developments have been
undertaken to improve the operational forecasting systems
of the Mediterranean and Black Sea, first in a pre-operational
phase within MyOcean EU projects leading to the Coperni-
cus Marine Service since 2015. The Mediterranean (Med-
MFC; Coppini et al., 2023) and the Black Sea (BS-MFC;
Ciliberti et al., 2022) Monitoring and Forecasting Centers
can be considered the core services for these regions (Fig. 6).

They provide, every day, 10 d forecast fields at around 4
and 2.5 km resolution, in the Mediterranean and Black Sea
respectively, for the whole set of Essential Ocean Variables,
including currents, temperature, salinity, mixed layer thick-
ness, sea level, wind waves, and biogeochemistry, which are
freely available to any user (scientists, policymakers, en-
trepreneurs, and ordinary citizens, from all over the world)
though the Copernicus Marine Data Store. To support users,
tailored services and training, adapted to different levels of
expertise and familiarity with ocean data, are also provided.

Three operational systems compose both the Med-MFC
and the BS-MFC: the physical component, which is based
on the NEMO (Gurvan et al., 2022) ocean general circula-
tion model (OGCM); the wave component, which is based
on the third-generation spectral model, WAM (The Wamdi
Group, 1988); and the biogeochemical component, which is
based on the Biogeochemical Flux Model (BFM; Vichi et
al., 2020) and on BAMHBI (Grégoire et al., 2008; Capet et
al., 2016) for the Mediterranean and Black Sea, respectively.
The systems assimilate in situ and satellite data, including sea
level anomalies, along-track altimetry data, significant wave
height, sea surface temperature, and chlorophyll-a concen-
tration, provided by the corresponding Copernicus Marine
Thematic Assembly Centers, and are jointly and constantly
improved following users’ needs. These Mediterranean and
Black Sea core services, by providing accurate boundary
conditions in a timely manner, enable the implementation
of higher-resolution and relocatable forecasting systems in
different areas and support the development of many down-
stream applications and services.

In addition to the abovementioned core services, other
forecasting systems are implemented at regional scale such
as the following:

– A high-resolution Mediterranean and Black Sea sys-
tem based on the MITGCM (Massachusetts Institute of
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Figure 6. Mediterranean and Black Sea Forecasting Systems sea surface currents visualization as provided by the Copernicus Marine
Service.

Technology General Circulation Model; Marshall et al.,
1997) described in Palma et al. (2020). The system in-
cludes tides, is resolved at a 2 km resolution (and higher
resolution in specific areas), and is nested in the Med-
MFC. This system has been used as a basis to develop
a 1/16° model to assess present and future climate in
the Mediterranean Sea focusing on sea level change –
MED16 (Sannino et al., 2022).

– The KASSANDRA (http://kassandra.ve.ismar.cnr.it:
8080/kassandra, last access: 8 May 2025) storm surge
forecasting system for the Mediterranean and Black
Sea is based on the coupled hydrodynamic SHYFEM
(Umgiesser et al., 2004) and wave (WAVEWATCH III)
models, allowing for very high resolution in specific ar-
eas (Ferrarin et al., 2013).

– The MFS (Mediterranean Forecasting System; https:
//medforecast.bo.ingv.it/, last access: 8 May 2025) is de-
veloped at INGV (National Institute of Geophysics and
Volcanology, Italy) with 1/16° resolution and is based
on NEMO and implementing a 3D variational data as-
similation scheme (OceanVar; Dobricic and Pinardi,
2008).

– The physical and wave ocean system MITO (Napolitano
et al., 2022) provides 5 d forecasts of the Mediterranean
Sea circulation based on the MITGCM and is forced by
the Copernicus Mediterranean physical and wave fore-
casting products to generate 5 d forecasts data at a hori-
zontal resolution up to 1/48° degree.

– The POSEIDON (https://www.poseidon.hcmr.gr, last
access: 8 May 2025) basin-scale Mediterranean fore-
casting system (∼ 10 km resolution) ocean and ecosys-

tem state is developed at HCMR (Hellenic Centre for
Marine Research, Greece). This includes a hydrody-
namic model, based on POM (Blumberg and Mellor,
1987), which assimilates satellite and in situ data (Kor-
res et al., 2007), and a biogeochemical model, based on
ERSEM (European Regional Seas Ecosystem Model;
Baretta et al., 1995; Kalaroni et al., 2020a, b).

– The CYCOFOS wave forecasting system provides 5 d
forecasts of the Mediterranean and the Black Sea (Zo-
diatis et al., 2008) based on WAM and is forced by the
SKIRON high-frequency winds.

6.2 Coastal systems

Several coastal systems are developed and implemented in
the Mediterranean and Black Sea, not only for operational
uses but also for research purposes by a wide research com-
munity. These modeling systems generally make use of com-
munity models that are widely used by the scientific commu-
nity for a diverse range of applications including the hydro-
dynamical, waves and biogeochemical marine components.
In the following, several of them are illustrated, providing
main information and references for more details.

6.2.1 Hydrodynamics

– The IBI-MFC Physics Analysis and Forecasting Sys-
tem (https://data.marine.copernicus.eu/product/IBI_
ANALYSISFORECAST_PHY_005_001/description,
last access: 8 May 2025) provides operational analysis
and forecasting data at 1/36° resolution, implementing
the NEMO model integrated with a data assimilation
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scheme SAM2, which allows for a multivariate as-
similation of sea surface temperature together with
all available satellite sea level anomalies and in situ
observations.

– The Sistema de Apoyo Meteorológico y Oceanográfico
de la Autoridad Portuaria (SAMOA; Álvarez Fanjul et
al., 2018; Sotillo et al., 2019; García-León et al., 2022)
provides operational downstream services and a signifi-
cant number of high-resolution forecasting applications,
based on Copernicus Marine forecasting services and
the Spanish Meteorological Agency (for atmospheric
forecast), including 20 atmospheric models, 21 wave
models, and 31 circulation models. ROMS (Regional
Ocean Modeling System) is implemented at a resolu-
tion of 350 to 70 m.

– The WMOP model (Juza et al., 2016; Mourre et al.,
2018) based on ROMS is a downscaling of the Coper-
nicus Mediterranean system, with a spatial resolution
of 2 km and covering the western Mediterranean basin
from the Strait of Gibraltar to the longitude of the Sar-
dinia Channel. It is implemented by SOCIB (Balearic
Islands Coastal Observing and Forecasting System) and
is run operationally on a daily basis, producing 72 h
forecasts of ocean temperature, salinity, sea level, and
currents.

– A high-resolution numerical model, developed as part
of an operational oceanography system in the frame
of the Sistema Autonomo de Medicion, Prediccion y
Alerta en la Bahia de Algecira (SAMPA) project is im-
plemented by Puertos Del Estado (Spain), providing op-
erational ocean forecast data in the complex dynamical
areas of the Strait of Gibraltar and the Alboran Sea.

– The MARC (Modelling and Analyses for Coastal Re-
search) and ILICO (Coastal Ocean and Nearshore Ob-
servation Research Infrastructure) are implemented us-
ing the MARS3 model in the Bay of Biscay–English
Channel–northwestern Mediterranean Sea at 2.5 km
horizontal resolution and nested in the Copernicus Ma-
rine global system.

– The Tyrrhenian and Sicily Channel Regional Model
(TSCRM; Di Maio et al., 2016; Sorgente et al., 2016)
is based on a regional implementation of POM at 2 km
resolution and is nested into the Copernicus Mediter-
ranean Analysis and Forecasting system.

– The Southern Adriatic Northern Ionian coastal Fore-
casting System (SANIFS; Federico et al., 2017)
is a coastal-ocean operational system based on
the unstructured-grid finite-element 3D hydrodynamic
SHYFEM model reaching a resolution of a few meters.
It is a downscaled version of the Med-MFC physical
product and provides short term forecast fields.

– The Aegean and Levantine eddy-resolving model
(ALERMO; Korres and Lascaratos, 2003) is based on
POM implemented at 1/48° resolution and nested into
the Copernicus Mediterranean Analysis and Forecasting
system.

– The Cyprus Coastal Ocean Forecasting and Observ-
ing System (CYCOFOS; Zodiatis et al., 2003, 2018) is
specifically developed to provide a sub-regional fore-
casting and observing system in the eastern Mediter-
ranean (including the Levantine Basin and the Aegean
Sea). The latest system is forced by the Copernicus
Med-MFC physical forecasting system and implements
POM at 2 km resolution to produce initial and open
boundary conditions in specific locations.

– The TIRESIAS Adriatic forecasting system is based
on the unstructured grid 3D hydrodynamic model
SHYFEM and represents the whole Adriatic Sea to-
gether with the lagoons of Marano–Grado, Venice, and
the Po Delta (Ferrarin et al., 2019). It is a downscaled
version of the Med-MFC physical product and provides
3 d forecast fields.

6.2.2 Waves

– The IBI-MFC Waves Analysis and Forecasting system
(Toledano et al., 2022) is based on MF-WAM (Meteo-
France WAM). It is implemented at 1/36° resolution
and produces wave forecasts in the western part of the
Mediterranean Sea twice a day.

– The SAPO (Autonomous Wave Forecast System;
https://static.puertos.es/pred_simplificada/Sapo/d.
corunia/sapoeng.html, last access: 8 May 2025) based
on WAM is implemented at several Spanish ports with
a 72 h forecast horizon, and it is nested within the
PORTUS forecast system, an operational wave forecast
for Spanish Port Authorities.

– The WAMADR setup of ECMWF WAM is imple-
mented by the Slovenian Environment Agency for the
Adriatic and central Mediterranean domain with a hor-
izontal resolution of 72 h and a spatial resolution of
1.6 km. The model is forced by a hybrid ALADIN SI
and ECMWF surface wind product and runs daily.

– Several coastal and local wave applications providing
wave information near the harbors, as well as boundary
conditions for specific wave agitation inside the port ap-
plications, use the SWAN model (Booij et al., 1999).

6.2.3 Biogeochemistry

– The IBI-MFC Biogeochemical Analysis and Fore-
casting System (https://data.marine.copernicus.eu/
product/IBI_ANALYSISFORECAST_BGC_005_004/
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description, last access: 8 May 2025) is implemented
using the PISCES (Aumont et al., 2015) model at 1/36°
horizontal resolution.

– The Northern Adriatic Reanalysis and Forecast-
ing system (NARF) and the CADEAU physical-
biogeochemical reanalysis (Bruschi et al., 2021) imple-
ment the MITgcm–BFM coupled models in the North-
ern Adriatic Sea, reaching up to 750 m with a further
high resolution (∼ 125 m) and nesting in the Gulf of Tri-
este (https://medeaf.ogs.it/got; last access: 8 May 2025).

7 North East Atlantic

Operational oceanography in European countries was mainly
operated at a national level until the 1990s. In 1994, the Eu-
ropean part of the Global Ocean Observing System (Euro-
GOOS, https://eurogoos.eu/, last access: 8 May 2025) was
founded. It grouped these national endeavors into a network
of European monitoring and forecasting systems and initi-
ated several regional and thematic working groups to sup-
port specific developments. Since the early 1990s, the Eu-
ropean Commission has been actively funding programs to
support ocean monitoring and forecasting through, for in-
stance, its series of MyOcean projects (2009–2015) and its
ongoing ambitious Copernicus Earth observation program,
which includes the Copernicus Marine Service component.

Due notably to the coordinating efforts provided by the
Copernicus Marine Service over the last decade, the North
East Atlantic region is now well equipped in terms of op-
erational marine forecasting services. Also, each segment of
the North East Atlantic coastline is included in at least one
regional system, such that global forecast services are sel-
dom used directly, except for the provision of boundary con-
ditions to downstream forecast systems. An inventory of op-
erational marine and coastal models around Europe was com-
piled out of a survey conducted in 2018–2019 among mem-
bers of EuroGOOS and its related network of regional oper-
ational oceanographic systems (Capet et al., 2020), address-
ing the purposes, context, and technical specificities of oper-
ational ocean forecast systems (OOFSs). Here, we re-focus
this analysis on the North East Atlantic by excluding the Arc-
tic, Mediterranean, and Black Sea basins from the original
analysis. It should be noted that this inventory only includes
OOFSs actively reported to the survey and might therefore be
incomplete. A further expansion of the North East Atlantic
OOFS inventory is expected from the OceanPrediction DCC
Atlas.

Besides the three Copernicus Marine regional forecast ser-
vices, the inventory includes 35 other regional OOFSs and 32
coastal OOFSs, arbitrarily identified as systems with a spa-
tial resolution below 3 km and a longitudinal and latitudinal
domain extent below 5°.

7.1 Regional systems in the framework of the
Copernicus Marine Service

The major marine core service for the North East At-
lantic is provided by the Copernicus Marine Service and
its three regional Monitoring Forecasting Centres (MFCs)
dedicated to the Iberian, Biscay, and Irish seas (IBI-
MFC); European Northwestern Shelves (NWS-MFC; https://
marine.copernicus.eu/about/producers/nws-mfc, last access:
8 May 2025); and Baltic Sea (BAL-MFC; https://marine.
copernicus.eu/about/producers/bal-mfc, last access: 8 May
2025), respectively (Fig. 7).

In terms of modeling, each of these three MFCs is com-
posed of dedicated components addressing ocean circulation
(PHY), biogeochemistry (BGC), and wave dynamics (WAV).
These systems operate under the coordinated umbrella of
Copernicus Marine Service and therefore benefit from ho-
mogenized protocols in terms of operational data production,
validation, documentation, and distribution (Le Traon et al.,
2019). Products and related documentation can be accessed
through the central Copernicus Marine Data Store, together
with observational datasets including in situ, remote sensing,
and composite products for the Blue (physics and hydrody-
namics), Green (biochemistry and biology), and White (sea
ice) ocean. Operational data delivery is provided through on-
line data selection tools and a variety of automatic protocols
(e.g., Subset, FTP, WMTS), which effectively enables a num-
ber of operational downstream services to depend directly
on those core services. A catalogue of such downstream us-
age and its potentialities is exposed on the Copernicus Ma-
rine Use Cases portal (https://marine.copernicus.eu/services/
use-cases, last access: 8 May 2025).

7.2 Other regional systems

The 35 regional forecasts systems that are not operated by
Copernicus Marine are mostly operated by national enti-
ties and provide data free of charge to relevant users in
71 % of the cases. They address circulation (80 % of the re-
gional OOFSs), wave dynamics (23 %), and biogeochemistry
(14 %), as well as Lagrangian drift dynamics, for the sake of
oil spills and search and rescue services. Of these 35 systems,
12 report a dependence on the Copernicus Marine products
(including GLO-MFC forecast products) in terms of open-
sea boundary conditions. Many of these systems (10) benefit
from the SMHI e-Hype products to constrain river discharge.
Regarding atmospheric conditions, the majority (22 regional
OOFSs) rely on Pan-European products (typically provided
by ECMWF), but regional atmospheric products are also ex-
ploited, as qualitative operational products are provided by
national agencies in most European countries.

7.3 Coastal systems

A total of 32 coastal OOFSs are reported in the EuroGOOS
Coastal Working Group (CWG) inventory for the North Sea,
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Figure 7. The Copernicus Marine regional monitoring and forecasting centers operating in the area: IBI-MFC (in blue), NWS-MFC (in
orange), and BAL-MFC (in green). The map shows bathymetry (m) and the composite regions obtained from the MyOcean Viewer (https:
//marine.copernicus.eu/access-data/ocean-visualisation-tools, last access: 14 May 2025).

Baltic Sea, and European shelves, addressing circulation
(68 % of the coastal OOFSs), biogeochemistry (29 %), and
wave dynamics (4 %). Again, these OOFSs are mostly oper-
ated by public entities (although this is recognized as a po-
tential bias in the survey, as discussed in Capet et al., 2020)
and provide, in the vast majority of cases, forecast data that
are freely accessible to relevant users.

Among coastal OOFSs, the usage of land and atmospheric
forcing data from specific national sources is much more
common than for regional systems, indicating that adequate
products are available at local scales. Besides, several coastal
system operators rely on their own atmospheric or hydrology
model to obtain adequate boundary conditions. One could
highlight that 15 of the 35 reporting coastal OOFSs provide
forecasts at a spatial resolution below 500 m, at least in some
parts of their domain. In general, such systems also consider
fine bathymetry, with a minimal water depth of under 5 m
(Fig. 8).

According to the survey, which was in almost all cases
answered by model operators, OOFSs in the North East At-
lantic are relevant for marine safety, oil spills, and sea level
monitoring concerns (Fig. 9). However, the survey did not
consider the extent to which provided information was effec-
tively exploited by downstream operators. To a lesser extent,
some systems address biochemical issues such as water qual-
ity, harmful algal blooms, or coastal eutrophication.

Figure 8. Joint and marginal distribution of the minimal water
depth and spatial grid resolution, for all North East Atlantic coastal
model domains illustrated in Fig. 7.

8 South and Central America

The development of short-range ocean forecasting systems
in South and Central America is relatively recent with re-
spect to other systems in Europe, North America and East
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Figure 9. Number of regional and coastal models considered by their providers to be relevant for a proposed set of downstream sectorial
applications and phenomenon of interest. Based on the 2018–2019 EuroGOOS CWG survey (Capet et al., 2020).

Asia. They are very heterogeneous, reflecting their different
needs, local observational systems, and infrastructure. Oper-
ational systems are present today in Argentina, Brazil, Chile,
Colombia, Panama, and Peru, with a focus on regional- and
basin-scale domains in the western Pacific, South Atlantic,
and the Caribbean Sea and on tackling forecasts on short-
term to seasonal timescales. All of them are rapidly evolving
considering the outstanding scientific and technical knowl-
edge gained by the oceanographic global community and the
permanent increase in computational resources. Some details
about some of these systems are presented below.

8.1 Regional systems

In Brazil, a few regional (and coastal) forecast systems ex-
ist, considering the vast oceanic area under Brazilian ju-
risdiction (branded as Blue Amazon), which currently total
4.4×106 km2, approximately half of the Brazilian terrestrial
area, with the possibility of reaching 5.7×106 km2 in the fu-
ture (Franz et al., 2021). The forecasting service results are
not available for the public in general due to restrictions im-
posed by public–private partnerships and other constraints.

The first operational ocean forecast system with data as-
similation in Brazil was implemented in the Brazilian Navy
Hydrographic Center in 2010 based on the Hybrid Coordi-
nate Ocean Model (CHM-HYCOM) and on an optimal in-
terpolation scheme, developed by the Oceanographic Mod-
eling and Observation Network (REMO) (Lima et al., 2013).
Since 2014, CHM-HYCOM forecasts have been initialized
by the REMO Ocean Data Assimilation System (RODAS)
(Augusto Souza Tanajura et al., 2014; Tanajura et al., 2020),
based on the optimal interpolation scheme, which can assim-
ilate SST analysis, along-track or gridded sea level anoma-
lies (SLAs), and T –S vertical profiles. The ensemble mem-
bers are chosen according to the assimilation day from a pre-
vious free run. The most recent CHM-HYCOM + RODAS
configuration produces 5 d forecasts daily and encompasses
the entire North, equatorial, and South Atlantic with 1/12°

horizontal resolution, to generate boundary conditions for a
regional domain grid covering the METAREA-V (35.8° S–
7° N, 20° W) with a horizontal resolution of 1/24°, both with
32 vertical hybrid layers. Other models are also employed
operationally in CHM. ADCIRC is employed in Guanabara
Bay, São Sebastião and Ilha Bela proximities, and Sepetiba
Bay, as well as in Santos and Paranaguá ports.

Regarding the Argentine Sea, the Modelling System for
the Argentine Sea (MSAS) is used to model the barotropic
component of the ocean state of the southwestern At-
lantic continental shelf. MSAS is based on the Coastal
and Regional Ocean Community Model (CROCO; http://
www.croco-ocean.org, last access: 8 May 2025). Dinápoli
et al. (2023) modified the source code to resolve the depth-
averaged horizontal momentum and continuity equations, as
well as consider spatially varying bottom friction. MSAS
covers the Southwestern Atlantic Continental Shelf with a
trapezoidal shape designed to avoid a significant number of
land points and ensure the regular spatial resolution of 8 km
in both directions. Along the boundaries, the model is forced
with tides and continental discharges, whereas in the inte-
rior of the domain, the ocean surface is forced by atmo-
spheric pressure and surface wind stress (Dinápoli et al.,
2020a, 2021, 2023). In addition, MSAS has been used to
conduct several scientific studies on the barotropic nonlinear
interactions in the region (Dinápoli et al., 2020b), the tidal
resonance over the continental shelf (Dinápoli and Simion-
ato, 2024), and the genesis and dynamics of the storm surges
along the coast (Alonso et al., 2024; Dinapoli and Simion-
ato, 2025; Dinapoli et al., 2024). Recently, the Asynchronous
Ensemble Square Root Filter (4DEnSRF; Sakov et al., 2010;
Whitaker and Hamill, 2002) DA scheme was also incorpo-
rated as part of MSAS. The 4DEnSRF scheme is currently
used to produce optimal initial conditions for the forecasts
by assimilating tidal gauges and remote sensing observa-
tions. Because of the large and nonlinear impact of the wind
uncertainty on the regional barotropic dynamics (Dinápoli
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et al., 2020a), an ensemble wind forecast is used. Dinápoli
et al. (2023) used the 31-member ensemble from NCEP’s
Global Ensemble Forecast System, together with a set of
perturbations of the tides. Since the atmospheric ensemble
provides the wind field, rather than the wind stress, the for-
mer is estimated using the parameterization of Simionato et
al. (2006). The incorporation of 4DEnSRF into MSAS fore-
casts, together with an ensemble post-processing technique
developed by Dinápoli and Simionato (2022), has improved
the 96 h forecasts by reducing the model bias and correcting
the timing of the strong storm surges that affect the north-
ern part of the Southwestern Atlantic Continental Shelf. It is
important to mention that MSAS is running pre-operatively,
and its solutions will be made public in the future. Rele-
vant developments have been achieved with regard to wind
wave modeling. The numerical model WAVEWATCH III
was regionalized and validated with direct observations from
a number of buoys scattered in the Southwestern Atlantic
Continental Shelf.

In Peru, a large effort in climate modeling has been
undertaken in the 2000s so far to develop sub-seasonal
forecasts and anticipate the significant socio-economic
consequences of the El Niño–Southern Oscillation (ENSO).
The Geophysical Institute of Peru (IGP) has recently
implemented a regional Earth system model in forecast
mode called IGP RESM-COW v1. This system released in
December 2023 (Montes et al., 2023) is based on CROCO
(Debreu et al., 2012) coupled to the WRF atmospheric
model through the OASIS coupler (Craig et al., 2017)
and now serves as an additional forecasting tool for es-
tablishing the recommendations by the ENFEN (Estudio
Nacional del Fenómeno El Niño), a governmental body
responsible for monitoring, studying, and predicting the
El Niño phenomenon and its impacts on the country. The
IGP RESM-COW v1 has a horizontal resolution of 12 km
for the ocean component and 30 km for the atmospheric
component. The domain covers the entire Peruvian territory
and part of the eastern Pacific. The current implementation
takes as input the forecasts of the NOAA CFSv2 global
climate model that have been corrected using a combination
of reanalysis data (GLORYS outputs and the NCEP Final
Analysis (FNL) data) and the climatological averages of the
NCEP coupled forecast system model version 2 (CFSv2)
and of a 22-year-long simulation of the IGP RESM-COW v1
model. This allows forecasts of oceanic and atmospheric
conditions to be made up to 7 months in advance (Segura et
al., 2023). In addition, the Navy of Peru via the Dirección
de Hidrografía y Navegación (Dihidronav) implemented the
WAVEWATCH III for representing the wave behavior at the
northern, central and southern off Peru with a prediction
up to 5 d (https://www.naylamp.dhn.mil.pe/dhn2/secciones/
Pronosticos/pronosticosolas/Peru_Olas.php, last access:
8 May 2025). This product is available for the scientific
community and the public interested in understanding wave
conditions (https://cpps-int.org/index.php/wave-watch, last

access: 8 May 2025). Operation systems are also under
development at IMARPE (Instituto del Mar del Peru,
https://www.gob.pe/imarpe, last access: 8 May 2025) based
on the CROCO system, which targets the aquaculture
industry in the central Peru region (Arellano et al., 2023).
IMARPE and IGP also produce forecasts of ocean condi-
tions at regional scale (Equatorial Kelvin wave amplitude
in the Eastern equatorial Pacific) at sub-seasonal timescales
based on shallow water models (Mosquera-Vasquez et al.,
2014).

As part of a 10-year-long national program (CLAP),
CEAZA (Center for Advanced Studies in Aride Zones) is
also currently developing an operational forecast system for
the Coquimbo region (central Chile) based on CROCO ini-
tialized by Mercator forecasts in order to inform the fish-
ery industry and the public. The 7 d lead time forecasts are
to be provided through a mobile app (https://app.ceaza.cl/,
last access: 14 May 2025) along with real-time observations
(temperature, oxygen) from a buoy at Tongoy bay, a hot spot
for the scallop aquaculture industry. The system is based
on a CROCO configuration at 3 km resolution (Astudillo et
al., 2019) and is coupled to a simple biogeochemical model
(BioEBUS) that has been tuned and validated for the western
coast of South America (Montes et al., 2014; Pizarro-Koth et
al., 2019).

In Colombia, the Marine Meteorological Service (SMM;
in Spanish), hosted by the Dirección General Marítima (DI-
MAR) as part of the Ministry of Defense, has co-developed
the Integrated Forecast System for Comprehensive Maritime
Security (SIPSEM; in Spanish; Urbano-Latorre et al., 2023)
over the last 8 years. SIPSEM is an ecosystem of climate
services (Goddard et al., 2020) for met-oceanographic ap-
plications, providing a suite of demand-driven and action-
able information to ensure maritime safety and protect life
at sea, while contributing to international regulations in the
SOLAS, SAR, IALA, PIANC, IMO, and WMO conventions.
Focusing on the ocean component, SIPSEM uses CROCO
involving different domains and nests, tailored for the dif-
ferent applications and coastal complexities. Application on
a regional scale in the Colombian Caribbean and Pacific
employs a horizontal resolution equal to 9.16 km. Differ-
ent CROCO forecast systems are nested in global forecasts
produced by HYCOM + NCODA, Copernicus Global Ocean
Physics Analysis and Forecast, and the US Global Navy
Coastal Ocean Model. They are forced with the Weather and
Research Forecast Model (WRF) with 27 km of horizontal
resolution nested in GFS forecasts. For wind-generated wave
prediction, daily WAVEWATCH III (Tolman et al., 2002)
forecasts are used for local and regional areas with 3.7 and
18.5 km and are periodically calibrated by fine-tuning var-
ious model parameters to best represent the local observa-
tions. SWAN (Booij et al., 1999) is also used in nearshore and
ports applications. Some key SIPSEM forecasts are publicly
available via a web portal, available at https://meteorologia.
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dimar.mil.co/ (last access: 8 May 2025), developed targeting
the general user.

8.2 Coastal systems

Regional to coastal operational models for the Brazilian
Coast started to be developed in 2018 by the Centre for Ma-
rine Studies (CEM), from the Federal University of Paraná
(UFPR), in collaboration with MARETEC, a research cen-
ter of the Instituto Superior Técnico (IST – Universidade
de Lisboa) from Portugal, through the application of the
MOHID modeling system. This initiative, called Brazilian
Sea Observatory (BSO), was initially supported by the User
Uptake program from Copernicus Marine Service. In order
to deliver high-resolution forecasts of the Brazilian coast,
an operational modeling system was developed based on a
downscaling approach from the GLO-MFC physical anal-
ysis and forecast system at 1/12° resolution, focusing on
the southeastern Brazilian shelf, including estuarine systems
with important port activities and large environmental pro-
tection areas. Nowadays, the operational modeling system
includes a model covering the southeastern Brazilian shelf
with a horizontal resolution of 1/24°; a model covering the
coasts and adjacent shelf of the states of Santa Catarina,
Paraná, and São Paulo with a horizontal resolution of 1/60°;
and high-resolution models (∼ 120 m) for coastal systems
(Florianópolis bays, Babitonga Bay, and Paranaguá Estuar-
ine Complex). The system is maintained by CEM/UFPR.
Furthermore, an operational model was developed for the
north of Brazil, encompassing the states of Amapá, Pará,
and Maranhão and the Amazon River and Pará River estuar-
ies, with a horizontal resolution ranging from 1/24 to 1/60°.
The atmospheric forcing comes from the WRF model im-
plemented by the Brazilian National Institute for Space Re-
search (INPE) with 7 km of horizontal resolution. The oper-
ational models have a vertical discretization reaching about
1 m of resolution near the surface.

In Chile, efforts to implement operational forecasting sys-
tems were initially led by the Navy, with a focus on swell
forecasting for the entire Chilean coast or some key sites.
These efforts have recently diversified to address issues
around marine resource management (industrial and artisanal
fisheries, aquaculture) and extreme event prediction. They
are mostly based on the use of the CROCO WRF models.
As part of the University of Concepción, COPAS Coastal
Center is currently developing a forecast coupled system
(CDOM-Portuario) based on WRF (https://www.mmm.ucar.
edu/models/wrf, last access: 8 May 2025), WAVEWATCH
III, SWAN, and CROCO to deliver 3 to 6 d forecasts of
oceanic and weather conditions in the harbors of Coronel
(378° S), Arica (17.5° S), and Antofagasta (21.5° S). The sys-
tem is currently delivering operational products at 1 km res-
olution in uncoupled mode (offline). It targets a resolution
of 300 m in fully coupled mode. The national Fisheries De-
velopment Institute (IFOP) has recently developed an opera-

tional system called CHONOS-MOSA for the south part of
central Chile (Reche et al., 2021), focused on the inland seas
of the Los Lagos and Aysén regions. It provides forecasts
at a 3 d lead time based on CROCO at 1.2 km. The atmo-
spheric forcing is derived from a forecast run based on WRF
at 3 km with open boundary conditions from the Global Fore-
cast System (NCEP GFS). Ocean boundary conditions are
from GLO-MFC physical forecast products, and river run-
offs from 35 point sources are used based on the FLOW prod-
ucts. Forecasts are provided online at https://chonos.ifop.cl/
(last access: 20 May 2024).

Besides these initiatives funded by the academic and pub-
lic sectors, there are some private companies that also pro-
vide ocean and atmospheric forecasting for port operations
in Chile. Siprol SpA provides wave, wind, and wave fore-
casts. They also provide wave forecasting for Ecuador. Also,
the company PRDW provides the Automated Wave Forecast
System (AWFOS), with 3 h to 10 d forecasting using a math-
ematical model coupled with a global wave model wave for
deep waters. PRDW also provides forecasting for various
sites in South American countries. Finally, the port of San
Antonio, the first port in Chile in terms of port operations,
is using models from the Direction of Port Construction (Di-
rección Obras Portuarias) in collaboration with the National
Institute of Hydraulic of Chile (https://www.dop.pelcam.io/
about, last access: 14 May 2025). The wind forecasting is
provided by the San Antonio Port Company (EPSA). In all
the above, the model used and the validation and details in the
model configuration are unknown. Coastal applications em-
ploy a resolution of 1.83 km, and port applications employ a
grid with resolutions varying from 750 to 150 m. The daily
prediction system also involves an ensemble of CROCO fore-
casts, continuously calibrated using a pattern-based approach
for the regional domain, and an additional local calibration
for the coastal domains at higher resolutions.

9 North America

The marine environment characterizing North America –
from the icy Arctic waters to the warm ones of the Gulf of
Mexico – is deeply influenced by complex biogeochemical
and physical processes. The coastal and open-ocean regions
of Canada, the United States, and Mexico need to be accu-
rately forecasted to support the blue economy, ecosystem
management, and disaster preparedness. This section pro-
vides an overview of existing ocean forecasting systems in
the region from a regional to a coastal scale, highlighting pre-
diction capabilities and main challenges they are expected to
address.

9.1 Regional systems

Due to the strong economic impacts noted above, work on
operational oceanography began in Canada in the late 20th
century. The first system for the GSL included a baroclinic
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ice–ocean model at 5 km resolution (Saucier et al., 2003).
Shortly thereafter, a similar system was implemented for
Hudson Bay (Saucier et al., 2004). The GSL system was cou-
pled to an atmospheric model (Pellerin et al., 2004) and later
implemented at the Canadian Meteorological Centre (Smith
et al., 2013a). A system was also put in place for the Grand
Banks (Wu et al., 2010).

The developments of these foundational systems led
to recognition within the Government of Canada of
the potential benefits that could be achieved through
the development and implementation of a hierarchy of
operational oceanographic systems and products. As
a result, the Canadian Operational Network for Cou-
pled Environmental PredicTion Systems (CONCEPTS;
https://science.gc.ca/site/science/en/concepts, last access:
8 May 2025) initiative was put in place between Environ-
ment Canada, the Department of Fisheries and Oceans, and
the Department of National Defence (Smith et al., 2013b;
https://science.gc.ca/site/science/en/concepts). The CON-
CEPTS initiative developed strong ties to Mercator Ocean to
accelerate the development of a Canadian ocean assimilation
capacity to complement the expertise in ice–ocean modeling
and atmosphere–ice data assimilation. This effort produced
the Global Ice Ocean Prediction System (GIOPS; https:
//science.gc.ca/site/science/en/concepts/prediction-systems/
global-ice-ocean-prediction-system-giops, last access:
8 May 2025; Smith et al., 2016), which paved the way
for the first ever operational global medium-range fully
coupled atmosphere–ice–ocean forecasting system (Smith
et al., 2018). Subsequently, a 16 d and monthly ensemble
coupled forecasting system was implemented (Peterson et
al., 2022), based on the same ice–ocean model configuration
and initialized using GIOPS analyses.

In 2017, the Canadian Government agreed to take re-
sponsibility for METAREA regions 17 and 18 of the Global
Marine Distress and Safety System. This required the
dissemination of warnings for the weather and ice hazards
over a pie-shaped region stretching from the Bering Strait
to north of Greenland and up to the North Pole. As a result,
the Regional Ice Ocean Prediction System (RIOPS; https:
//science.gc.ca/site/science/en/concepts/prediction-systems/
regional-ice-ocean-prediction-system-riops, last access:
8 May 2025; Smith et al., 2018) was developed to produce
analyses and forecasts over METAREA 17 and 18 regions
but also including all Canadian coastal waters from 44° N in
the Pacific Ocean through the Arctic and down to 26° N in
the Atlantic Ocean. RIOPS evolved from an initially ice-only
system (Buehner et al., 2016; Lemieux et al., 2016) based
on the development of the CREG12 ocean configuration
(Dupont et al., 2015).

As part of the Year of Polar Prediction (YOPP; Goessling
et al., 2016) from 2017–2019, a pan-Arctic high-resolution
coupled atmosphere–ocean system was developed and run
operationally to support Arctic field campaigns and opera-
tional activities. This system, called the Canadian Arctic Pre-

Figure 10. RTOFS high-resolution oceanic model spatial domain
including subregions (source: https://ocean.weather.gov/index.php,
last access: 8 May 2025).

diction System (CAPS; Casati et al., 2023), used the RIOPS
ice–ocean configuration coupled to a 3 km resolution atmo-
spheric model to produce 48 h forecasts. This system was
retired following YOPP but is now in the process of being
reinstalled in 2025.

In the United States, the National Oceanic and Atmo-
spheric Administration (NOAA) and the Department of the
Navy jointly pushed for the development of robust opera-
tional forecasting systems from a regional to a coastal scale
to provide support safe maritime operations, including trop-
ical cyclone predictions, search and rescue, response to ma-
rine emergencies, and operations near the marginal sea ice
zone (Davidson et al., 2021).

NOAA operates different ocean forecasting systems to
support monitoring in the US region. The (Atlantic) Real-
Time Ocean Forecast System (RTOFS; https://polar.ncep.
noaa.gov/ofs/download.shtml, last access: 8 May 2025) is
a regional data-assimilating nowcast–forecast system oper-
ated by the NCEP, based on the HYCOM model. The grid
is telescopic and orthogonal, varying from approximately 4–
5 km near the US east coast to almost 17 km near west Africa
(Fig. 10) (Mehra and Rivin, 2010). The system runs on a
daily basis with a 24 h assimilation hindcast and produces
2D ocean forecasts on hourly basis for sea surface height (m),
sea surface salinity (PSU), sea surface temperature (°C), sea
surface currents (m s−1), and mixed layer thickness (m) and
3D ocean forecasts over 40 pressure levels up to 5 d (120 h)
for salinity (PSU), temperature (°C), currents (m s−1), and
mixed layer thickness (m).

The NOAA Ocean Prediction Center (OPC), as part of
NCEP, maintains and develops five operational desks that run
in 10 h shift for the Atlantic Regional, the Atlantic High Seas,
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the Pacific Regional, the Pacific High Seas, and the Out-
look. They are devoted to producing gridded forecasts for
hazards, winds, waves, weather and ice accretion, focusing
only on US exclusive economic zones. Products for the At-
lantic and the Pacific Regional desks include 24 h surface and
wind and wave forecasts, while the Atlantic and Pacific High
Seas desks produce analysis two times per shift and 48 h fore-
casts. The Pacific High Seas includes Alaska and Arctic pro-
jections in addition to forecast products. The Outlook desk
provides medium-range forecasts for 72 and 96 h (source:
https://www.weather.gov/marine/, last access: 14 May 2025).
In such a context, specific operational services are operated
to provide valuable support for any meteo-marine emergency
occurring in the region.

The operational Hurricane Analysis and Fore-
cast System (HAFS; https://www.aoml.noaa.gov/
hurricane-analysis-and-forecast-system/, last access:
8 May 2025) of NCEP has provided a reliable and skillful
model on tropical cyclone track and intensity since 2023.
It is forced by atmospheric fields provided by the NOAA
Global Forecast System (NCEP GFS) and uses the RTOFS
fields as ocean initial and boundary conditions. HAFS is
configured with two storm-centric domains with nominal
horizontal resolutions of 6 and 2 km, respectively.

The NOAA Tide Predictions (https://tidesandcurrents.
noaa.gov/tide_predictions.html, last access: 8 May 2025)
system provides tidal forecasts in specific stations located on
the west coast, on the east coast, on the gulf coast, in the Pa-
cific, and on the Caribbean islands. Queries are allowed on
hourly, 15 min, and 6 min frequencies.

The Instituto de Ciencias de la Atmósfera y Cambio
Climático at the Universidad Nacional Autónoma de México
(UNAM) has developed and currently maintains a regional
forecast system that includes meteorology (for Mexico and
adjacent regions), ocean circulation (currently the Gulf of
Mexico), waves (global and regional with higher resolution),
sea level, tides and storm surge, volcanic ash dispersion, oil
spill dispersion in the ocean, and fire smoke dispersion.

The different components of the system began to work in
different years, and UNAM has tried to keep them working
every day of the year, being successful at more than 99 % of
the time. This system of models is the base of other systems
that are developed for other institutions such as the Mexi-
can National Weather Service, PEMEX (e.g., the national oil
company), and CENAPRED, which is part of the national
civil system protection. Table 2 summarizes the main char-
acteristics of systems operating in Mexico.

The operational ocean circulation model for the Gulf of
Mexico circulation operates at a resolution of 1/25° of a de-
gree using HYCOM, generating hourly output on a daily ba-
sis. The model utilizes a distinct bathymetry and coastline
compared to the HYCOM Consortium’s model. Surface forc-
ings are provided by our WRF model, while global HYCOM
data are used for open boundary conditions. Initial conditions
are derived from global HYCOM, with a restart from the

previous forecast if necessary. We are currently developing
an in-house data assimilation technique for improving initial
conditions. UNAM employs the WAVEWATCH III model on
a structured grid for wave forecasting. A global wave model,
driven by the Global Forecast System at a 1° resolution, pro-
vides boundary conditions for two regional models: one cov-
ering the Gulf of Mexico and the northwestern Caribbean Sea
and the other covering the eastern tropical Pacific. Both re-
gional models operate at a 15 km resolution, utilizing hourly
surface forcings from our WRF model. Storm surge fore-
casting is conducted using the ADCIRC model on a non-
structured mesh in two domains: one covering the Gulf of
Mexico and the northwestern Caribbean Sea and the other
covering the eastern tropical Pacific. The model resolution
along the coastline of these domains is at least 500 m reso-
lution. Open boundary conditions are provided by eight tide
components from the TP9 model, with surface forcings ob-
tained from our WRF model. The model produces forecasts
for up to 120 h, with hourly outputs.

9.2 Coastal systems

In the fourth phase of growth in Canadian operational
oceanography there was a recognition of the need for im-
proved coastal surface currents to support environmental
emergency response (e.g., for oil spills) and for electronic
marine navigation (e-Nav) as part of the Government of
Canada’s Ocean Protection Plan (OPP). Supported by OPP
funding, the CONCEPTS initiative developed a 2 km Coastal
Ice-Ocean Prediction System (CIOPS) for the east and west
coasts (Paquin et al., 2024). The ocean analyses for CIOPS
are now used to initialize coupled atmosphere–ice–ocean
forecasts covering the Great Lakes and Canadian east coast
as part of the Water Cycle Prediction System (Durnford et
al., 2018). As a result, the coupled GSL system was retired
in 2021.

A cascade of grids was then used to provide boundary
conditions from CIOPS for six port ocean prediction sys-
tems (POPSs). The POPS domains include Kitimat, Vancou-
ver Harbor, and Fraser River on the west coast and Canso,
St. John Harbor, and the St. Lawrence Estuary on the east
coast (DFO, 2023). These systems provide high-resolution
surface currents for electronic navigation, with resolutions
down to 20 m (Paquin et al., 2020).

While various biogeochemical modeling applications have
been made for Canadian coastal regions, these have yet to
culminate in an organized operational service. Discussions
are underway regarding the specific needs and how these can
be met (Lavoie et al., 2025).

The operational CONCEPTS system products are avail-
able through the Meteorological Service of Canada Open
Data platform (Data list/Liste des données – MSC Open
Data/Données ouvertes du SMC), including direct data ac-
cess and geospatial web services (Fig. 11). Data are also
available for download and visualization from the Ocean
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Table 2. Principal characteristics of the core services operating in Mexico.

Component Model Domain Resolution Start
date

Meteorology WRF-UNAM (https://pronosticos.atmosfera.unam.mx/
operativo/index.php/meteorologia, last access: 8 May
2025)

122.5 to 75.0° W and
0.0 to 37.0° N

15 km/5 km 2007

Ocean
circulation

HYCOM-UNAM
(https://pronosticos.atmosfera.unam.mx/hycom/index.php,
last access: 8 May 2025)

18.0 to 32.0° N and
98.0 to 76.0° W

1/25° 2014

Waves WAVEWATCH III-UNAM 15.0 to 38.0° N and
100.0 to 75.0° W

15 km 2009

Tides and
storm surge

ADCIRC-UNAM (https://pronosticos.atmosfera.unam.mx/
operativo/index.php/marea-de-tormenta, last access:
8 May 2025)

Two domains: (a) one
for the Gulf of Mexico
and (b) the other for the
eastern tropical Pacific
of Mexico

Variable, with
higher resolution
near the shoreline
which is 500 m

2017

Volcanic ash
dispersion

FALL3D-WRF-UNAM (https://pronosticos.atmosfera.
unam.mx/operativo/index.php/dispersion-de-cenizas, last
access: 8 May 2025)

For the Popocatépetl
volcano: 101.0 to
96.0° W and 17.0 to
21.0° N

5 km 2017

Oil spill
module

Quetzal-UNAM (https://pronosticos.atmosfera.unam.mx/
hycom/index.php/modelacion-de-derrames-de-petroleo,
last access: 8 May 2025)

Can be applied in
regions that have
meteorology and
oceanic data. Mainly
the Gulf of Mexico

Almost continuous
since it is
Lagrangian

2023

Smoke
module

Tezcatlipoca-UNAM
(https://pronosticos.atmosfera.unam.mx:20001/, last
access: 8 May 2025)

Can be applied in any
region with wind data
from model (at least
the same as our WRF)

Almost continuous
since it is
Lagrangian

2023

Navigator (https://www.oceannavigator.ca/public/, last ac-
cess: 8 May 2025).

At the coastal scale, many OOFSs are operated by
NOAA/NCEP to support safety and navigation.

– In the North Pacific, five systems are available:

– The West Coast Operational Forecast System
(WCOFS; https://tidesandcurrents.noaa.gov/ofs/
wcofs/wcofs.html; last access: 14 May 2025) is a
high-resolution forecasting system that operates
on the west coast, providing 3 to 7 d forecasts
for sea level, currents, temperature, and salinity.
The system is based on ROMS, implemented in
a spatial domain that stretches along the western
coast of the North American continent from 24° N
(Mexico) to 54° N (British Columbia), with a
horizontal resolution that varies from 2 to 4 km. It
assimilates SST, sea surface currents (SSUV), and
SLAs using the 4DVAR scheme (Kurapov et al.,
2017).

– The Cook Inlet Operational Forecast System
(CIOFS; https://tidesandcurrents.noaa.gov/ofs/
ciofs/ciofs.html, last access: 8 May 2025) gener-
ates water levels, water temperature and salinity,
and winds’ nowcast and forecast up to 48 h, four
times per day. The system is based on ROMS and
uses an orthogonal grid with horizontal resolution
that spans 10 m within the estuaries and navigation
channels to 3.5 km near offshore waters.

– The Salish Sea and Columbia River Op-
erational Forecast System (SSCOFS;
https://tidesandcurrents.noaa.gov/ofs/dev/sscofs/
sscofs_info.html, last access: 8 May 2025) provides
nowcast and forecast for water levels, currents,
water temperature, and salinity, incorporating
river forcing from available observations and tidal
forcing. The model has an unstructured triangular
grid. The resolution varies from ∼ 100 m along
the shoreline to 500 m in deeper parts of Puget
Sound and the Georgia Basin and increases to
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Figure 11. Model domain used for the CONCEPTS Canadian Arctic Prediction System (CAPS), which includes a 3 km resolution atmo-
spheric configuration coupled to the RIOPS ice–ocean configuration. The atmospheric surface temperature and winds are overlaid on a map
of sea surface temperature for RIOPS. Note that the ice–ocean domain has been extended to include the North Pacific Ocean down to 44° N.

10 000 m over the continental shelf. Resolution in
the Columbia River varies between 100 and 200 m.

– The San Francisco Bay Operational Forecast Sys-
tem (SFBOFS; https://tidesandcurrents.noaa.gov/
ofs/sfbofs/sfbofs_info.html, last access: 8 May
2025) is based on FVCOM for providing now-
casts and forecasts of water levels, temperature, and
salinity in the San Francisco Bay and in the San
Francisco Bay Entrance. The grid has a minimum
depth of 0.2 m and maximum depth of 106.8 m.
Grid resolution ranges from 3.9 km on the open-
ocean boundary to approximately 100 m near the
coast, indicating the flexibility of the grid size based
on bathymetry from the deep ocean to the coast.
Additionally, the higher resolution along the nav-
igational channels within the bay, from approxi-
mately 100 to 10 m, provides detailed current fea-
tures.

– In the Great Lakes, four FVCOM-based operational sys-
tems are available:

– the Lake Erie Operational Forecast System (LE-
OFS; https://tidesandcurrents.noaa.gov/ofs/leofs/
leofs_info.html; last access: 8 May 2025) at hori-
zontal resolution from 400 m to 4 km, with higher
resolution along the shoreline and in the shallow

western basin and coarser resolution for the open
waters in the middle and eastern basins;

– the Lake Michigan and Huron Operational Fore-
cast System (LMHOFS; https://tidesandcurrents.
noaa.gov/ofs/lmhofs/lmhofs_info.html, last access:
8 May 2025), at horizontal resolution from 50 m to
2.5 km, with higher resolution along the shoreline
and in the shallow western basin and coarser reso-
lution for the open waters in both lakes;

– the Lake Ontario Operational Forecast Sys-
tem (LHOFS; https://tidesandcurrents.noaa.gov/
ofs/loofs/loofs_info.html, last access: 8 May 2025),
at horizontal resolution from 200 m to 2.5 km, with
higher resolution along the shoreline;

– the Lake Superior Operational Forecast System
(LSOFS; https://tidesandcurrents.noaa.gov/ofs/
lsofs/lsofs_info.html, last access: 8 May 2025), at
horizontal resolution 200 m to 2.5 km, with higher
resolution along the shoreline.

– In the Gulf of Mexico, two systems are available:

– The northern Gulf of Mexico Operational Fore-
cast System (NGOFS2; https://tidesandcurrents.
noaa.gov/ofs/ngofs2/ngofs.html, last access: 8 May
2025) is based on FVCOM with a resolution from
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10 km on the open ocean to approximately 600 m
near the coast. Additional refinement of the grid
is provided within the bays from 45 to 300 m. The
system runs four times per day, providing a forecast
up to 48 h.

– The Tampa Bay Operational Forecast System
(TBOFS; https://tidesandcurrents.noaa.gov/ofs/
tbofs/tbofs_info.html, last access: 8 May 2025),
based on ROMS, has a resolution from 100 m to
1.2 km. It has been designed to include the whole
of Tampa Bay and the shelf to properly represent
the dynamics at the entrance to the bay.

– In the Atlantic, five ROMS-based systems provide now-
casts and forecasts up to 48 h four times per day:

– the Chesapeake Bay Operational Forecast Sys-
tem (CBOFS; https://tidesandcurrents.noaa.gov/
ofs/cbofs/cbofs_info.html, last access: 8 May
2025), with a resolution spanning 30 m to 4 km;

– the Delaware Bay Operational Forecast Sys-
tem (DBOFS; https://tidesandcurrents.noaa.gov/
ofs/dbofs/dbofs_info.html, last access: 8 May
2025), with a resolution ranging from 100 m up to
3 km;

– the Gulf of Maine Operational Forecast Sys-
tem (GoMOFS; https://tidesandcurrents.noaa.gov/
ofs/gomofs/gomofs_info.html, last access: 8 May
2025), at 700 m resolution approximately, with
forecast horizon up to 72 h;

– the New York and New Jersey Operational
Forecast System (NYOFS; https://tidesandcurrents.
noaa.gov/ofs/nyofs/nyofs.html, last access: 8 May
2025), which provides water levels and currents us-
ing a grid with horizontal resolution from 5 m to
7.5 km;

– the St. John’s River Operational Forecast Sys-
tem (SJROFS; https://tidesandcurrents.noaa.gov/
ofs/sjofs/sjofs_info.html; last access: 8 May 2025),
with horizontal resolution from 80 m to 4 km.

Academia, governmental institutes, and the private sector co-
operate for improving numerical modeling, engaging the en-
terprise to accelerate scientific research and excellence in US
coastal predictions. Examples of coastal systems that are de-
veloped in the United States include the following:

– The Coastal Storm Modeling System (CoSMoS), devel-
oped by the United States Geological Survey (USGS),
is a storm-induced coastal flooding, erosion, and cliff
failures system for the north-central coast, San Fran-
cisco Bay, southern California, and the central Califor-
nia coast (Barnard et al., 2014).

– The West Florida Coastal Ocean Model (WFCOM),
developed by the USF College of Marine Science in
Florida, is an unstructured grid FVCOM in the eastern
Gulf of Mexico that provides water level (storm surge)
forecasts as well as surface currents and surface salinity
(Zheng and Weisberg, 2012).

– The South Florida Hybrid Coordinate Ocean Model
(SoFLA-HYCOM) Shelf Circulation, developed by the
University of Miami, has a resolution that spans 1/25°
to 2 m close to the coast and includes shelf areas, shal-
low embayment, and the deep Straits of Florida (be-
tween Florida and Cuba) (Kourafalou et al., 2009).

– LiveOcean, developed by the University of Washing-
ton – Coastal Modelling Group, is mainly used for re-
search applications. It provides 3 d forecasts of cur-
rents, temperature, salinity, and many biogeochemi-
cal variables in the US Pacific Northwest. The model
horizontal resolution is 500 m in the Salish Sea and
near the Washington coast, growing to 3 km at the
offshore boundaries (source: https://faculty.washington.
edu/pmacc/LO/LiveOcean.html, last access: 14 May
2025).

10 Arctic region

In contrast to lower-latitude models, Arctic Ocean forecast
models are focused on simulating the correct sea ice condi-
tions, with the ocean below the mixed layer being of sec-
ondary importance on short timescales. However, this situa-
tion is expected to change with the retreating ice cover in the
Arctic Ocean driving impacts on ocean ecosystems and in-
creased activity across the Arctic region. There are 10 global
models that are used for Arctic forecasting. There are also
several regional models available and a handful of coastal
models. Most models with Arctic forecasts are from national
institutes that either represent large centers with dominant
global forecasting platforms, have a large amount of Arctic
research, or have an interest in maintaining a model due to
having a border with the Arctic.

Given the focus around sea ice, there are several similari-
ties across all forecasting systems, regardless of the domain.
Firstly, all models must have a sea ice component. Almost
all models use CICE as their sea ice model, with multiple
sea ice thickness categories. The Arctic Ice Ocean Predic-
tion System (ArcIOPS) uses the sea ice model in MITgcm,
while VENUS uses the ice component of POM, the GLO-
MFC physical analysis and forecasting system uses LIM2
and the Met Office FOAM and coupled models use CICE
currently but will move to using SI3 in the future. The FIO-
COM10 model uses the SIS sea ice model. The majority of
forecasting models with an ocean component use HYCOM
or NEMO for their ocean model; the exceptions are ArcIOPS
(MITgcm), NOAA PSL (POP2), and FIO-COM10 (MOM5).
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Most of the models have an ice–ocean coupling and use an
atmospheric forcing that has been created for a weather fore-
cast; examples are those from ECMWF, the Regional De-
terministic Prediction System, and NAVGEM. Four of the
models identified – one regional model (NOAA PSL CAFS)
and three global models (NAVY-ESPC, Met Office coupled
system and ECMWF) – are fully coupled to the atmosphere.

Another similarity between all models is the output vari-
ables. Those models with an ocean component provide stan-
dard variables (temperature and salinity) with most also pro-
viding velocities and sea surface height. Each model also
provides the standard sea ice variables (sea ice concentration,
sea ice thickness, and sea ice velocities) as outputs, generally
at hourly resolution. Additionally, all models use some form
of data assimilation over the initial part of the simulation be-
fore the forecast begins (usually one day). This is an impor-
tant part of Arctic forecasting given that the ability to forecast
sea ice depends heavily on the initial conditions. Most mod-
els assimilate the standard ocean variables (SST, sea surface
salinity (SSS), sea surface height (SSH), and temperature and
salinity profiles) and sea ice concentration.

Finally, perhaps one of the most important considerations
for users is whether the data are readily available and eas-
ily downloadable. The requirement for this varies greatly
depending on the user, but those needing information on
ships in the Arctic, for example, will need quick access
across potentially low bandwidth. All models related to the
Copernicus Marine Service (neXtSIM-F, TOPAZ5, Arctic
Ocean Biogeochemistry Analysis and Forecast, and Global
Ocean Physical Analysis and Forecasting) are available to
download for free from the Copernicus Marine website, and
there is a visualization tool on the information page. Most
other modeling systems have data for download and a vi-
sualization, although sometimes in different places; these
are the Barents-2.5km, NOAA ice drift, NOAA PSL, RI-
OPS, GIOPS, GOFS3.1, and RTOFS. The systems from DMI
and GOFS16 have a web page displaying the forecasts. As
noted in Sect. 9, the CONCEPTS systems (GIOPS, RIOPS,
CIOPS) are available through the Meteorological Service of
Canada Open Data platform (Sect. 9 provides additional de-
tails). The ArcIOPS, FIO-COM10 and NAVY-ESPC systems
are well-documented in the literature, but it is hard to find
a website that states where/if downloading is available. The
latter suggests some outputs are available for researchers if
they register for a login, but it is not stated how other users
can access the data. Similarly, it is difficult to find informa-
tion on how to access outputs from the Met Office FOAM
and its coupled data assimilation counterpart. For the global
ECMWF model, some data are available, but users must pay
for other variables.

There are strong crossovers between the global and re-
gional models, and therefore specific details of both domains
(covering the full Arctic) are provided below together, fol-
lowed by the Arctic coastal forecasts.

10.1 Regional systems

Several institutions are operating regional services in the
Arctic

– The Arctic Ice-Ocean Prediction System Ar-
cIOPS, available at http://www.oceanguide.org.cn/
IceIndexHome/ThicknessIce (last access: 8 May 2025;
Liang et al., 2019), is managed by the National Marine
Environmental Forecasting Center, China. It spans the
Arctic region down to 55° north. It uses MITgcm and
provides 168 h forecasts at 18 km resolution.

– The Danish Meteorological Institute (DMI) operates
an ocean forecasting system utilizing the HYCOM-
CICE model (Ponsoni et al., 2023; https://ocean.dmi.
dk/models/hycom.uk.php, last access: 8 May 2025).
This coupled ocean and sea ice model covers the At-
lantic Ocean north of approximately 15° S and the Arc-
tic Ocean, including Greenlandic waters. The system
features a horizontal resolution ranging from about 4–
5 km in the Arctic regions to approximately 10 km fur-
ther south. It is forced by atmospheric data from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) and produces 144 h forecasts twice daily, at
00:00 and 12:00 UTC.

– The neXtSIM-F forecasting system (Williams et
al., 2021; https://data.marine.copernicus.eu/product/
ARCTIC_ANALYSISFORECAST_PHY_ICE_002_
011/description, last access: 8 May 2025) is a stand-
alone sea ice model developed by the Nansen Environ-
mental and Remote Sensing Centre (NERSC). It utilizes
the neXtSIM model, forced by the TOPAZ ocean fore-
cast and ECMWF atmospheric forecasts. The system
assimilates OSI SAF (https://osi-saf.eumetsat.int/,
last access: 8 May 2025) sea ice concentration prod-
ucts daily, adjusting initial conditions and applying
compensating heat fluxes to enhance forecast accuracy.

– The National Institute of Polar Research (NIPR; https:
//www.nipr.ac.jp/sea_ice/e/forecast/, last access: 8 May
2025) in Japan provides Arctic Sea ice forecasts through
its Arctic Sea Ice Information Centre. These forecasts
are disseminated periodically, with reports typically re-
leased in May, July, August, and October each year. The
May to August reports focuses on predicting the open-
ing dates of Arctic sea routes and the sea ice distribution
through September, while the October report forecasts
sea ice distribution for the period of sea ice extension
from October onward.

– The NOAA Physical Sciences Laboratory (PSL; https:
//psl.noaa.gov/forecasts/seaice/about.html, last access:
8 May 2025) operates the Coupled Arctic Forecast
System (CAFS), an experimental sea ice forecasting
model. CAFS is a fully coupled ice–ocean–atmosphere
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model adapted from the Regional Arctic System Model
(RASM) and includes components such as the Weather
Research and Forecasting (WRF) atmospheric model,
the Parallel Ocean Program (POP) ocean model, the Los
Alamos Community Ice Model (CICE), and the Com-
munity Land Model (CLM). All components run at a
horizontal resolution of 10 km. The system is initialized
with the NOAA Global Forecast System (NCEP GFS)
analysis and Advanced Microwave Scanning Radiome-
ter 2 (AMSR2) sea ice concentrations. CAFS produces
10 d sea ice forecasts daily, with outputs posted online
at 02:00 UTC.

– The Regional Ice-Ocean Prediction System (RIOPS;
https://science.gc.ca/eic/site/063.nsf/eng/h_97620.
html, last access: 8 May 2025; Smith et al., 2021) is op-
erated by the Canadian Meteorological Centre (CMC).
It employs the Nucleus for European Modelling of the
Ocean (NEMO) coupled with the Los Alamos Sea Ice
Model (CICE). The system is forced by atmospheric
data from the Global Deterministic Prediction System
(GDPS) and provides a forecast horizon of up to 48 h.
The model domain covers the North Pacific Ocean from
the Bering Strait and the whole of the Arctic Ocean
and the North Atlantic down to 26° N, with a horizontal
resolution of approximately 3–4 km over the Arctic
Ocean. A fully coupled forecast system called the
Canadian Arctic Prediction System, which uses RIOPS
and a pan-Arctic atmospheric configuration at 2.5 km
resolution, is currently being reinstated (see Sect. 8 for
details) following its retirement in 2021.

– The TOPAZ5 system (https://data.marine.copernicus.
eu/product/ARCTIC_ANALYSISFORECAST_PHY_
002_001/description, last access: 8 May 2025) is
maintained by the NERSC. It utilizes the HYCOM
model coupled with the Ensemble Kalman Filter for
data assimilation. The system is forced by atmospheric
data from the ECMWF and provides a forecast horizon
of up to 10 d. The model domain encompasses the
North Atlantic Ocean and the Arctic Ocean with a
horizontal resolution of approximately 6.25 km.

– The VENUS forecasting system (Yamaguchi, 2013)
is operated by the Norwegian Meteorological Institute
(MET Norway). It employs the NEMO ocean model
coupled with the LIM3 sea ice model. The system is
forced by atmospheric data from the AROME-Arctic
weather prediction model and provides a forecast hori-
zon of up to 66 h. The model domain covers the Barents
Sea and adjacent Arctic waters with a horizontal resolu-
tion of 4 km.

There are several characteristics to be highlighted in these
systems:

– Most models are either coupled ice–ocean or coupled
ice–ocean–atmosphere models. However, there are a
few exceptions to this. The regional model neXtSIM-F
is a standalone sea ice model that uses TOPAZ5 ocean
and ECMWF atmosphere forecast forcings and there-
fore only outputs sea ice variables. It is the only model
to use a Lagrangian framework and a non-standard rhe-
ology. TOPAZ5 is the only model that has a version with
a coupling to ECOSMO, a biogeochemical model, and
additionally assimilates chlorophyll for input to this.

– The lowest resolution of the provided models is the re-
gional ArcIOPS, at around 18 km. The resolution of the
regional models is comparable to the global models.

– Apart from RIOPS, which runs for 84 h at hourly res-
olution, most models covering the full Arctic domain
provide outputs for 5 to 10 d, ranging from hourly out-
put to daily output. NOAA ice drift and NAVY-ESPC
provide forecasts for up to 16 d; the latter can also give
information for up to 45 d but at a lower resolution.

– Some models also provide additional sea ice vari-
ables; RIOPS, for example, and its global equivalent
GIOPS, provide ice pressure, while TOPAZ5 provides
sea ice type, albedo, and snow depth. The VENUS mod-
els include wave information. TOPAZ5 running with
ECOSMO outputs several biogeochemical variables in-
cluding dissolved inorganic carbon, oxygen, nitrate,
chlorophyll, and phytoplankton.

– The VENUS model is unique in that it provides map-
based forecasts for aiding ship navigation (generally in
support of research cruises) and is deployed on demand
rather than running continuously.

10.2 Coastal systems

There are a few coastal models available in the Arctic region.

– The coastal version of the DMI forecast model cov-
ers the Greenland region at 4–5 km resolution and uses
HYCOM-CICE like its regional version. It produces
forecasts up to 144 h ahead and is updated twice a day.

– The Barents-2.5km model (https://ocean.met.no/
models, last access: 8 May 2025) covers the Bar-
ents Sea and Svalbard region (Röhrs et al., 2023).
ROMS is run at a spatial resolution of 2.5 km with an
Arctic-specific atmospheric forcing, AROME-Arctic,
providing forecasts up to 66 h ahead, and is updated
every 6 h.

– The “storm surge” service (https://ocean.met.no/
models, last access: 8 May 2025) is a ROMS model
run in barotropic mode, covering the northern North
Atlantic, Barents Sea, and Svalbard up to the entrance
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to the Arctic Basin. It uses the MEPS 2.5 km atmo-
spheric model for outputs, providing forecasts for 120 h
updated every 6 h. Its main purpose is to simulate sea
level and storm conditions.

– The CIOPS-E system (Paquin et al., 2024) is a 1/36°
(around 2 km) resolution NEMO-CICE coupled model
that is forced by the High-Resolution Deterministic Pre-
diction System atmospheric forcing and covers the east
coast of Canada. During its assimilation, it also uses
RADARSAT satellite images. In addition to standard
sea ice and ocean variables, it outputs snow depth on
sea ice and ice pressure at hourly frequency for the fol-
lowing 48 h.

11 Conclusions

The global landscape of ocean forecasting services demon-
strates a solid and mature foundation, particularly through
the widespread availability and reliability of global models.
These models provide essential large-scale information and
underpin the functionality of numerous regional and coastal
systems. However, despite their robustness, global models
often lack the resolution required to address the finer-scale
dynamics necessary for many localized applications, partic-
ularly in coastal zones and regions with complex bathymetry
or strong human–ocean interactions.

A clear disparity exists in the coverage and capabili-
ties of regional and coastal forecasting systems. Some ar-
eas, particularly in developed regions, benefit from dense,
high-resolution services, while others – especially in less-
resourced coastal regions – remain underrepresented or un-
derserved. Furthermore, while physical and wave modeling
systems have seen significant advancements and widespread
implementation, biogeochemical models lag behind in both
availability and operational maturity. This gap limits our abil-
ity to provide comprehensive ecosystem forecasts and ham-
pers decision-making related to marine biodiversity, fish-
eries, and water quality.

Looking forward, emerging technologies such as artificial
intelligence (AI; Heimbach et al., 2025, in this report) hold
immense potential to bridge these gaps. AI techniques can
enhance model downscaling, fill data-sparse regions, and op-
timize system performance, thereby reducing disparities in
forecasting capacities globally. However, while technologi-
cal solutions are making impressive advancements and can
have a great impact in the implementation of the ocean value
chain (Ciliberti and Coro, 2025, in this report; Porter and He-
imbach, 2025, in this report) they remain insufficient on their
own. Continued efforts in community building, knowledge
sharing, and capacity development are paramount. Initiatives
such as those promoted under the United Nations Decade of
Ocean Science for Sustainable Development provide criti-
cal platforms for fostering collaboration, developing shared

tools, and ensuring equitable access to forecasting capabili-
ties across all regions.

In this context, the OceanPrediction DCC Architecture
(Alvarez Fanjul et al., 2024a) offers a significant opportu-
nity to promote the development of robust ocean forecast-
ing services worldwide. By providing a structured, modu-
lar framework for the development of forecasting systems,
it facilitates interoperability, scalability, and the integration
of these systems. The concept of the Operational Readiness
Level for ocean forecasting (Alvarez Fanjul et al., 2024b),
developed within the DCC framework, will contribute to the
quality of the system by supporting the application of best
practices. These tools, when combined, have the potential to
accelerate the creation of new regional and coastal systems,
while simultaneously enhancing the quality, reliability, and
user engagement of existing ones.

By aligning technological innovation with inclusive
community-driven approaches, the global ocean forecast-
ing community can work towards a more comprehensive,
high-resolution, and biogeochemically informed future, bet-
ter serving society’s growing and diverse needs.
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Abstract. Operational oceanography can be considered the backbone of the blue economy: it offers solutions
that can support multiple UN Sustainable Development Goals by promoting the sustainable use of ocean re-
sources for economic growth, livelihoods and job creation. Given this strategic challenge, the community world-
wide has started to develop science-based and user-oriented downstream services and applications that use ocean
products as provided by forecasting systems as main input. This paper provides examples of stakeholder sup-
port tools offered by such applications and includes sea state awareness, oil spill forecasting, port services, and
fishing and aquaculture. Also emphasized is the important role of ocean literacy and citizen science to increase
awareness of and education about these critical topics. Snapshots of various applications in key world ocean
regions, within the framework of the OceanPrediction Decade Collaborative Centre (DCC), are illustrated, with
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emphasis given on their level of maturity. Fully operational examples can be used as inspiration for export to
other areas.

1 Introduction

The World Bank defines the blue economy as the sustain-
able use of ocean resources for economic growth and im-
proved livelihoods and jobs while preserving the health of
the ecosystem. The blue economy has the potential to help
address many of the UN Sustainable Development Goals in-
cluding no poverty, zero hunger, affordable and clean energy,
decent work and economic growth, climate action, and life
below water. Various programmes and associated actions of
the UN Decade of Ocean Science for Sustainable Develop-
ment (https://oceandecade.org/, last access: 4 May 2025) are
designed to provide the science to support the blue economy
as well as ensuring the resilience of both marine ecosys-
tems and coastal populations. A key objective of several of
the programmes is the development of improved coast-to-
ocean forecasts and predictions and, most essentially, their
uptake by and usefulness to coastal stakeholders. To achieve
this and to support the development of a sustainable blue
economy, the operational oceanography community should
be able to support the development of downstream applica-
tions in which model data are transformed into tailored infor-
mation for end users. These applications are intended to cre-
ate applied solutions to various societal, environmental and
scientific challenges from which both public entities and pri-
vate companies can benefit and actively take part in the im-
plementation of the so-called “value chain”. The ETOOFS
(Expert Team on Operational Ocean Forecasting Systems)
Guide on Implementing Operational Ocean Monitoring and
Forecasting Systems (Alvarez Fanjul et al., 2022) provides
a thorough overview of the need for downstream services
as well as examples of advanced systems that include por-
tals for the dissemination of sea state awareness (e.g. https:
//data.marine.copernicus.eu/, last access: 4 May 2025); oil
spill forecasting (e.g. MOTHY (http://www.meteorologie.
eu.org/mothy/, last access: 4 May 2025), WITOIL (https:
//www.witoil.com/, last access: 4 May 2025); MEDSLIK-
II (https://www.medslik-ii.org/, last access: 4 May 2025));
port services (e.g. SAMOA (https://www.puertos.es/, last ac-
cess: 4 May 2025) and Aquasafe (https://hidromod.com/?s=
aquasafe, last access: 4 May 2025)); voyage planning (e.g.
VISIR (https://www.visir-model.net/, last access: 4 May
2025)); and fishing and aquaculture.

In this chapter, we provide only some examples of exist-
ing downstream services for eight of the nine regions iden-
tified by the OceanPrediction Decade Collaborative Centre
(DCC): the West Pacific and Marginal Seas of South and East
Asia, Indian Seas, African Seas, Mediterranean and Black
Sea, North East Atlantic, South and Central America, North

America, and the Arctic. The Antarctic region is not included
in this review of downstream services due to the lack of
services provided there. The distribution of the regions is
based on both the UNEP (United Nations Environment Pro-
gramme) and the GOOS Regional Alliances (GRAs), with
some clustering.

The regional sections have been prepared by each of
the regional teams of the OceanPrediction DCC (https:
//www.unoceanprediction.org/en/about/community, last ac-
cess: 4 May 2025), and, though not comprehensive, each
provides a flavour of the needs in each region as well as
some of the downstream application services developed to
meet them and their maturity levels. The downstream ap-
plications have been broadly grouped as follows: extremes,
hazards and safety; natural resources and energy; shipping,
ports and navigation; and climate adaptation. Specific contri-
butions for each grouping may differ per region. Extremes,
hazards and safety refers to all extreme events, both off-
shore (such as marine heat waves) and coastal (such as storm
surges); marine pollution (that includes water quality and
oil spills); and search-and-rescue (SAR) operations. Nat-
ural resources and energy refers to all downstream appli-
cations associated with the sustainable exploitation of ma-
rine resources (we include aquaculture); renewable energy,
tourism and recreation; and conservation efforts. Shipping,
ports and navigation includes operational support for re-
search activities (including cruise-track optimization as well
as deploying equipment), and climate adaptation focuses on
longer-timescale tools that are provided to support coastal
and ecosystem resilience. The examples provided are pri-
marily based on public sector forecasting systems and ser-
vices, with a few exceptions. The OceanPrediction DCC At-
las of Services (https://www.unoceanprediction.org/en/atlas,
last access: 4 May 2025), will contain a more complete list
of downstream services in each of the regions.

2 The West Pacific and Marginal Seas of South and
East Asia

In the West Pacific and its marginal sea region, development
of operational ocean forecast systems was initiated by gov-
ernmental operational/research agencies related to meteorol-
ogy, hydrography and oceanography in several countries in-
cluding Australia, China, Japan, South Korea, Indonesia and
Aotearoa / New Zealand. Several downstream services led by
governmental operational agencies have been developed that
focus on support of search-and-rescue operations and prepa-
ration for marine disasters. Recently, some industrial appli-
cations for fishery and shipping operations have been devel-
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oped based on close collaborations between scientists and
targeted users.

As a one-stop shop for the provision of downstream ap-
plications with support from the Ocean Decade Collabo-
rative Centre on Ocean–Climate Nexus and Coordination
(DCC-OCC) and the Ocean to Climate Seamless Forecasting
(OSF) programme, China is developing a COAST Toolkit
as a knowledge hub and information platform for decision-
makers and scientists to obtain information services for ac-
tion. The toolkit aims to address the challenge of marine and
coastal disaster prevention and resources development based
on ocean solutions. There are six main modules included in
the COAST Toolkit: Module 1 – Marine disasters prevention
and mitigation; Module 2 – Maritime navigation safety, in-
cluding in the Arctic; Module 3 – Coastal ecosystem health;
Module 4 – Integrated coastal zone management; Module 5 –
Blue economy support; Module 6 – Ocean literacy. COAST
will deliver predictive capacities, services and products for
marine and coastal systems. The products will link field data
with complex models and applications with visualization.

Examples of various downstream applications in the West
Pacific and Marginal Seas of South and East Asia are pro-
vided in the sections below.

2.1 Extreme, hazards and safety

Aotearoa / New Zealand’s Moana Project (https://www.
moanaproject.org/, last access: 4 May 2025) has devel-
oped an interactive particle tracking tool (https://www.
moanaproject.org/particle-tracker, last access: 4 May 2025)
on their web portal that allows users to release particles,
plankton or larvae into either hindcast or forecast models,
based on global or their regionally optimized simulations.
This tool supports not only offshore safety operations and
oil spill response but also fisheries.

The Ocean and Climate Early Warning Universal System
(OCEANUS), developed by the First Institute of Oceanogra-
phy (FIO) in China, with the support of the Ocean to Cli-
mate Seamless Forecasting System (OSF) Ocean Decade
programme, is a similar example of a platform that sup-
ports various early-warning downstream applications. The
OCEANUS platform automatically integrates multi-source
observational data, an operational forecast system developed
by FIO (the Global Ocean Environment Forecast System;
for more information refer to Qiao et al., 2019), automatic
post-processing of forecast results, and real-time transmis-
sion and release of forecast products. The forecast system
supports three downstream applications on the OCEANUS
platform: the Global Coral Reef Bleaching Early Warning
System, Global Maritime Search and Rescue Forecast Sys-
tem and Global Oil Spill Response System. Detailed infor-
mation can be found in the OCEANUS brochure at https://
osf-un-ocean-decade.com/pdfPreview?id=6401 (last access:
4 May 2025).

The Malaysian Meteorological Department (MMD; also
known as Met Malaysia) ocean forecasting system, devel-
oped in collaboration with the FIO, provides 5 d forecasts of
surface wave heights, wave period, sea level, ocean currents,
sea temperature and salinity for the Malaysian and adjacent
seas. These forecasts are operationally disseminated through
a web portal hosted by the MMD (Fig. 1) and provide early
warning to ensure the safety and well-being of marine socio-
economic activities in Malaysia through, for example, oil
spill and search-and-rescue responses.

Below some examples specific to particular applications
within the West Pacific and Marginal Seas of South and East
Asia are highlighted.

2.1.1 Search and rescue

The Korea Ocean Observing and Forecasting System
(KOOFS) led by the Korea Hydrographic and Oceanogra-
phy Agency (KHOA) provides forecast information required
for SAR operations (Republic of Korea/OceanPredict, 2020).
The Japan Coast Guard operates a support system for SAR
using an ocean forecasting product provided from the Japan
Meteorological Agency (JMA) (Japan Coast Guard, 2025).
While also providing ongoing support for SAR, the Aus-
tralian Bluelink forecast system assisted in the high-profile
case of the disappearance of Malaysia Airlines flight MH370
(Schiller et al., 2019).

2.1.2 Oil spills

Oil spill tracking models utilizing ocean forecasting prod-
ucts are also developed in several countries including China,
South Korea and Japan. For example, an oil spill tracking
model coupled with an ocean circulation–tide–wave cou-
pling model was applied for evaluating potential contamina-
tion caused by an accident of an oil tanker Sanchi in 2018
around the East China Sea (Qiao et al., 2019). The Indone-
sian Agency for Meteorology, Climatology and Geophysics
(Badan Meteorologi, Klimatologi, dan Geofisika, BMKG) is
operating downscaled model products for forecasting storm
surge and coastal inundation hazards around Jakarta and
other port cities in Indonesia (Ramdhani, 2019). Coupling of
high-resolution coastal ocean current, wave and river flood
models is required for forecasting in real-time and evaluat-
ing potential inundation locations in the target cites.

2.1.3 Marine heat waves

The Moana Project in Aotearoa / New Zealand aims to
improve understanding of ocean circulation, connectivity
and marine heat waves to provide information that sup-
ports Aotearoa / New Zealand’s seafood industry. It pro-
vides an operational marine heat wave indicator (https:
//www.moanaproject.org/marine-heatwave-forecast, last ac-
cess: 4 May 2025), as well as sea surface temperature anoma-
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Figure 1. A snapshot of the Malaysian Meteorological Department’s web portal on which the FIO–MMD ocean forecasting system is
disseminated.

lies, based on their regionally optimized operational forecast
model.

2.2 Natural resources and energy

Decadal timescale reanalysis products of ocean and wave
models are used for assessing feasibility of ocean renew-
able energy development around Japan coastal seas and their
adjacent Asian seas (Webb et al., 2020). Reliable estima-
tion of the renewable energy potential associated with waves,
ocean currents and thermal energy requires sufficiently long
time duration periods for adequately considering the possi-
ble time-dependent natural variability. They have evaluated
minimum time duration periods of 20 years for wave and
10 years for ocean current and thermal energy conversion
around Japan. The high-resolution wave (NOAA WAVE-
WATCH III) and ocean and tidal current forecast (JAMSTEC
JCOPE) models driven by the atmospheric reanalysis forcing
were used for calculation of the energy potential reanalysis.

In some cases, ocean forecasting data (JCOPE) have been
used for marine environmental assessment for exploration of
seafloor resources in the northwestern Pacific such as cobalt-
rich ferromanganese crusts (Nagao et al., 2018). Direct ve-
locity measurement using acoustic Doppler current profilers
(ADCPs) in deep oceans presents some technical challenges,
and combined use of ocean forecasting data and ADCP mea-
surement could be effective for the reliable assessment of

ocean current variability around the targeted areas (Nagao
et al., 2018).

In Japan, industrial/commercial use of ocean forecast-
ing is being developed for supporting trade ship naviga-
tion (Sato and Horiuchi, 2022) and fishery activities (e.g.
https://oceaneyes.co.jp/en/home-2, last access: 4 May 2025).
An early-warning system of the abrupt occurrences of strong
currents damaging set-net fisheries is operated under in-
tensive collaboration between universities and local fishery
agencies in Japan (Hirose et al., 2017). Close collaboration
among universities, research institutes, instrument compa-
nies and fishers demonstrates significant enhancement of ma-
rine observation networks through the exchange of ocean
forecasting information and in situ observations among them
(Nakada et al., 2014; Hirose et al., 2019). In Oceanian seas,
Bluelink (https://www.csiro.au/bluelink/, last access: 4 May
2025) forecast products are widely utilized for maritime
transport providers, fishing industries and tourism operators.

2.3 Shipping, ports and navigation

2.3.1 Defence

The Royal Australian Navy ingests forecast data pro-
duced by Bluelink into their System for Acoustic Geo-
environmental Exemplification (SAGE) to calculate range
predictions (Schiller et al., 2019). These calculate, for a spe-
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cific ship, the distance they could expect to detect a sub-
marine or be detected by a submarine, based on the current
ocean conditions, estimated from the forecasts provided.

2.3.2 Sea level

Sea level is vital for port operations. The Australian Bu-
reau of Meteorology (BOM) provides aggregated sea-level
forecasts based on the Bluelink operational systems, super-
imposed with other factors that influence coastal sea level.
Additionally, these forecasts have proven most beneficial
when incorporated into existing decision tools that include
the BOM river flood warning interface where ocean bound-
ary conditions are improved by the forecasts (Schiller at al.,
2019).

2.4 Climate adaptation

CSIRO; BOM; and the Australian Government’s Department
of Climate Change, Energy, the Environment and Water have
produced a web portal (https://climatechangeinaustralia.gov.
au/en/, last access: 4 May 2025) that provides climate in-
formation, projections, tools and data to inform decision-
making related to climate change in Australia. The portal
incorporates both observational datasets and climate projec-
tions.

3 Indian Seas

Operational ocean forecast systems and downstream services
in the Indian Ocean have several stakeholders, including gov-
ernment agencies, maritime industries, research institutions
and the public. The operational oceanographic services for
the Indian Seas underwent significant progress during the
past 25 years. These functional systems have several compo-
nents, which include observation networks designed to col-
lect and research teams to analyse and disseminate oceano-
graphic data; assimilate the data to numerical models; and
provide forecasts to support decision-making, improve safety
and enhance the understanding of the Indian Ocean envi-
ronment. The Indian Ocean forecasting system, operational
at the Indian National Centre for Ocean Information Ser-
vices (INCOIS) helps several regional small island countries
in the Indian Ocean under regional alliances such as Re-
gional Integrated Multi-Hazard Early Warning System for
Africa and Asia (RIMES) and the Colombo Security Con-
clave (CSC). INCOIS serves as the Regional Specialized
Meteorological Centre (RSMC) for global numerical ocean
and wave prediction for the Indian region as per the WMO
mandate. RSMC services are provided to the region through
a web portal, which can be accessed at (https://incois.gov.
in/oceanservices/rsmc_ocean.jsp, last access: 4 May 2025),
with an example of their ocean and wave prediction service
provided in Fig. 2. Provided below are some key components
and applications of these systems.

3.1 Extremes, hazards and safety

3.1.1 Search and Rescue Aid Tool (SARAT)

The Search And Rescue Aid Tool (SARAT; https://sarat.
incois.gov.in/sarat/home.jsp, last access: 4 May 2025) is de-
veloped for facilitating individuals/vessels in distress in the
shortest possible time. This has been initiated and developed
under the “Make in India” programme. The tool uses model
ensembles that account for uncertainties in the initial loca-
tion and last known time of the missing object to locate the
person or object with high probability – the movement of the
lost objects is governed mainly by currents and winds.

3.1.2 Oil spill trajectory prediction

The oil spill prediction system (OOSA; https://incois.gov.in/
portal/osf/oosa.jsp, last access: 4 May 2025) operational at
INCOIS works based on the GNOME model, which uses
ocean currents from an ocean general circulation model and
winds from an atmospheric general circulation model to sim-
ulate the Lagrangian drift of oil spills, which needs initial lo-
cation of spill and quantity of the oil and type of oil if avail-
able for producing movement of oil under the influence of
winds and currents.

3.1.3 Marine heat wave advisory services (MHAS)

Marine heat waves refer to the anomalous (above the 90th
percentile) increase in sea surface temperature compared
to the historical (past 30 years) values persistent over 5
consecutive days. These heat waves have a profound im-
pact on marine ecology and fisheries and marine biodiver-
sity. In view of the environmental significance of marine
heat waves, India started generating marine heat wave ad-
visories and made them available as a service through the
web portal (https://incois.gov.in/portal/mhw/index.jsp, last
access: 4 May 2025). It also issues special bulletins during
excessive and persistent heat waves.

3.2 Natural resources and energy

3.2.1 Potential fishing zone (PFZ) advisories

Using satellite-derived sea surface temperature (SST) and
chlorophyll and tapping the habitat preference of fishes,
advisories to fishers have been provided through a wide
range of communication channels such as a web portal
(https://incois.gov.in/MarineFisheries/PfzAdvisory, last ac-
cess: 4 May 2025), Short Message Service (SMS), radio, mo-
bile applications and electronic display boards for the past
couple of decades, and there is positive feedback from fish-
ers about this service. As the fisher community are of di-
verse ethnic background and speak multiple languages, the
services are provided as multilingual texts. There are about
700 000 registered users for this service at present.
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Figure 2. Web interface of the RSMC for numerical ocean prediction (left) and the same for wave prediction (right).

3.2.2 Coral Bleaching Alert System (CBAS)

Coral reefs play a pivotal role in marine ecosystems and are
vital for the habitats of flora and fauna in the ocean. Eco-
logically, coral reefs are significant as they provide a con-
ducive environment for several marine species and thereby
contribute to the biological productivity in the ocean. How-
ever, coral reefs are sensitive to SST, and sustained thermal
stress can cause severe damage to the coral reefs. They get
bleached proportionate to the intensity and duration of the
thermal stress. India has developed a satellite-based opera-
tional system for assessing the thermal stress on corals from
satellite SST corroborated with ground truth through field ex-
amination of coral damage. This service is for assessing the
degree of damage caused to the coral environments within
the Indian Seas and is made available through a web portal
(https://incois.gov.in/portal/coralwarning, last access: 4 May
2025).

3.3 Shipping, ports and navigation

Small Vessel Advisory Services (SVAS)

The Small Vessel Advisory and Forecast Services (SVAS;
https://incois.gov.in/portal/osf/SVA.jsp, last access: 4 May
2025) system is an innovative impact-based advisory and
forecast service system for small vessels operating in the
Indian coastal waters. SVAS warns users against potential
zones where vessel overturning can take place, 10 d in ad-

vance. This warning system is based on a “boat safety index”
(BSI) derived from wave model forecast outputs, such as sig-
nificant wave height, wave steepness, directional spread and
the rapid development of wind sea.

3.4 Climate adaptation

Climate indices

Climate indices such as El Niño/La Niña conditions and
Indian Ocean Dipole conditions are computed based on
model simulations and made available through the web por-
tal (https://incois.gov.in/portal/ElNino, last access: 4 May
2025). The status of the above-mentioned interannual climate
modes is regularly updated and provided to the end users
alongside the indices for the past 12 months. These indices
are widely used by policy-makers and the agricultural sec-
tor as they have a significant impact on Indian monsoon and
annual rainfall patterns in the region.

4 African Seas

While the development of operational ocean forecast sys-
tems and downstream services, optimized for African re-
gional seas and coastal regions is limited, it is ongoing (Uba
et al., 2020; de Vos et al., 2021; Hart-Davis and Backeberg,
2023), and various strategies exist to support stakeholders.
In the simplest example, local met offices use global ser-
vices to package alerts for subscribed users via text messages
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Figure 3. User statistics generated from selected services of provided to the Indian Seas region.

or emails, while others add value to global services by cus-
tomizing solutions for stakeholders. The most advanced ser-
vices are in the north of the continent, where downstream ap-
plications benefit from the advanced Mediterranean Sea op-
erational systems (Cirano et al., 2025 in this report); in the
Red Sea area, where an optimized regional system has been
developed (Cirano et al., 2025; Hoteit et al., 2021); and in
the far south, where a co-designed decision support portal is
well established for stakeholders. Examples of approaches to
various downstream applications will be provided below.

A more cohesive, regional approach to the provision of
operational information to support marine and coastal op-
erations in Africa has been established by GMES (Global
Monitoring for Environment and Security; https://au.int/
GMESAfrica, last access: 4 May 2025) and Africa via
MarCOSIO (Marine and Coastal Operations for Southern
Africa and the Indian Ocean; https://marcosio.org/, last ac-
cess: 4 May 2025) and MarCNoWA (Marine and Coastal
Areas Management in North and West Africa; https://gmes.
rmc.africa/, last access: 4 May 2025). These platforms cur-
rently make use of global services for earth observations as
well as marine forecast products that in some cases are op-
timized for local conditions. Linked to MarCOSIO is the
National Oceans and Coastal Information Management Sys-
tem (OCIMS; https://ocims.environment.gov.za/, last access:
4 May 2025), developed by the South African Department
of Forestry, Fisheries and the Environment (DFFE) in col-
laboration with the Council for Scientific and Industrial Re-
search (CSIR). OCIMS provides customized decision sup-
port tools that include coastal flood hazard, operations at
sea, fisheries and aquaculture, integrated vessel tracking,

marine spatial planning, water quality, and marine preda-
tors. These tools are co-designed with the key stakeholder
groups in annual stakeholder engagement workshops that
bring together the developers as well as the end users that
include the aquaculture industry, National Sea Rescue Insti-
tute (NSRI), marine authorities and the Navy, and munici-
palities. These tools currently make use of operational satel-
lite products, optimized for the South African coastline, as
well as global forecast models that are not locally optimized.
Limited area operational forecast models are in development
(https://somisana.ac.za, last access: 4 May 2025) and will be
integrated into the OCIMS DeSTs within the next year.

4.1 Extremes, hazards and safety

4.1.1 Oil spills

In the case of an oil spill in African waters, global services
are generally called upon to assist with the mitigation ef-
fort. For example, in the case of the devastating oil spill in
the Indian Ocean on 25 July 2020, when the MV Wakashio
bulk carrier ran aground off Mauritius (Seveso et al., 2021),
Mercator Ocean International provided Météo-France with
ocean current forecasts to feed the MOTHY pollutant drift
model, and the CMCC (Euro-Mediterranean Centre on Cli-
mate Change) used Copernicus Marine Service near-real-
time products like forecasted currents and ECMWF winds
to forecast the weathering and transport of the oil slick.
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The SOMISANA team in South Africa have developed a
pre-emptive approach in which they release a “virtual” oil
spill at each of the ship-to-ship refuelling locations within
their high-resolution bay-scale models. They use a simple
Lagrangian particle tracking approach to allow the hypo-
thetical oil spill to be tracked 5 d into the future. Addition-
ally, their oil spill tracking functionality, developed using the
OpenDrift software, allows for seamless tracking between
the global and coastal/bay-scale forecast models and can be
launched on demand.

The iRED-M1 system (Hoteit et al., 2021), developed at
the King Abdullah University of Science and Technology,
provides an ocean–wave–atmosphere coupled forecast sys-
tem with dedicated web servers for interactive visualization,
analytics and queries. These forecasts are used mainly for oil-
spill trajectories as well as providing assessments on extreme
weather and wave conditions.

4.1.2 Storm surge

Storm surge information was highlighted as being important
all of the time in eastern African countries due to the frequent
flooding events that occur in association with cut-off low
events and tropical cyclones and that have serious ecosys-
tem, socio-economic and health impacts (Mather and Stretch,
2012; Ravela et al., 2013; Cambaza et al., 2019; Molua et
al., 2020; Singh and Schoenmakers, 2023). In South Africa
and Mozambique the meteorological services and a local mu-
nicipality have developed downscaled storm surge models
(Cirano et al., 2025) in order to provide early warnings to
coastal stakeholders. These forecasts are provided either on
an operational web portal (e.g. https://marine.weathersa.co.
za/Forecasts_Surge.html, last access: 4 May 2025) and/or by
early warnings that come in the form of emails or text mes-
sages to subscribed users that include port authorities, fishing
communities, NGOs and consultants.

4.1.3 Search and rescue

The South African OCIMS provides an Operations at Sea de-
cision support tool (https://www.ocims.gov.za/coastops/, last
access: 4 May 2025) that operationally disseminates marine
weather information that includes NOAA’s GFS wind and
wave forecasts, historic winds and waves based on the down-
scaled atmospheric models that are run by the South African
Weather Service (SAWS). As an additional tool that has been
custom-built for and requires a login from the National Sea
Rescue Institute (NSRI), it allows the user to use global wind,
wave and current forecasts to optimize search domains.

4.2 Natural resources and energy

4.2.1 Fisheries’ management

Despite fisheries being consistently identified as the most es-
sential coastal activity requiring operational forecast services

throughout the African Seas regions, relatively few down-
stream applications exist to support the industry. One ex-
ample is ABALOBI (https://abalobi.org/, last access: 4 May
2025) that is a South African-based enterprise that aims
to support the sustainability of small-scale fishing com-
munities through technology. ABALOBI provides a mobile
application that is designed for users that span the value
chain from small-scale fishers to consumers. The applica-
tion provides forecast information about marine weather
(from the NCEP Global Forecast System) and also notifi-
cation about red tide events (derived from Copernicus Ma-
rine Service satellite information) but also provides vari-
ous logging and business management tools. ABALOBI sup-
ports the traceability of seafood, fully documented fisheries,
fair and transparent supply chains, and community cohe-
sion and entrepreneurship (2018–2019 impact report avail-
able at https://drive.google.com/file/d/1wbi0PPDOr8oZS_
b0LMJs5PFy37tOAiv5/view, last access: 4 May 2025).

The fundamental triad of enrichment, concentration and
retention along with the transport of fish eggs and larvae
from their spawning to nursery areas is critical for the sus-
tainability of the high productivity that supports the lucrative
South African fishing industry. Furthermore, connectivity be-
tween marine protected areas is an essential component in
the health and longevity of marine ecosystems. To this end,
many studies have made use of numerical ocean models to
force Lagrangian particle experiments in order to understand
these transport and retention processes and their various im-
pacts (Pfaff et al., 2022; Heye, 2021).

4.2.2 Aquaculture

In order to reduce the impact of harmful algal blooms
(HABs) on the South African aquaculture industry such as
the extreme event that occurred on the southwest of the West-
ern Cape in 2017 and that caused the mortality of ∼ 250 t of
farmed abalone (Groom et al., 2019), OCIMS has incorpo-
rated a HAB decision support tool (https://www.ocims.gov.
za/hab/app/, last access: 4 May 2025). This operational tool
provides a matrix of probability of HABs occurring in key
locations along the South African coastline. The spatial and
temporal extent of the bloom is captured by remotely sensed
chlorophyll data that are provided by the EUMETSAT Data
Store (Sentinel-3 OLCI and SLSTR) and the Copernicus Ma-
rine Service (Global Ocean Colour chl-a), and chl-a esti-
mates are optimized for high biomass bloom water types
(Smith et al., 2018).

4.3 Shipping, ports and navigation

The South African Weather Service provides regionally op-
timized wind and wave forecasts to support port operations.
The CSIR’s Vessel Motion Forecast Tool (Troch et al., 2024)
utilizes numerical models to predict long-period wave cli-
mates and subsequent moored ship motions, providing port
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authorities with important information regarding vessel sta-
bility. This tool enables port operators to assess the suitability
of different vessel sizes at berths for both current and fore-
casted wave conditions, directly improving operational effi-
ciency and safety. By linking numerical models and provid-
ing an intuitive user interface, the tool delivers actionable in-
sights into potential berth-specific issues, allowing for proac-
tive planning and minimization of downtime.

4.4 Climate adaptation

Digital Earth Africa (DE Africa; https://www.
digitalearthafrica.org/platform-resources/services/
coastlines, last access: 4 May 2025) significantly sup-
ports climate adaptation along African coastlines through its
Coastlines application. This tool leverages satellite imagery
and data analysis to monitor coastal erosion, inundation,
and shoreline changes, critical factors influenced by climate
change. By providing time-series data, DE Africa helps
identify vulnerable areas and track the impact of rising sea
levels and increased storm surges. While the Coastlines
application primarily utilizes satellite data, it can be en-
hanced by incorporating predictive models. For example,
hydrodynamic models forecasting wave action and sea-level
rise can be integrated to project future coastal changes.
Additionally, climate models that predict changes in rainfall
patterns and storm frequency can inform the interpretation
of observed coastal shifts, allowing for more robust risk
assessments and adaptation planning. This integration of
data and models enables informed decision-making for
coastal management, infrastructure planning and community
resilience in the face of a changing climate.

5 Mediterranean and Black Sea

During the last decades, the constant evolution of increas-
ingly accurate operational forecasting systems in particular
in the Mediterranean Sea and, to a lower extent, in the Black
Sea, from regional to local and coastal scales, providing sys-
tematic information of the essential ocean variables, has led
to the consolidation and to the development of a wide range
of scientific and societal applications in the area.

Mediterranean and Black Sea analysis and forecast op-
erational numerical products, such as the ones delivered
through the Copernicus Marine Service (https://marine.
copernicus.eu, last access: 4 May 2025) by the MED (https://
marine.copernicus.eu/about/producers/med-mfc, last access:
4 May 2025; Coppini et al., 2023) and BLK (https://marine.
copernicus.eu/about/producers/bs-mfc, last access: 4 May
2025; Ciliberti et al., 2022) MFCs (Monitoring and Forecast-
ing Centres) are essential to provide a 3-dimensional state of
the sea, including currents, temperature, salinity, mixed layer
thickness, sea level, wind waves and biogeochemistry to sup-
port many downstream applications and activities.

Considering that the two basins are characterized by a
large variety of complex physical processes occurring on a
wide range of spatiotemporal scales, it is required to develop
models that can reproduce specific ocean variables’ evolu-
tions and to focus on specific processes representation (from
wind-driven and thermohaline circulation to water mass for-
mation, coastal processes such as upwelling and storm surge,
and extreme and fast events such as medicanes). Following
all these needs, the Mediterranean and Black Sea communi-
ties have been implementing models based on different codes
and parameterizations, properly designed to solve specific
problems.

Several downstream applications developed and imple-
mented in the Mediterranean and Black Sea are presented
hereafter, considering climate change studies, oil spill, ship
routing, search and rescue, marine litter, ports, water qual-
ity, fish and larvae dispersion, and fisheries’ and aquaculture
management, as well as adaptation and management strate-
gies. Most of the listed applications are described in a re-
cent book from Schroeder and Chiggiato (2022), who edited
an introductory guide on the oceanography of the Mediter-
ranean Sea and in the ETOOFS (Expert Team on Opera-
tional Ocean Forecasting Systems) Guide by Alvarez Fanjul
et al. (2022).

5.1 Extremes, hazards and safety

5.1.1 Oil spills

Oil spill models are forced by meteo-oceanographic fore-
casting products providing ocean currents, wind and waves
which should be available on a regular basis. Several oil spill
models are operated in the Mediterranean and Black Sea,
and specific forecasting systems have also been implemented
in areas of oil spill emergencies such as those presented in
Cucco et al. (2012). Moreover, oil spill modelling in har-
bour and port areas has been developed, such as in the Port
of Taranto in south Italy (Liubartseva et al., 2021), the Li-
massol port areas in Cyprus (Zodiatis et al., 2024), the Port
of Tarragona in Spain (Morell Villalonga et al., 2020) and
the Spanish harbours through the SAMOA project launched
by Puertos del Estado (PdE). Additionally, MEDSLIK (Zo-
diatis et al., 2021) and MEDSLIK-II (De Dominicis et al.,
2013), Lagrangian oil spill models for short-term forecast-
ing, were applied in various areas. Several decision support
systems (DSSs) dedicated to oil slick emergencies and pre-
dictions in the Mediterranean Sea have been developed, such
as the French MOTHY (Daniel, 1996) drift system, the Ital-
ian WITOIL (Where Is The Oil) multi-model DSS and the
MEDESS4MS (Zodiatis et al., 2016; Sorgente et al., 2020).
The OILTOX Lagrangian oil spill model adapted for the
Black Sea environment for oil spill transport and fate has
been implemented in the northwestern shelf of the Black
Sea and Dnieper–Bug Estuary (Brovchenko et al., 2003). The
POSEIDON Oil Spill fate and trajectory model is based on
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the PARCEL model (Pollani et al., 2001), which is able to
simulate not only the drift of the oil but also the chemical
transformations under the specific environmental conditions.

5.1.2 Search and rescue

An advanced web-based and mobile decision support sys-
tem for search and rescue (SAR) in the Mediterranean has
been developed by Coppini et al. (2016). The system sim-
ulates drifting objects at sea, using the met-oceanographic
data provided by the Copernicus Marine Service as input.
The performance of the service is evaluated by comparing
simulations to data from the Italian Coast Guard pertaining
to actual incidents in the Mediterranean Sea.

At the national and international level, the National Fore-
casting Centre of Météo-France provides met-oceanographic
support and drift forecasts to assist authorities in charge of
search-and-rescue operations. The aforementioned MOTHY
system can not only resolve search-and-rescue targets, but it
also computes the drift of lost cargo containers (Coppini et
al., 2022). The system uses the Copernicus Marine Service
data among several forcing fields.

The Hellenic Centre for Marine Research (HCMR) has an
agreement with the Hellenic Coast Guard for a SAR service
in the Greek seas. The application is developed and hosted at
the POSEIDON operational system and provides forecasting
of drifting objects.

Currently, under the ever-increasing flow of people trying
to reach Europe by crossing the Mediterranean Sea, the effi-
ciency of SAR calls for an enhancement. That requires both
improved modelling of drifting objects and optimized search
assets’ allocation.

In the Adriatic basin, the Slovenian Environment Agency
provides met-oceanographic support and drift forecasts to
assist authorities in charge of search-and-rescue operations
(Ličer et al., 2020); the drift forecasts are based on high-
resolution wind forecasts and ocean modelling downscal-
ing of Copernicus Marine Service forecasts for the Mediter-
ranean Sea. The system can resolve search-and-rescue tar-
gets, oil spills and cargo containers.

5.1.3 Marine litter

Marine plastic pollution, usually from anthropogenic
sources, is increasingly recognized as an emerging threat to
the Mediterranean environment, biodiversity, human health
and well-being (Schroeder and Chiggiato, 2022). Recently,
an important shift has been conducted for the Mediterranean
Sea from the spatially uniform distributions of plastic sources
to a more realistic representation of land-based and offshore
inputs (Liubartseva et al., 2018; Macias et al., 2019; Soto-
Navarro et al., 2020; Kaandorp et al., 2020; Tsiaras et al.,
2021, 2022a) and for the Black Sea (Miladinova et al., 2020;
Stanev and Ricker, 2019; Gonzalez-Fernandez et al., 2022)

to identify the accumulation and dissipation of floating litter
in such semi-enclosed sea basins.

5.1.4 Water quality

The physical–biogeochemical forecasting system for the
northern Adriatic Sea developed in the framework of the
CADEAU project (Bruschi et al., 2021) is based on a
high-resolution (up to around 750 m) implementation of the
MITgcm–BFM coupled model (Cossarini et al., 2017) tar-
geting water quality and eutrophication, and it uses the daily
MED MFC products for initialization and to constrain the
open boundary.

The trophic index (TRIX) eutrophication assessment indi-
cator has been calculated both on in situ data and with a cou-
pled circulation and biogeochemical numerical modelling
system. TRIX is defined by four state variables: chlorophyll-
a, oxygen, dissolved inorganic nitrogen and total phospho-
rus. As an example, the trophic index differences have been
computed to evaluate the trophic state of marine waters along
the Emilia-Romagna coastline (Italy) and over the whole
Adriatic Sea (Fiori et al., 2016).

A relocatable modelling system for describing and fore-
casting the microbial contamination that affects the quality
of bathing waters was implemented at five coastal areas in
the Adriatic Sea, which differ in terms of urban, oceano-
graphic and morphological conditions (Ferrarin et al., 2021).
The modelling systems are all based on the hydrodynamic fi-
nite element model SHYFEM (Umgiesser et al., 2022). Pol-
lution events are mainly triggered by urban sewer outflows
during massive rainy events, with relevant negative conse-
quences on the marine environment and tourism and related
activities of coastal towns.

5.2 Natural resources and energy

5.2.1 Fish larvae dispersion and fishery and marine
aquaculture management

The study of larvae dispersion and regional connectivity and
their impact on the structure of species populations and fish-
eries are generally provided using Lagrangian models (van
Sebille et al., 2018; Laurent et al., 2020; Melaku Canu et al.,
2020), and in the Mediterranean Sea these have been carried
out thanks to the availability of information provided by op-
erational forecasting systems (more information on such ap-
plications can be found in Schroeder and Chiggiato, 2022).

Being strongly supported by the policies and initiatives of
the European Union, marine aquaculture guarantees food se-
curity and reduces the fishing pressure on wild fish stocks. A
farm site selection strategy based on an aquaculture suitabil-
ity index has been developed for the central Mediterranean
(Porporato et al., 2020). The index is based on the outputs of
eco-physiological models which were forced using time se-
ries of sea surface temperature, significant wave height, dis-
tance to harbour, current sea uses and cumulative impacts.
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Tyrrhenian and Ionian coastal areas are found to be more
suitable compared to the northern Adriatic and southern Si-
cilian ones.

Small pelagic fish play a key role in marine food webs, be-
ing the trophic link between plankton and larger fish. Given
their pronounced sensitivity to environmental changes, end-
to-end (physics–plankton–fish) small pelagic fish two-way
coupled models (Gkanasos et al., 2021) are unique tools that
can be used to study the impact of climate change and fish-
eries in a single modelling framework.

Coupled hydrodynamic–biogeochemical models can also
be used to evaluate the environmental impact of aquaculture
waste and investigate the carrying capacity of coastal marine
ecosystems (Tsiaras et al., 2022b; Tsagaraki et al., 2011).

Moreover, dynamic energy budget (DEB) models (Hat-
zonikolakis et al., 2017), forced with hydrodynamic–
biogeochemical model output (temperature, Chl-a), can be
also implemented to simulate the growth of farmed mussels
(Mytilus galloprovincialis) and the potential impact of future
climate on their habitat suitability.

5.2.2 Adaptation and management strategies to
address harmful algal blooms and jellyfish
outbreaks

In recent years, eutrophication phenomena, prompted by
global warming and population increase, have stimulated the
proliferation of potentially harmful algal taxa, resulting in
the prevalence of frequent and intense harmful algal blooms
(HABs) in coastal areas of the Mediterranean and Black Sea.
Drivers of HABs in coastal areas of the eastern Mediter-
ranean were studied by means of a machine learning method-
ological approach (Tamvakis et al., 2021). Water temperature
has been found to have the most powerful effect on genera’s
presences.

A jellyfish outbreak forecasting system has been devel-
oped for the Mediterranean Sea as a preventive and mitiga-
tion tool for citizens and coastal stakeholders, aiming to re-
duce the jellyfish blooms socio-economic impact in coastal
areas through a feasible and powerful management strategy
(Marambio et al., 2021). The system explores the Copernicus
Marine Service output to predict the jellyfish spatio-temporal
distributions.

Previously, high-resolution ocean modelling was applied
to examine the transport and stranding of the pelagic stinging
jellyfish Pelagia noctiluca on the Ligurian Sea coast (Berline
et al., 2013). Jellyfishes were modelled as Lagrangian parti-
cles transported by sea currents with a diel vertical migration.
Two environmental factors were found to be critical: the po-
sition of the northern current and the wind regime.

5.3 Shipping, ports and navigation

5.3.1 Ship routing

The GUTTA-VISIR system is a tactical, global-optimization,
single-objective, deterministic model system for ship route
planning (Mannarini et al., 2016; Mannarini and Carelli,
2019), which has been implemented in the Mediterranean
Sea for several applications (i.e. in the Adriatic Sea, Man-
narini et al., 2021) using the analysis and forecast wave and
current fields from the MED MFC.

5.3.2 Ports

To respond to the need for information on wind, waves and
sea level at the scale of ports and harbour, a Spanish ini-
tiative has been developed and operationally implemented
called SAMOA-2 (Álvarez Fanjul et al., 2018; Sotillo et al.,
2019; García-León et al., 2022) operating in 31 ports. It is
an integrated system based on Copernicus Marine data; the
service provides daily forecasts of sea-level, circulation, tem-
perature and salinity fields at horizontal resolution that range
from 350 m (coastal domains) to 70 m (port domains). An-
other example implemented along the Spanish coastal waters
is provided by PORTUS (https://portus.puertos.es/, last ac-
cess: 4 May 2025), an early-warning system that employs
both the in situ data and the operational forecasts (Álvarez
Fanjul et al., 2018).

5.4 Climate adaptation

Over the next few decades, marine heat waves (MHWs) are
expected to become more intense, longer and more frequent
through anthropogenic warming. Combining high-resolution
satellite data and a regional reanalysis, Dayan et al. (2023)
have studied MHWs to understand how much each Mediter-
ranean country’s exclusive economic zone waters may be af-
fected.

As was stated in the second edition of the Copernicus
Marine Service Ocean State Report, ocean deoxygenation is
found to be one of the most pernicious, yet under-reported,
side effects of human-induced climate change. This prob-
lem is particularly acute in the Black Sea, where Capet et
al. (2016) have found a decline in the Black Sea oxygen in-
ventory. The reason for this is that atmospheric warming re-
duces the ventilation of the lower oxic layer by lowering cold
intermediate layer formation rates.

6 North East Atlantic

The structured provision of mature regional core services and
coastal operational forecasting systems in the North East At-
lantic (Cirano et al., 2025) enabled a significant deployment
of downstream operational services addressing a wide vari-
ety of sectors (Fig. 4).
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A rich portfolio documenting use cases of downstream ser-
vices uptake can be found for instance in the Copernicus
Marine Service User Uptake portal and the ETOOFS Guide
(Alvarez Fanjul et al., 2022). In particular, the EuroGOOS
coastal working group roadmap for operational coastal ser-
vices (El Serafy et al., 2023) details components of the
coastal services’ value chain in Europe and reviews the sta-
tus, gaps and steps needed to improve these services and the
sustainability of their provision. A full review of the down-
stream services that are presently active or upcoming in the
established sectors of the European blue economy is given in
El Serafy et al. (2023). Here we highlight a few examples for
selected sectors.

6.1 Extremes, hazards and safety

6.1.1 Oil spills

Coastal areas with industrial ports and harbours are among
the locations most at risk from oil spill pollution, which heav-
ily impacts aquatic life and ecology, coastal infrastructures,
and the local economy. This underlines the need for timely
and accurate coastal services for operations and disaster re-
sponse. Oil spill models predicting the fate and the transport
of the oil slick have been recently enhanced by downscaling
from state-of-art regional models (e.g. Copernicus Marine
Service) to very high resolution hydrodynamic models for
coastal and harbour areas. A coastal service in water moni-
toring and oil spill pollution is the OKEANOS project (https:
//parsec-accelerator.eu/portfolio-items/okeanos/, last access:
4 May 2025), a web-based integrated and intuitive service
combining open-source satellite observations (i.e. afford-
able), artificial intelligence and high-resolution ocean mod-
elling (i.e. accurate). Another example of oil spill forecast-
ing is the drift model MOTHY, developed by Météo-France,
which uses ocean currents from the Copernicus Marine
Global Ocean Forecast model. This system allows predic-
tions of the possible trajectory of oil spills and estimates the
resulting impacts several hours or days in advance. MOTHY
has been operational since 1994 and is frequently activated
for actual spills or search-and-rescue operations.

6.2 Natural resources and energy

6.2.1 Aquaculture sector

Novel coastal services, including mapping of suitable fish-
ing areas, front detection, marine conditions and scheduler,
land pollution, site prospection, spat capture assistance, and
contaminant source retrieval, are provided by FORCOAST
(https://forcoast.eu/, last access: 4 May 2025) in aquaculture
pilot sites, among others, regional waters, the North Sea, the
Baltic Sea and the coastal Atlantic Ocean. These services are
Copernicus-based services that incorporate Copernicus prod-
ucts, local monitoring data and advanced modelling.

Recent projects that aimed at the co-development
with end users and demonstration of harmful algal
bloom (HAB) forecasting services as one of the soci-
etal needs from the coastal observing and forecasting
systems include the FP7 Asimuth (Cusack et al., 2016),
H2020 AtlantOS (Cusack et al., 2018) and Interreg
Atlantic Area PRIMROSE (https://pml.ac.uk/projects/
primrose-predicting-risk-and-impact-of-harmful-eve/, last
access: 4 May 2025), all providing near-real-time and
forecast information for the aquaculture industry along
Europe’s Atlantic coast.

Last, but not least, all the data and information produced
by operational coastal services may be used in the framework
of the Maritime Spatial Planning Directive to identify Allo-
cated Zones for Aquaculture (AZA), following national and
international guidelines (e.g. FAO, Macias et al., 2019), as
shown by use cases such as AQUAGIS (European Aquacul-
ture Society – ePoster Viewer).

6.2.2 Coastal tourism sector

Various coastal services have been developed following in-
quiries from the coastal tourism sector. A good example is a
tailored product based on the North East Atlantic operational
forecasting model in Ireland, developed by the Irish Marine
Institute (IMI). Surface currents subsets are provided over
five geographical areas around the Irish waters and the En-
glish Channel and published in a GRIB format via an ftp site
(https://sftp.marine.ie/WebClientNew/Login, accessible only
to registered users, last access: 4 May 2025), while ensuring
low data volume. The service was developed in collaboration
with the sailing community that contacted the IMI to request
its development and was notably used during the Fastnet sail-
ing race.

Another Irish example serves beachgoers. The Irish En-
vironmental Protection Agency, in collaboration with Local
Authorities and the Department of Housing, Planning and
Local Government, runs a web page, https://www.beaches.ie
(last access: 4 May 2025), where the latest information on
water quality and others is presented for 204 beaches in Ire-
land. Met Eireann (the Irish national meteorological service)
and the Marine Institute contribute to the information pro-
vided with current weather and weather forecasts and tidal
information, respectively.

Among the services that provide the latest water quality
information, the service carried out in the framework of the
CADEAU project (Bruschi et al., 2021) provides data and
information to assess the potential impact of bacterial pollu-
tion sources on bathing waters (as defined in the EU Bathing
Water Directive) and help bathing waters’ managers in iden-
tifying potential sources of impact and planning mitigation
measures.

National marine forecasting agencies also serve the coastal
tourism sector. The Marine Forecasting Centre of Belgium of
the Royal Belgian Institute of Natural Sciences (RBINS) is-
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Figure 4. Principal characteristics of the Copernicus Marine regional core services for the North East Atlantic region and its relation to its
downstream use in sectors.

sues 5 d forecasts of the marine conditions in the North Sea
twice a day with a high resolution for the Belgian part of
the North Sea. These forecasts are used in numerous applica-
tions, among them the tourism and leisure industries. Surfers
use the application for mobile devices to schedule their ses-
sions for good waves and current conditions.

6.2.3 Renewable energy sector

The renewable energy sector is a prominent player in the
blue economy and therefore one of the main potential users
of coastal services. Indeed, the EU hosted 70 % of global
ocean energy (wave and tidal) installed capacity and 86 %
of the world’s total installed offshore wind capacity at the
end of 2018 (Díaz and Soares, 2020), while jobs in the off-
shore wind energy sector have multiplied 9-fold in less than
10 years (European Commission, 2020).

Current bottlenecks relating to the large-scale installation
of ocean multi-use activities are addressed by the UNITED
project (https://www.h2020united.eu/, last access: 4 May
2025), which demonstrates business synergies and benefits
of ocean multi-use and provides a roadmap for deployment
in future multi-use sites and potential scaling barriers to
be addressed through best practices and lessons learnt. An-
other example of coastal services for the renewable energy
sector is Ireland’s Marine Renewable Energy Portal (http:
//www.oceanenergyireland.ie/, last access: 4 May 2025), an
online access point for all relevant information and data re-
lated to Irish marine renewable energy activity and resources
including maps, tools and information for renewable energy
site assessment, development and management.

6.3 Shipping, ports and navigation

Coastal information services tailored to the needs of the port
sector are provided by the HiSea project (https://hiseaproject.
com/, last access: 4 May 2025). The services include early-
warning service on potential risk factors issuing alerts on
storms, harmful algal blooms, faecal contamination and other
hazards regarding pollution accidents to identify the appro-
priate responses. It provides key performance indicators re-
garding fish growth rates; environmental conditions or the
level of vulnerability to storms for vessels; and informa-
tion for planning operations including accurate and reliable
meteorological, hydrodynamic and water quality forecasts.
Further examples of platforms and services for ports are
SAMOA and AQUASAFE. The SAMOA service from Puer-
tos del Estado aims to provide high-resolution coastal oper-
ational prediction systems in domains such as harbours and
nearby coastal waters, for different Spanish port authorities
(Sotillo et al., 2019). Similarly, the AQUASAFE platform is
operational for all Portuguese ports and in the Port of Santos
(Brazil). This platform aims to increase efficiency and safety
in port operations, by providing access to real-time and fore-
cast information. It is also used to support aquacultures, in-
land navigation, irrigation and water utilities.

6.4 Climate adaptation

Climate adaptation is central to the efforts in the North East
Atlantic region, where regional core services and operational
forecasting systems play a vital role in responding to the im-
pacts of climate change, such as rising sea levels, extreme
weather and changes in marine ecosystems. Key systems
like the Copernicus Marine Environment Monitoring Service
(CMEMS), the European Centre for Medium-Range Weather
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Forecasts (ECMWF) and the UK Met Office’s coastal fore-
casting systems provide essential data on oceanographic and
atmospheric conditions, aiding climate resilience in marine
sectors like fisheries, shipping and coastal infrastructure. Ini-
tiatives such as the Atlantic Action Plan for a sustainable
blue economy, the Interreg North Sea Region Programme,
and the European Maritime and Fisheries Fund (EMFF) are
focused on enhancing climate resilience, offering solutions
like adaptive coastal management, improved early-warning
systems and sustainable practices.

7 South and Central America

The lack of available regional core services and coastal op-
erational forecasting systems in South and Central America
(Cirano et al., 2025) makes the development of downstream
applications difficult. For instance, very few use case de-
mos are described in the Copernicus Marine Service User
Uptake for this region. Normally, downstream applications
are only developed in partnership with universities or spe-
cialized companies capable of implementing operational sys-
tems based on a downscale approach from global models.

Despite the general lack of regional systems for coastal
operational forecast systems in South and Central Amer-
ica, smaller-scale services exist and provide useful informa-
tion for stakeholders. For example, the Baía Digital project
(http://www.baia.digital/, last access: 4 May 2025) in Brazil
is a portal that integrates various data sources, including
regional model forecasts focusing on developing an opera-
tional digital platform to provide environmental, social and
economic information in the region of Guanabara Bay and
its surroundings. The diagnostic and prognostic information
generated comes from different sources, such as historical
databases, data collection platforms and numerical computa-
tional models. Atmospheric and oceanic regional model fore-
casts represent the marine and atmospheric dynamics of the
Guanabara Bay region temporally and spatially. The digital
platform has been developed and improved from the inter-
action between professionals from different areas of science
and students from different educational levels, investing in
the technical and scientific training of researchers. In addi-
tion, extension activities involving students from the school
segment will be planned to aim at promoting a scientific cul-
ture based on knowledge of Guanabara Bay. The project base
is the Laboratory of Computational Methods in Engineering
(LAMCE), located in the UFRJ Technological Park, in part-
nership with other laboratories and teaching and research in-
stitutions. The project represents a pioneering effort associ-
ated with the regional initiatives of the Atlantic International
Research Center (AIR Centre).

In the next sections we showcase a number of bespoke
downstream applications based on specific needs.

7.1 Extremes, hazards and safety

7.1.1 Oil spills

The Brazilian Oil Research Group (BROIL) was created in
response to the oil spill disaster that impacted more than
3000 km along the north-northeastern Brazilian coastline in
2019, with significant environmental, economic and social
impacts. BROIL comprises institutions in Brazil (e.g. UFBA,
UFPE, UFRJ, INPE and PUC-Rio) and abroad (e.g. OOM,
Portugal; IRD/LEGOS, France; HZG, Germany). BROIL
works upon three main pillars: (i) detection, through remote
sensing techniques; (ii) control, through a set of hydrody-
namic and oil spill models; and (iii) remediation, through
a set of biota oil-exposure case studies (Franz et al., 2021).
Numerical models used to predict oil spill trajectory include
the Regional Ocean Modeling System (ROMS) and the La-
grangian model MEDSLIK-II. Recently, a partnership with
the Brazilian Sea Observatory will enable the use of forecasts
with higher-resolution hydrodynamic models and prediction
of the oil spill trajectory automatically through the MOHID
modelling system.

The North Coast Project (http://www.projetocostanorte.
eco.br/, last access: 4 May 2025) also integrated research
groups with different expertise for the development of a
method for determining the vulnerability of mangroves to
contamination by oil and for producing knowledge about the
Brazilian North Coast, in cooperation among ENAUTA; the
Nucleus of Studies in Geochemistry and Marine and Coastal
Ecology (NEGEMC) of UERJ; the Laboratory of Computa-
tional Methods in Engineering (LAMCE) of COPPE/UFRJ;
the Laboratory of Research in Marine Environmental Moni-
toring (LAPMAR) of UFPA; and PROOCEANO, a Brazilian
company of oceanographic technology. The largest continu-
ous area of mangrove forests in the world is found on the
north coast of Brazil – located between the states of Maran-
hão and Pará – totalling around 7400 km2, which corresponds
to 4.3 % of the entire area of mangrove forests in the world.
The main objective of the project was to determine the vul-
nerability, sensitivity and susceptibility to oil contamination
of the mangroves, based on the development of numerical
hydrodynamic models with multiple resolution scales and
the use of data assimilation techniques to represent large and
mesoscale oceanographic phenomena, with seasonal and in-
terannual variability, to small-scale phenomena with daily
variability, such as tidal currents in floodplains. The hydro-
dynamic modelling results were used as input data for the
modelling of the transport and dispersion of oil.

7.1.2 Civil protection

The water level increase due to storm surges can be of
the same order of magnitude as tide amplitude along the
southeastern Brazilian coast (Franz et al., 2016). Following
a downscaling approach, water level forecasts are available
to this region, aiming to help civil protection actions. Wa-
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ter level forecasts, as well as data from several tide gauges
along the Santa Catarina coast, are available for the public
in general on the EPAGRI’s company website (https://ciram.
epagri.sc.gov.br/index.php/maregrafos/, last access: 4 May
2025). The water level forecasts of high-resolution mod-
els (e.g. Babitonga Bay) are also available for port opera-
tion. The operational models developed by the Brazilian Sea
Observatory initiative (Franz et al., 2021) were updated in
collaboration with EPAGRI, considering GEOGloWS (https:
//geoglows.ecmwf.int/, last access: 4 May 2025) flow predic-
tions for major rivers.

7.1.3 Coastal engineering

Coastal models developed by the Centre for Marine Studies
(CEM UFPR) within the scope of the Brazilian Sea Observa-
tory initiative, through the application of the MOHID mod-
elling system, were used to support local companies in the
design of submarine outfalls and study of the environmental
impacts of bridge construction.

7.2 Natural resources and energy

Aquaculture

Information on water quality in bays and estuaries is essential
for planning and managing bivalve mollusc production (e.g.
water temperature, microbiological contamination, salinity
and nutrients). These parameters are influenced by marine
currents, river flows, solar radiation and winds, as well as
by urbanization pressure and consequent contamination of
water bodies (Cabral et al., 2020). The numerical modelling
system MOHID was applied to the main aquaculture produc-
tion zone of shellfish in Brazil, located in the bay of Ilha de
Santa Catarina, with the objective of integrating the range
of environmental data in a hydrodynamic and water quality
model capable of simulating the variables of greatest inter-
est in the production of bivalve molluscs, thus serving as a
powerful management tool (Garbossa et al., 2023; Garbossa
et al., 2021; Lapa et al., 2021). The model was recently im-
plemented in operational mode by the company EPAGRI to
provide forecasts, nested within a regional model developed
in partnership with universities (e.g. UFPR), as a continua-
tion of the Brazilian Sea Observatory initiative (Franz et al.,
2021).

7.3 Shipping, ports and navigation

Ports

Within the objective of increasing navigation security, São
Paulo (Brazil) Pilots (Praticagem de São Paulo in Por-
tuguese) has been using the AquaSafe platform (https:
//aquasafe.hidromod.com/landing-page/about, last access:
4 May 2025), developed by the Portuguese company
HIDROMOD and locally implemented in partnership with

the University of Santa Cecília (Unisanta) (Ribeiro et al.,
2016). The data provided by the platform assist in choosing
the better entering and leaving periods of the harbour. The
AquaSafe platform is connected to a real-time sensor data
stream (tide gauge, weather station and ADCPs) from Prat-
icagem’s Center for Coordination, Communication and Traf-
fic Operations (C3OT). Furthermore, high-resolution fore-
cast solutions for wave parameters, sea level, wind and other
meteo-oceanographic parameters are also available.

7.4 Climate adaptation

BASIC Cartagena is an applied research project on Basin
Sea Interactions with Communities in the coastal zone of
Cartagena (Colombia). Located on the Caribbean coast in the
north of Colombia, Cartagena and its surrounding beaches
represent the country’s principal touristic destination. The
first phase of the project started in July 2014 and was com-
pleted in June 2017 under the title “Reducing the risk of wa-
ter pollution in vulnerable coastal communities of Cartagena,
Colombia: responding to climate change”. The second phase
of the project, titled “Building resilience in Cartagena Bay”,
has been implemented since February 2018. Its general ob-
jective is to contribute to the improved environmental gov-
ernance of Cartagena Bay by providing scientifically based
advice toward climate-compatible and sustainable develop-
ment policies. Studies of fluvial hydrology are dedicated to
the research of the Magdalena River basin, with a focus on
surface waters that flow from the Dique Canal towards Carta-
gena Bay. Analysis of the watershed’s human development
and climatic conditions permits modelling of the watershed’s
runoff processes. Future scenarios of climate change and hu-
man development will be used to generate prognostics of
freshwater discharge from the Dique Canal into Cartagena
Bay. In the coastal zone, studies focus on the monitoring of
water quality and sediment in Cartagena Bay. Analysis of
physicochemical and microbiological parameters, as well as
contaminants, will permit an impact assessment of human
activities and climate variation on the sea, as well as the gen-
eration of vulnerability maps. Hydrodynamic modelling will
be used for prognostics of the dispersion of fresh water from
the Dique Canal into Cartagena Bay under future watershed
scenarios.

8 North America

North America is a vast continent with lengthy continental
coastlines that include densely populated areas with busy
harbours and vast remote isolated coastlines. Core ocean
forecasting services are anchored by national meteorolog-
ical centres that increasingly trend towards prediction ser-
vices of the full earth system. This includes the US National
Oceanic and Atmospheric Agency (NOAA) and the Cana-
dian Meteorological and Environmental Prediction Center
within the federal department of Environment and Climate
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Change Canada (ECCC). Benefiting ocean forecasting ser-
vices in North America are mature collaborations between
government departments, universities and industry includ-
ing the US Integrated Ocean Observing System (IOOS)
(https://ioos.us, last access: 4 May 2025) partnership with
11 regional associations and the CIOOS, the Canadian IOOS
(https://cioos.ca, last access: 4 May 2025) networks with 3
regional associations. In Canada, the CONCEPTS initiative
coordinates ocean prediction that regroups several federal
government departments together including the Department
of Fisheries and Oceans Canada (DFO), the Canadian Coast
Guard, the Canadian Hydrographic Service, and the Meteo-
rological Service of Canada.

In North America, ocean forecast systems are advanced
and relatively abundant. They provide a wide range of down-
stream applications, some of which are described below.

8.1 Extremes, hazards and safety

In the United States, the U.S. Coast Guard (USCG) is the
primary federal agency for responding to maritime safety
and security (including search and rescue and marine pol-
lution) in navigable waters and deep water ports, although
other agencies also play prominent roles, including the En-
vironmental Protection Agency (EPA), NOAA, the Federal
Emergency Management Agency (FEMA), and state agen-
cies. The USCG relies on several ocean forecast systems to
monitor and predict oceanographic and meteorological con-
ditions critical for navigation, search and rescue, marine pol-
lution, and environmental protection, primarily those run by
various NOAA entities (National Weather Service, Ocean
Prediction Center, OFS and NCEP). These systems provide
data on currents, wave heights, sea surface temperatures and
other factors that impact maritime operations.

In Canada, the Canadian Coast Guard (CCG) make use
of the Canadian Operational Network of Coupled Environ-
mental Prediction Systems (CONCEPTS) that is collabora-
tively produced by Environment and Climate Change Canada
(ECCC), Fisheries and Oceans Canada (DFO), and the De-
partment of National Defence (DND) to support their off-
shore operations.

8.1.1 Storm surge

While the coast guards in the respective countries are re-
sponsible for the dangers associated with storm surges,
storm surge warnings are issued by ECCC in Canada and
by the National Hurricane Centre (NHC) and the National
Weather Service in the United States. The NHC focuses on
the broader regional picture and uses both weather fore-
casts and the SLOSH (Sea, Lake and Overland Surges from
Hurricanes; https://vlab.noaa.gov/web/mdl/slosh, last access:
4 May 2025) model with real-time data to issue warnings via
graphical maps and advisories through NOAA websites, tele-
vision and radio broadcasts, mobile alerts, and social media.

In Canada, the ECCC’s Meteorological Service of Canada
(MSC) monitors and forecasts conditions, based on both
global and their own regionally optimized models, that lead
to storm surge and coastal flooding. They have recently im-
plemented a comprehensive coastal flooding prediction and
alerting programme that provides maps that display an index
of the probability of storm surges or coastal flooding occur-
ring.

8.1.2 Oil spills

The Emergency Response Division (ERD) of the Office
of Response and Restoration (OR&R) within NOAA pro-
vides Environmental Sensitivity Index (ESI) maps and data,
which are used to identify vulnerable resources and habi-
tats in advance of emergencies so that appropriate response
actions can be planned. ERD works with local experts to
develop or update ESI maps throughout the country. An-
other is the CAMEO® software suite (EPA), which helps
emergency planners and responders deal with chemical in-
cidents. ADIOS (Automated Data Inquiry for Oil Spills), de-
veloped by NOAA, provides rapid analysis of how differ-
ent oil types weather in various marine conditions. By pre-
dicting how oil properties change (e.g. evaporation, disper-
sion), ADIOS helps responders plan effective cleanup strate-
gies. GNOME (General NOAA Operational Modeling En-
vironment) is a critical software suite developed by NOAA
to predict the movement and fate of oil spills in water. It in-
corporates information from forecast systems, like currents
and winds to forecast spill trajectories, while also modelling
the weathering processes that alter oil’s properties over time.
Through its components like WebGNOME, PyGNOME and
the ADIOS oil database, GNOME provides mapping and vi-
sualization tools, enabling responders to assess situations,
plan contingencies and minimize environmental impact. It
uses output from various forecast systems produced by the
NOAA/NWS’s (National Weather Services) Environmental
Modeling Center including RTOFS (Real-Time Ocean Fore-
cast System) and GFS (Global Forecast System) and serves
as a vital tool for real-time emergency response, contingency
planning, and research related to oil spill science.

In Canada, while the CCG is the leading agency for co-
ordinating responses to oil spills, their principle is that the
“polluter” pays and should report the spill, take the initial ac-
tion and fund the cleanup. Industry-funded response organi-
zations, certified by Transport Canada, provide spill response
services on behalf of the polluter that would include mod-
elling systems that predict the trajectory and fate of spilled
oil.

8.1.3 Search and rescue

NOAA’s National Environmental, Satellite, Data, and Infor-
mation Services (NESDIS) Line Office operates the Search
And Rescue Satellite Aided Tracking (SARSAT) system to

State Planet, 5-opsr, 6, 2025 https://doi.org/10.5194/sp-5-opsr-6-2025



CHAPTER3.2

J. Veitch et al.: A description of ocean forecasting applications around the globe 17

detect and locate people in distress. Mariners, aviators and
recreational enthusiasts can all access the satellite system
in an emergency using a portable radio transmitter that can
send an SOS signal from anywhere on earth, at any time,
including in most extreme weather conditions. This is cou-
pled with the Search and Rescue Optimal Planning System
(SAROPS) tool, used by the USCG for maritime search plan-
ning. SAROPS uses an Environmental Data Server (EDS)
that ingests real-time and forecast environmental data (pro-
duced by agencies such as NOAA) to predict the drift of a
person or object in the water. This is done by simulating thou-
sands of possible drift scenarios providing probability maps
that help to focus the search efforts. The success of this tool
is strongly dependent on the quality of the forecast models
that it ingests.

The Canadian Coast Guard makes use of observations and
models produced by Fisheries and Oceans Canada (DFO)
and weather and oceanographic forecasts produced by the
ECCC in order to optimize their search operations.

8.1.4 Water quality

Several US government agencies are involved in support-
ing marine water quality. Key agencies include (a) the Envi-
ronmental Protection Agency (EPA), which sets water qual-
ity standards, regulates pollutants, and monitors coastal and
marine waters; (b) the National Oceanic and Atmospheric
Administration (NOAA), which conducts research on ocean
health, manages marine resources and supports programmes
like the National Estuarine Research Reserve System; (c) the
U.S. Coast Guard (USCG), which monitors and responds
to marine pollution incidents and ensures maritime safety;
(d) the U.S. Army Corps of Engineers (USACE), which man-
ages coastal projects and assesses impacts on water quality
from dredging and construction; (e) the Fish and Wildlife
Service (FWS), which protects fish and wildlife habitats and
works to restore ecosystems, which directly impacts water
quality; and (e), the National Park Service (NPS), which
manages marine protected areas and conducts water quality
monitoring within national parks.

Ocean forecast systems play a key role in monitoring
and managing water quality in North America, particu-
larly in coastal and nearshore areas. Various water quality
models are used by the EPA (https://www.epa.gov/beaches/
models-predicting-beach-water-quality, last access: 4 May
2025). These incorporate hydrodynamic forecasts that are es-
sential for accurately simulating the transport and mixing of
pollutants.

8.2 Natural resources and energy

8.2.1 Fisheries

Both the U.S. National Marine Fisheries Service (NMFS)
and Fisheries and Oceans Canada (DFO) heavily rely on nu-
merical ocean models to support their operations, particu-

larly for fisheries’ management and protected species conser-
vation. The NMFS uses models like HYCOM (Hybrid Co-
ordinate Ocean Model) and RTOFS (Real-Time Ocean Fore-
cast System), while the DFO uses HYCOM as well as region-
ally tailored models developed by them and in collaboration
with ECCC. These models provide crucial data on ocean cur-
rents, temperature and salinity, enabling predictions of fish
distribution and marine species movements as well as assess-
ments of habitat suitability. This information is then used to
set sustainable catch limits, protect endangered species from
human activities and forecast environmental impacts, thereby
informing critical decisions regarding the management and
preservation of marine resources.

The NMFS disseminates information through a variety
of channels, including their official website (http://fisheries.
noaa.gov/, last access: 4 May 2025), scientific publications
and direct communication with stakeholders. They provide
online access to oceanographic data, habitat suitability maps
and species distribution forecasts, ensuring that researchers,
resource managers and the public have access to vital infor-
mation. NMFS also collaborates with other agencies and or-
ganizations to share data and findings, fostering a collabora-
tive approach to marine resource management.

8.2.2 Recreation and tourism

In the United States, NOAA’s operational forecast systems
(OFSs), as well as the NWS maritime forecasts, cover vari-
ous regions (including the Great Lakes) and provide informa-
tion on water levels, current temperature, salinity and winds,
essential for safe navigation, recreational boating and fish-
ing. The Regional Ocean Modeling System is used by vari-
ous institutes to provide high-resolution forecasts for specific
regions; for example the Gulf of Maine Operational Forecast
System (GoMOFS) uses ROMS to predict ocean conditions
to support tourism and marine recreational activities.

In Canada, CONCEPTS and the Regional Ice Ocean Pre-
diction System (RIOPS) are used to support tourism by pro-
viding forecasts that support safe navigation, ice prediction
and ecosystem modelling. A port ocean prediction system
(POPS) is being developed by the DFO for major Canadian
ports and waterways that provides high-resolution forecasts
that support marine recreation.

The forecast information is provided through a number of
different apps; some examples are the NOAA Weather Radar
& Live Alerts, PredictWind, Windy, SailFlow, Surfline and
MagicSeaweed.

8.2.3 Offshore energy

For the offshore energy sector in North America, ocean fore-
cast systems are essential to ensure the safety and efficiency
of operations, particularly for oil, gas and renewable en-
ergy projects like offshore wind farms. These systems pro-
vide critical information on ocean currents, waves, winds and
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other environmental conditions. In addition, research cen-
tres, like the National Renewable Energy Laboratory (NREL)
and Woods Hole Oceanographic Institution, produce special-
ized models for specific energy projects. Hindcast data help
model historical ocean conditions, and operational forecasts
aid in planning and real-time decision-making. Companies
like Fugro, Woods Hole Group, DNV GL and the RPS Group
offer tailored ocean forecasting and meteo-oceanographic
services that provide high-resolution, localized ocean and
weather forecasts to support the offshore energy industry.
These forecasts are often customized for specific platforms,
rigs or turbines.

The oil and gas energy industry have specific ocean fore-
cast requirements depending on the application, such as diver
operations, uncrewed vehicles operations, rig installation and
production. In the Gulf of Mexico, a leading area for explo-
ration and production, the Loop Current eddy (LCE) shed-
ding is a process of great interest, as current speeds of ex-
tended or detached LCE’s often have current speeds in ex-
cess of 2–3 ms−1, speeds which often require repositioning
of equipment or temporary cessation of operations.

8.3 Shipping, ports and navigation

With the advent of new standards for marine navigation,
implementations and applications of ocean prediction sys-
tems for e-navigation and port management are expanding
in North America. In the United States, NOAA’s Physical
Oceanographic Real-Time System (PORTS) provides real-
time water level, current and meteorological information for
major US ports and harbours, while the National Operational
Coastal Modeling Program (NOCMP) develops and operates
a network of Operational Nowcast and Forecast Hydrody-
namic Model Systems (OFS) for critical US ports, harbours
and coastal waters. These systems provide predictions of wa-
ter levels, currents and other oceanographic variables, aid-
ing in navigation, harbour management and coastal hazard
mitigation. In Canada, CONCEPTS (ECCC/DFO) provides
oceanographic forecasts for various regions, including the St.
Lawrence Seaway and major Canadian ports, and the DFO is
developing a port ocean prediction system (POPS) for major
Canadian ports and waterways.

These forecasts are starting to be integrated into various
vessel traffic management systems (VTMSs) that are used
throughout North America. For example, the Canadian Coast
Guard’s vessel traffic services (VTS) are increasingly using
data from CONCEPTS and other forecast models, and port-
specific VTMSs in the United States (e.g. the Port of New
York and New Jersey) integrate data from NOAA’s opera-
tional forecast system.

8.4 Climate adaptation

The United States leverages ocean models extensively to
bolster climate adaptation strategies for both coastal and

ecosystem resilience. A network of federal agencies, includ-
ing NOAA, EPA, USFWS (U.S. Fish and Wildlife Service),
NPS (National Park Service), USACE (Army Corps of Engi-
neers), DOI (Department of the Interior) and FEMA (Federal
Emergency Management Agency), utilizes these models to
understand and respond to the impacts of climate change on
marine environments. NOAA plays a central role, conduct-
ing research on ocean temperature, sea-level rise and habitat
changes, while also collecting and disseminating crucial data
to stakeholders. Models provide critical information on sea-
level rise, coastal erosion, extreme weather events and ocean
warming, informing the development of resilience strategies
and enabling communities, governments and industries to
make informed decisions.

Specifically for ecosystem resilience, ocean models sup-
port a variety of ecological and biological studies. Agencies
like NOAA, through programmes like NMFS and OAR (Of-
fice of Oceanic and Atmospheric Research), and USFWS,
with its Endangered Species Program and National Wildlife
Refuge System, use model outputs to monitor marine biodi-
versity, track species, understand ecosystem dynamics and
manage resources. These models, providing real-time and
forecasted data on ocean conditions, help researchers study
the effects of climate change, track biological events, and in-
form conservation and restoration efforts, including those fo-
cused on coral reefs and endangered species. Furthermore,
for coastal resilience, these models are essential for engineer-
ing projects, providing critical predictions of oceanographic
and atmospheric conditions that inform the design and main-
tenance of coastal infrastructure, erosion management and
preparedness for extreme events. In particular, the USGS
provides a suite of tools for predicting coastal changes,
especially during storms. These tools forecast factors like
coastal erosion, overwash and inundation, which help en-
gineers evaluate potential changes in shoreline position and
design resilient coastal infrastructure. Their Coastal Change
Hazards Portal integrates data on sea-level rise, coastal ero-
sion and sediment transport, which are critical for long-term
coastal engineering projects.

9 Arctic

The Arctic environment is evolving quickly. Short-term
models allow users to monitor changes to the landscape,
particularly at the ice edge and responses to short-term
events (such as storms). This information is valuable for
national environment agencies, especially those with Arctic
coastlines. As detailed in Cirano et al. (2025), there are
a number of short-term (up to 10 d) forecasting systems
available in the Arctic. Nine of these are global models,
eight are regional and five are coastal. It is important
to note that many of the Arctic forecast system outputs
are used as inputs to other models. This can be specific
modelling in response to an event – for example, oil spill
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trajectory modelling, as described in Nordam et al. (2019)
– or for monitoring the state of a specific parameter that
is not present in the main forecasting system, such as
the use of TOPAZ4 to force a coastal 800 m resolution
ocean model for a weekly monitoring and assessment of
the sea louse (https://www.globalseafood.org/advocate/
norwegian-researchers-develop-sea-lice-tracking-model/,
last access: 4 May 2025). The latter example is currently
only applied to the coastline of mainland Norway at present,
but as fishing extends further and further north, such
forecasts may also become more relevant further into the
Arctic.

They are also used to feed into weather forecast models,
an Arctic-specific application mirroring the standard process
of forcing ocean models with weather forecast outputs that
is often used in other regions. This is because ice condi-
tions can have important feedback to the atmosphere, and
models developed specifically for ice can represent these
conditions well. The NOAA (the US National Ocean and
Atmospheric Administration) ice drift is primarily used for
this purpose (https://mag.ncep.noaa.gov/docs/NCEP_PDD_
MAG.pdf, last access: 4 May 2025) to provide sea ice condi-
tions for the NWS (the US National Weather Service) global
atmospheric model; this has been the case since 1998.

In the following subsections, the other main applications
of Arctic forecasts are provided, focusing on direct appli-
cations of the forecasts themselves. Note that in most cases
the downstream applications are suggested by providers but
there is little data available in the public domain about user
uptake for a given usage.

9.1 Extremes, hazards and safety

As more activities happen at the ice edge and in the
marginal ice zone, there is an increase in the risk of both
harm to humans and negative consequences of their ac-
tivities, and there have been some incidents in the last
decade (for example, https://barentsobserver.com/en/nature/
2013/09/tanker-accident-northern-sea-route-09-09, last ac-
cess: 4 May 2025). Marchenko et al. (2015) note “the main
operational risk factors faced include geographical remote-
ness, climate-change related aspects and weather, electronic
communications challenges, sea ice, lack of precise maps or
hydrographic and meteorological data”. Forecasting models
can be used both to reduce risk and to target the response to
an incident. For example, the Barents-2.5km model, used by
MET Norway, acts as one of the main inputs to further mod-
elling of pollutants (such as drift of oil spills from ships) and
iceberg drifting, which are all based on the same type of La-
grangian drift calculations (Sutherland et al., 2022). It is also
used in search-and-rescue operations, where information on
where a lost person or vessel may drift in the short term is
very important.

Storm surge

Coastal models play an important role in understanding the
short-term behaviour of a region. One such example is the
storm surge model, which provides both coastal forecasts
(useful for those with activities in coastal waters, such as
fishing) and a warning system for storm surges along the
coast of mainland Norway and Svalbard. Users receive an
alert when an extreme weather event is likely; for example,
during Storm Elsa in February 2020, it was found to be a use-
ful tool to both monitor the development and send warnings
out (Kristensen et al., 2024).

9.2 Natural resources and energy

As sea ice declines, more opportunities to exploit natural re-
sources such as oil and gas extraction arise, although the
safety of fixed assets and persons will still be at risk of
storms, high waves, sea ice and incoming icebergs. To re-
duce ocean pollution and carbon footprint from transporta-
tion of people/resources to and from destinations, as well as
minimize risk from ending up in thick ice, companies must
choose the best routes for transportation. Short-term fore-
casts in conjunction with available real-time observations can
be very important for this (Grigoryev et al., 2022). While
no specific operational downstream applications have been
identified in this category for the Arctic, in the sections be-
low the growing needs specific to the region are described.

9.2.1 Fisheries

The “Agreement to prevent Unregulated High Seas Fish-
eries in the central Arctic Ocean” has been in place since
25 June 2021 (https://arctic-council.org/news/introduction-
to-international-agreement-to-prevent-unregulated-fishing-
in-the-high-seas-of-the-central-arctic-ocean/, last access:
4 May 2025) and aims to ensure that future fishing in the
Arctic as sea ice declines can be carried out sustainably.

Short-term forecasts could help to support this agreement
as well as to inform users about conditions suited to fish
stocks and to reduce the chance of operating in risky con-
ditions which could lead to oil spills. As noted by Neis et
al. (2020), “When harvesters adjust their activity or move
into new fishing grounds, forecasts become critical tools for
anticipating dangerous conditions and ‘learning’ an unknown
environment or working context (e.g. different gear)”, which
suggests that even if the central Arctic Ocean remains tightly
controlled, an increase in fishing activities in the northern
peripheral seas as ice declines (Fauchald et al., 2021) may
increase the need for forecasts of environmental conditions
for a new set of users in the future

9.2.2 Tourism

Arctic tourism has been increasing in recent decades (Larsen
and Fondahl, 2014), particularly the concept of “last chance
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tourism” (Eijgelaar et al., 2010). As well as requiring fore-
casts for navigation in waters, where ships have been built for
comfort rather than operational purposes, tourism is often fo-
cused on reaching the ice edge or ecosystems to spot wildlife.
This can require accurate forecasts of sea ice conditions and
the limit of the marginal ice zone, which is a hotspot for bi-
ological activity in the Arctic (and attracts the more auda-
cious fishers as a result). Search-and-rescue-based forecasts
for such purposes are also relevant as ships aim to get close
to the ice rather than avoid it.

9.3 Shipping, ports and navigation

Reductions in summer sea ice, and thinner ice, open new
routes to traverse the Arctic (for example, the Northeast
Passage), providing more efficient routes across the globe,
as well as providing opportunities for many of the above
users to work further into the Arctic Basin away from
the coast. In all the cases currently described, there is
an aspect of navigation driving a need for forecasts. One
of the main considerations when navigating is sea ice
jams and ice accumulation, which can prevent further
progress to ships and cause hull damage (for example,
the case where two cargo ships were stuck and damaged
in Frobisher Bay, https://www.cbc.ca/news/canada/north/
ice-damages-hull-of-sealift-ship-near-iqaluit-1.1230034,
last access: 4 May 2025). Depending on the ability of
the ship (ice-strengthened or icebreaker), different sea ice
conditions can be the limit of safe operations. Given the ice
can vary quickly, recent efforts have been made to include
a dynamical ice edge in fully coupled model for weather
prediction (Day et al., 2022) and improve forecasts of the
ice edge itself (Posey et al., 2015) A typical use of sea
ice short-term forecasts is to assess whether the ice edge
is advancing or retreating (which would then feed into
decisions related to navigation in the short term, such as
whether or not it is safe for a ship to either stay in a given
location for deployments or navigate in a certain direction,
for example, the use of VENUS for monitoring sea ice in
the Bering Strait, Cirano et al., 2025). One of the main
limitations of accessing information from a ship is a reliable
internet connection, meaning forecasts must be readily
available and not hard to download. A number of users still
rely on manual ice charts drawn by experts.

Ship operators rely on operational forecast models to ad-
here to the Polar Code, which is the International Maritime
Organization’s international code for ships operating in polar
waters, in place since 1 January 2017 (https://www.imo.org/
en/ourwork/safety/pages/polar-code.aspx, last access: 4 May
2025); it is relevant for navigation (and, as part of this, de-
sign and capabilities of ships wishing to work in polar wa-
ters) and operational procedures, search and rescue, and pro-
tection of ecosystems. Mandatory measures cover safety and
pollution prevention, and ships going into the polar regions
require a Polar Ship Certificate determining what conditions

the ship is suited to (https://www.dnv.com/maritime/polar/
requirements.html, last access: 4 May 2025). Forecasts can
contribute to helping users abide by the Polar Code, for ex-
ample by assessing whether ships will be able/authorized to
operate in upcoming sea-ice conditions. The definition of
“environmental conditions” is evolving in the Polar Code and
may in the future include variables that can be skilfully fore-
cast.

Ultimately, all ship-based operations in the Arctic region
rely on navigation and sea ice information for navigation,
either to avoid or get close to the ice edge, and this is
the most mature of the forecast applications. Tools exist
to condense or combine multiple forecast outputs and ob-
servations to provide near-real-time and forecasted condi-
tions in a user-friendly way. Two such examples are Icy-
Sea (https://driftnoise.com/icysea/, last access: 4 May 2025),
which uses ice charts with a sea ice drift forecast, and Arc-
tivities (https://arctivities.noveltis.fr/overview/, last access:
4 May 2025), which provides a risk index and anthropic noise
levels. Such tools can be used to support maritime users with
varying needs.

Research support

Forecasts of the Arctic Ocean can be used to inform new
developments or deployments of equipment for scientific
purposes. One such example is the Sea Ice Drift Forecast
Experiment (SIDFEx; https://www.polarprediction.net/
key-yopp-activities/sea-ice-prediction-and-verification/
sea-ice-drift-forecast-experiment/, last access: 4 May 2025).
Two of the main aims of the campaign were to gather
information on available sea ice drift forecasts in order to
(a) decide on an optimal starting position for the research
icebreaker Polarstern to commence a year-long study of
conditions while frozen into the sea ice and (b) use the drift
forecasts to inform where to order high-resolution satellite
images of the local domain around the ship for the coming
days as they become available. Using sea ice drift models to
selectively download these images saved limited bandwidth
and image fees.

Another example of the use of short-term forecasts is the
use of the VENUS (VEssel Navigation Unit support System),
a forecasting platform which can use a variety of domains
to provide forecasts for research ships on demand. This was
successfully deployed in a cruise in 2018 (Dethloff et al.,
2019). The ice-strengthened ship MIRAI could only go (a)
where ice thickness was less than 70 cm and concentration
less than 0.1 and (b) where air temperature was greater than
−15 °C (Inoue et al., 2019). Scientists were deploying equip-
ment near the marginal ice zone in order to investigate the
predictability of conditions during autumn freezing; further,
the ship needed to gather as many data as possible while be-
ing able to exit through the Bering Strait before ice blocked it
for the winter (Dethloff et al., 2019). Using VENUS, which
combines forecast from ECMWF, sea ice forecasts from ICE-
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POM (University of Tokyo) and passive microwave data,
helped to inform these. Such use of forecasts can also feed
back into the development – for example, on the MIRAI
cruise, the bandwidth was such that it was hard to download
data; therefore 2D fields were more valuable (Inoue et al.,
2019).

9.4 Climate adaptation

The rapidly declining sea ice, environmental changes and
potential economic opportunities of the Arctic region have
attracted a lot of interest, but with this comes a new state
that is still being understood even as it evolves. Large un-
certainties in Arctic forecasts somewhat impede their use in
climate adaptation, but the strategic and economic interest
for the region as well as presence of coastal communities
has made it a very active field of research. For example,
decadal predictions such as those from the IPCC Sixth As-
sessment Report (https://www.ipcc.ch/synthesis-report/, last
access: 4 May 2025) are used to predict future states, often by
selecting some variables in conjunction with past and present
in situ and satellite monitoring to make the predictions more
robust and downscaled to more local areas. Examples include
frequency of marine heat waves (He et al., 2024) and sea-
level rise and coastal erosion (Tanguy et al., 2024). In the
Barents Sea, climate prediction models have also been used
to predict phytoplankton up to 5 years in advance (Fransner
et al., 2023) and cod populations under evolving ocean phys-
ical properties (Kjesbu et al., 2023). Such studies can provide
new understanding, which can contribute to decision-making
and planning in vulnerable communities and occupations that
are dependent on knowing the physical conditions or biolog-
ical activity.

Another key tool in developing understanding of the
changing Arctic is to use reanalyses or hindcasts to see
how the present situation compares to earlier years. Many
of the available short-term forecasts in the Arctic (Cirano
et al., 2025) have an accompanying reanalysis or hind-
cast so that past seasonal evolution of relevant conditions.
For some maritime users, seasonal predictions can sup-
plement this information to aid voyage planning (Wag-
ner et al., 2020), for both safety and ensuring adher-
ence to the Polar Code (see Sect. 9.3). An additional ex-
ample is the Disko Bay model, run by the Disko Ice
and Ocean service (https://marine.copernicus.eu/services/
use-cases/monitoring-ecosystem-within-disko-bay, last ac-
cess: 4 May 2025), which provides both forecasts and a hind-
cast of ocean conditions at the high resolution required for
Greenlandic fjord environments, using output from a lower-
resolution forecasting model as boundary conditions. Out-
puts from this fjord model have been provided to an ecosys-
tem model; these applications contribute to monitoring ef-
forts to ensure long-term sustainability of the blue economy
in Greenland.

10 Education, stakeholder engagement and ocean
literacy

Education, stakeholder engagement and ocean literacy activ-
ities are essential components in supporting the full value
chain from data production (operational forecast systems) to
the provision of useful downstream applications. These ac-
tivities are carried out in all regions and at various different
stages along the value chain: from education outreach activi-
ties with learners and technical workshops to community en-
gagement and co-design workshops with stakeholder groups.
They help to ensure that the downstream applications pro-
duced have real value and are measurably impactful. Below,
we provide some examples of the types of education and en-
gagement activities that take place.

10.1 Technical workshops

The International Oceanographic Commission Sub-
Commission for the Western Pacific (WESTPAC) develops
and strengthens regional and member states’ capacity
for ocean model development, data assimilation, model
validation and development of ocean forecasting systems,
through a series of national and regional training, scientific
workshops, and professional exchanges among partner insti-
tutions (https://ioc-westpac.org/ofs/capacities/, last access:
4 May 2025). The Regional Training and Research Center on
Ocean Dynamics and Climate (RTRC-ODC) was officially
established at the 8th WESTPAC Intergovernmental Session
in 2010. The First Institute of Oceanography, State Oceanic
Administration of China, organized the lecture series on
ocean models (2011), ocean dynamics (2012), air–sea
interaction and modelling (2013), climate models (2014),
climate change (2015), ocean dynamics and multi-scale
interaction (2016), development of coupled regional ocean
models (2017), ocean forecast system (2018), and climate
dynamics and air–sea interactions (2019). In the evaluation
period of 2015–2019, 191 young scientists from 36 countries
joined the lectures (https://ioc-westpac.org/rtrc/odc/, last
access: 4 May 2025).

10.2 Ocean literacy

With ongoing Arctic Sea ice decline, scientific results from
the region are more frequently appearing in national news,
and the general public are more aware of the Arctic environ-
ment and how it is changing. The freely accessible forecast
maps from most services, with an interface that can select
given variables and watch as they run forward in time, pro-
vide a useful tool to demonstrate how changeable, for exam-
ple, the ice edge is in response to forcing, even in the short
term, which can be used to engage with wider audiences and
educate about the Arctic as a dynamic system. For exam-
ple, Coursera, a website offering a number of free online
courses for studying in the evenings, has a course entitled

https://doi.org/10.5194/sp-5-opsr-6-2025 State Planet, 5-opsr, 6, 2025



CHAPTER3.2

22 J. Veitch et al.: A description of ocean forecasting applications around the globe

“Frozen in the Ice: Exploring the Arctic”, based out of the
University of Boulder, Colorado (https://www.coursera.org/
learn/frozen-in-the-ice, last access: 4 May 2025); the course
allows participants to act as virtual participants on the MO-
SAiC Arctic research campaign, and one of the six modules
is based around Arctic forecasting. Activities such as this al-
low the public to get closer to polar research, and many large
research campaigns now include outreach as part of their pro-
grammes.

10.3 Stakeholder engagement and co-design

With NOAA’s Office of Response and Restoration, the Emer-
gency Response Division (ERD) develops tools; guidelines;
and small, field-oriented job aids to assist preparedness for
response communities. In addition, NOAA provides standard
techniques for observing oil, assessing shoreline impact, and
evaluating and selecting cleanup technologies that have been
widely accepted by response agencies.

South Africa’s National Oceans and Coastal Information
Management System (OCIMS) holds annual stakeholder en-
gagement workshops that facilitate the co-design of the de-
cision support tools. Between the workshops, dialogue be-
tween stakeholders and developers is maintained through ac-
tive WhatsApp groups.

While INCOIS provides extensive training to users for ef-
ficient utilization of their forecast products, they have no-
ticed that NGOs, universities, local government departments
and localized user community networks are found to be very
effective in ensuring that the information reaches the user
in time. User uptake is supported by their good relation-
ship with local fishing communities, who are involved with
the safe-keeping of their observation platforms in exchange
for timely warnings of maritime hazards. This relationship
builds awareness as well as trust with coastal communities.

10.4 Citizen science

Aotearoa / New Zealand’s Moana Project innovatively incor-
porates citizen science by partnering with commercial fishers
to gather essential oceanographic data. Fishing vessels are
equipped with the “Mangōpare” sensor system, which auto-
matically collects and transmits subsurface temperature mea-
surements in near-real time as the vessels go about their nor-
mal fishing activities. This transforms the fishing fleet into a
vast, mobile observation network, expanding data coverage
across a wider spatial range than traditional research meth-
ods. This mutually beneficial partnership provides scientists
with valuable data, while fishers gain access to information
that can enhance their own operations. By empowering local
communities and increasing data accessibility, Moana fos-
ters collaboration and contributes to a deeper understanding
of the marine environment, ultimately supporting sustainable
fisheries’ management and scientific research.

11 Summary

Operational oceanography supports the blue economy, pro-
viding the knowledge and tools for us to sustainably use our
oceans for economic growth, better livelihoods and job cre-
ation. Around the world, scientists and forecasters are devel-
oping cutting-edge tools that transform raw ocean data into
practical solutions for a variety of challenges. These tools
help us understand and protect our marine environments,
manage resources, and ensure safety at sea.

This report has provided some examples of downstream
applications, based on operational forecast systems, for eight
of the nine regional teams identified by the OceanPrediction
DCC. It is by no means a comprehensive review, but it does
provide an indication of the needs and services in each re-
gion as well as the relative maturity level of downstream ap-
plications. The OceanPrediction regions with the most estab-
lished and most numerous operational forecast systems (e.g.
the Mediterranean and Black Sea, the North East Atlantic,
North America, parts of the West Pacific and Marginal Seas
of South and East Asia, and to some extent the Arctic) tend
to also have the most mature downstream applications. The
forecasting systems of the Indian Seas, South America and
Africa can be thought of as “emerging”, and by this we mean
new, rapidly growing, and often under- or less-resourced. De-
spite this, the INCOIS system developed for the Indian Seas
is a sophisticated system that incorporates real-time observa-
tions and provides mature tools for stakeholders that support
various offshore activities. Part of their success is related to
their close engagement with their stakeholders. The African
region is one of the least developed in terms of regionally
optimized forecast systems, with only a few developed in
various parts of the continent. However, they do have two
fairly mature user-support platforms that are based primarily
on earth observations and whose tools are co-designed with
stakeholders. These dissemination platforms are ready to in-
gest tools based on regionally optimized forecasts.

In this review, a sample of various downstream applica-
tions around the globe reveals that while established and re-
liable forecast systems are a key factor in their abundance,
a good relationship with stakeholders is critical for their up-
take.
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Abstract. Ocean prediction relies on the integration between models and satellite and in situ observations
through data assimilation techniques. Nowadays, satellites offer high-resolution observations of essential ocean
variables at the surface, widely adopted in combination with precise but sparse in situ measurements that, from
the surface to the deep ocean, can constrain large-scale variability in models. Moreover, observations are a valu-
able source of information for validating and assessing model products, for improving them, and for developing
the next generation of machine learning algorithms aimed at enhancing the accuracy and scope of ocean fore-
casts. The authors discuss the role of observations in operational ocean forecasting systems, describing the state
of the art of satellite and in situ observing networks and defining the paths for addressing multi-scale monitoring
and forecasting.

1 Introduction: the role of observations in ocean
prediction

Ocean prediction relies on the integration between models
and satellite and in situ observations through data assimi-
lation techniques (Bell et al., 2015). Data assimilation pro-
vides a 4D dynamical interpolation of observations by con-
sidering the complementarities between the different types
of observations. High-spatial-resolution (e.g. from 10 km at
global scale to 1 km or less at regional and coastal scales) and
high-temporal-resolution (e.g. daily) ocean fields consistent
with observations and model dynamics are thus derived and
can be used to initialise ocean forecast models. The devel-
opment of machine learning techniques such as deep neu-
ral networks offer different and complementary pathways for
ocean prediction. Machine learning techniques analyse and
learn from patterns in past data or ocean reanalyses to make
ocean predictions from current data. Several studies have al-
ready shown the potential of machine-learning-based ocean
forecast systems (e.g. Chen et al., 2023).

Whatever the techniques used to produce them, the qual-
ity of ocean analyses and forecasts observations at global

and regional/coastal scales is directly dependent on the avail-
ability of high-quality in situ and satellite observations with
a sufficient space and time resolution. These dependencies
vary according to ocean dynamics. Data assimilation is, for
example, mandatory and quite effective for constraining the
mesoscale variability at global and regional scales. At coastal
scales, it is more challenging to constrain ocean dynamics
where small-scale, high-frequency and non-linear processes
play an important role.

Observations are also essential to validate ocean analysis
and prediction models (e.g. Gutknecht et al., 2019), to im-
prove ocean models (required for assessment of model per-
formances, for ocean prediction and for digital twins) (e.g.
Wang et al., 2021), and for training machine learning algo-
rithms.

For both data assimilation and validation aspects, data
must be carefully validated, and information on data errors
must be documented. Higher-quality reprocessed data sets
are required for reanalyses.

The monitoring of the impact of observations should be
part of any ocean prediction activity. This is done through
Observing System Evaluations (OSEs) and Observing Sys-
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tem Simulation Experiments (OSSEs) (Fujii et al., 2019;
Gasparin et al., 2019). OSEs allow the impact of an exist-
ing observing system to be assessed (by withholding ob-
servations). OSSEs help in the design of new observing
systems, evaluate their different configurations and perform
preparatory data assimilation work. Other complementary
approaches for quantifying the impact of observations on
ocean analysis and forecast systems also exist (Fujii et al.,
2019; Drake et al., 2023).

In the following sections we briefly review the role of
the different ocean observing systems in ocean prediction at
global, regional and coastal scales. Sections 2 and 3 deal, re-
spectively, with satellite and in situ observations.

2 Satellite observations

Satellite observations have a major role in and impact on
ocean prediction (Le Traon, 2018). Satellites can provide
real-time and global observations of key ocean variables at
high space and time resolution: sea level and geostrophic cur-
rents, sea surface temperature, ocean colour, sea ice, surface
wave, and surface winds (Fig. 1). The spatial resolution de-
pends on the nature of the sensor and ranges from a few hun-
dreds of metres (e.g. infrared and ocean colour sensors) to
tens of kilometres (e.g. microwave sensors). The time reso-
lution or revisit time ranges from 1 h or less for geostationary
satellites up to a few days or longer for polar-orbiting satel-
lites.

Ocean modelling and data assimilation systems have a
high dependency on the status of the altimeter constella-
tion (Le Traon et al., 2017). Satellite altimeters provide all-
weather observations of sea level, which is an integral of the
ocean interior and provides a strong constraint on ocean state
estimation at the mesoscale. At least four altimeters are re-
quired, and a precise knowledge of the mean dynamic topog-
raphy (MDT) is also a strong requirement for assimilation
into operational ocean forecasting systems (Le Traon et al.,
2017; Hamon et al., 2019).

Sea surface temperature (SST) is a key variable for all
ocean prediction systems. SST data can be used to correct
for errors in forcing fields (heat fluxes, wind) and to constrain
the mesoscale variability of the upper ocean. High-resolution
SST data from a combination of infrared (polar-orbiting and
geostationary) (e.g. S3 SLSTR, VIIRS, GOES, MTG) and
microwave sensors (e.g. AMSR-2) are thus essential to con-
strain ocean prediction systems.

Satellite sea ice concentration and, more recently, sea ice
thickness data (SMOS and Cryosat) are routinely assimilated
in sea ice models. The assimilation of sea ice drift remains
challenging due to the short memory of sea ice drift and sea
ice models deficiencies (Sakov et al., 2012). Numerous im-
pact studies have been carried out for sea ice data assimila-
tion, in particular for sea ice thickness products from Cryosat

but also for thin ice thickness from SMOS and both satellites
together (Xie et al., 2018).

Sea surface salinity (SSS) observations (SMOS, Aquarius,
SMAP) from space (Reul et al., 2020) provide valuable infor-
mation (Martin et al., 2019; Tranchant et al., 2019) for ocean
prediction. Satellite SSS data assimilation can now constrain
the model forecasts without introducing incoherent informa-
tion compared to the other assimilated observations.

Satellite significant wave height observations are routinely
assimilated in global and regional wave models, and their
impact is very well demonstrated. Wave spectra provided
by Sentinel-1 SAR instruments and, more recently, with the
more precise CFOSAT SWIM instrument can, in addition,
significantly improve the quality of wave forecasts (Aouf et
al., 2021; Hauser et al., 2023).

Ocean colour missions (e.g. S3 OLCI, VIIRS) provide
essential “green ocean” observations for a wide range of
applications (e.g. water quality, eutrophication, harmful al-
gal blooms). Higher-resolution and specialised ocean colour
products (e.g. case-II water algorithms) are particularly
needed for coastal areas. Ocean-colour data are being used to
assess the performance of model simulations of chlorophyll-
a (Chl-a) fields (Gutknecht et al., 2019) and to improve sim-
ulations through data assimilation (Ford et al., 2018; Fennel
et al., 2019). However, the assimilation of ocean colour data
is arguably less widespread than that of physical variables.
The potential for ocean colour data to improve biogeochem-
ical (BGC) models remains significant, though many chal-
lenges persist (e.g. error characterisation, observation opera-
tors such as bio-optical models and the integration of ocean
colour data with in situ measurements like BGC Argo).

While wind observations from multiple scatterometers are
essential for improving the forcing fields required for ocean
prediction, the primary pathway for utilising scatterometer
data is through assimilation in numerical weather prediction
(NWP) systems. However, NWP data assimilation systems
do not incorporate all the information available from scat-
terometers, particularly at smaller spatial scales (Belmonte
Rivas and Stoffelen, 2019). Therefore, using these observa-
tions to directly constrain ocean models may be more bene-
ficial.

3 In situ observations

In situ observing systems play a fundamental role to pro-
vide measurements of the ocean water column and to com-
plement satellite observations. The combination of high-
resolution satellite data with sparse and precise in situ ob-
servations of the ocean interior is the only means to pro-
vide a high-resolution 3D description and forecast of the
ocean state. In situ temperature and salinity data are cru-
cial to constrain large-scale variability in models (Gasparin
et al., 2023). In situ observations of high-frequency and high-
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Figure 1. The unique contribution of satellite oceanography for ocean prediction.

resolution ocean processes in the coastal zone are also essen-
tial to validate coastal ocean prediction systems.

Ocean prediction uses surface observations, vertical pro-
files and time series coming from different types of instru-
ments (e.g. floats, drifters, moorings, marine mammals, glid-
ers, tide gauges, research vessels, ships of opportunity, Ferry-
Boxes, saildrones, high-frequency (HF) radars) and different
parameters (temperature, salinity, currents, sea level, wave,
chlorophyll, oxygen, nutrients, pH, fugacity of CO2) (Fig. 2).

Some available observations, such as from surface drifters,
thermosalinographs (TSGs), and acoustic Doppler current
profilers (ADCPs), are not always assimilated. However,
non-assimilated observations are essential for the indepen-
dent validation of analyses and forecasts, as well as for eval-
uating model and system improvements.

The global Argo array (Roemmich et al., 2019) plays a
fundamental role in ocean prediction (Le Traon, 2013). Im-
pact studies have confirmed and quantified the major im-
pact of Argo on ocean analysis and forecasting systems (e.g.
Turpin et al., 2016). The evolution of Argo into OneArgo,
which includes deep and BGC components, already shows
very promising results to improve ocean prediction systems
(Gasparin et al., 2020; Cossarini et al., 2019; Wang et al.,
2021; Mignot et al., 2023).

The most important other source of global observations
is the surface drifter network, which provides data on sur-
face currents; sea surface temperature; and, for some drifters,
sea surface salinity. Additionally, met-ocean and deep-ocean
mooring arrays (temperature, salinity, velocity, and biogeo-
chemical parameters) (OceanSITES, including the TAO/PI-
RATA/TRITON tropical arrays) provide essential data to val-
idate and constrain models. These are complemented by the

Voluntary Observing Ship (VOS) network, which provides
SST and SSS data as well as surface carbon measurements.

There is a growing need to increase in situ data cov-
erage in shelf and coastal areas. Other data sources, such
as HF radars, ferryboxes, gliders, tide gauges and coastal
monitoring stations, are regularly used to validate and con-
strain ocean prediction models. Uncrewed surface vehicles
(USVs), like saildrones, are also being used with increas-
ing frequency. The assimilation of HF radar data in regional
coastal models is an area of active development (Hernandez-
Lasheras et al., 2021; Drake et al., 2023), and the assimi-
lation of glider observations with sufficiently dense spatial
and temporal sampling at regional and coastal scales has also
proven highly effective (Pasmans et al., 2019; Levin et al.,
2021; Drake et al., 2023). The development of low-cost tech-
nologies and citizen science can also support expanding cov-
erage, particularly in coastal areas.

4 Most important near-future challenges

Ensuring the continuity of existing ocean observing systems
is a necessary, but not sufficient, requirement for ocean pre-
diction. Higher spatial and temporal resolution is required
to match the increasing model resolution and improve the
ability of ocean prediction systems to monitor and forecast
smaller scales, including in coastal areas. In this regard, the
development of operational swath altimetry (e.g. Morrow et
al., 2019; Benkiran et al., 2022), following the outstanding
results of the SWOT mission (Fu et al., 2024), is one of
the most critical requirements for the evolution of the satel-
lite observing system. For in situ observations, critical gaps
remain in coastal areas, shelf seas and polar regions. On a
global scale, the lack of biogeochemical observations limits
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Figure 2. In situ networks from the Global Ocean Observing System (GOOS).

our ability to monitor and forecast the “green ocean”, making
the development of OneArgo a high priority. Data standardis-
ation, quality assurance and quality control are also essential
to ensure that ocean prediction systems make the best possi-
ble use of observations.
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Abstract. Observations are a fundamental component of ocean predictions: they are critical not only for mon-
itoring the state of the ocean but also for improving forecasting systems and validating model outputs. In this
context, it is essential to effectively access, manage, and integrate such information into the ocean value chain.
Data providers play a pivotal role in collecting, processing, and analysing these observations, delivering compre-
hensive data sets that support informed decision-making and enable forecasters to enhance ocean models. This
paper discusses several examples of data services, including the Copernicus Marine In Situ Thematic Assem-
bly Centre (Copernicus Marine INS TAC), the European Marine Observation and Data Network (EMODnet),
and SeaDataNet, all of which are recognized as key players in the monitoring and management of marine re-
sources. Additionally, the paper provides an outlook on future directions for ocean data integration, emphasizing
the opportunities offered by the standardization of data dissemination protocols and the role of cost-effective,
citizen-based data collection.

1 Introduction

The importance of ocean observation in metocean forecast-
ing is emphasized, as it provides crucial data for under-
standing oceanic behaviour and coastal areas. The integra-
tion of parameters like temperature, salinity, currents, and at-
mospheric conditions enhances model accuracy, crucial for
the effective management of human impacts and resource ex-
ploitation. The complex ocean data collection framework in-
volves numerous in situ platforms (Fig. 1), remote sensors,
and types of data, necessitating the provision of multidisci-
plinary, aggregated data sets (Belbéoch et al., 2022).

Marine data aggregators, also referred to as integrators,
play a pivotal role in managing, integrating, and advancing
the understanding of marine environments. They collect, pro-
cess, and analyse diverse data types to create comprehensive
data sets, contributing to informed decision-making in areas
such as fisheries management, offshore energy development,
and marine conservation (see e.g. Novellino et al., 2025, in

this report). Additionally, these aggregators support the de-
velopment of technologies for monitoring the marine envi-
ronment, continually refining data collection processes to en-
hance accuracy.

Over the past 3 decades, progress in marine data man-
agement has been marked by the establishment of interna-
tional programmes and networks, such as the International
Oceanographic Data and Information Exchange (IODE), the
Global Ocean Observing System (GOOS), and the Ocean
Data Information System (ODIS). These initiatives, includ-
ing the World Ocean Database, involve collaborative efforts
globally, led by organizations such as the Intergovernmental
Oceanographic Commission (IOC), the World Meteorolog-
ical Organization (WMO), the United Nations Environment
Programme (UNEP), and the International Council for the
Exploration of the Sea (ICES).

Under the GOOS framework (Fig. 2), the Observations
Coordination Group (OCG), supported by OceanOPS (the
GOOS in situ ocean observations programme support cen-

Published by Copernicus Publications.
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Figure 1. In situ platforms for ocean data collection (from https://marine.copernicus.eu/explainers/operational-oceanography/
monitoring-forecasting/in-situ, last access: 19 March 2025).

Figure 2. GOOS framework (from https://goosocean.org/, last access: 19 March 2025).

tre) and GOOS Regional Alliances (GRAs), coordinates the
GOOS observing networks to provide ocean observing in-
formation (Moltmann et al., 2019). GRAs integrate national
monitoring needs into a regional system, facilitating data as-
sembly and exchange (Corredor, 2018). Data assembly cen-
tres (DACs) and global DACs (GDACs) play a critical role
in this process by receiving, quality-controlling, and assem-
bling data from various sources. They act as primary access

points for this information, adhering to a common data for-
mat (netCDF).

Despite these efforts, GOOS networks and data represent
only a subset of the overall ocean data framework. While
progress has been made in modernizing the WMO data ex-
change system – transitioning from the Global Telecommu-
nication System (GTS) to WIS 2.0 – by leveraging new
web technologies and existing DAC/GDAC infrastructures,
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full data integration between OCG networks and national/re-
gional initiatives has yet to be achieved.

In this intricate and dispersed framework, integration ser-
vices play a crucial role in harmonizing metadata, applying
standardized data quality checks, and facilitating the integra-
tion of diverse data sets and models. GOOS networks, guided
by the OCG data strategy (O’Brien et al., 2024), are estab-
lishing global data nodes that progressively enhance overall
data delivery while maintaining “GOOS quality” within the
broader ocean data lake. Furthermore, the adoption of uni-
fied controlled vocabularies, common data models, and stan-
dardized transport formats ensures the seamless integration
of real-time, near-real-time (NRT), and delayed-mode (DM)
observations into numerical models.

At the international level, various marine data integrators
exist, and Table 1 lists the most active. Some lead the way in
adopting new standards and tools, while others take the ap-
proach of following them. Europe, along with the US and
Australia, is at the forefront of introducing new tools and
standards. The following section outlines the European ma-
rine data integration landscape, which is shaped by three key
initiatives: the Copernicus Marine Service (specifically, the
In Situ Thematic Assembly Centre); the European Marine
Observation and Data Network (with a focus on physics);
and the SeaDataNet network of national oceanographic data
centres (NODCs), affiliated with the International Oceano-
graphic Commission.

2 European marine data integrators

To exemplify the importance of data integrators, a few rele-
vant examples from Europe are presented.

2.1 Copernicus Marine In Situ Thematic Assembly
Centre (Copernicus Marine INS TAC)

Within this programme, the Copernicus Marine INS TAC is
a distributed service integrating data from different sources
for operational needs in oceanography. The Copernicus Ma-
rine INS TAC integrates and quality-controls in a homoge-
neous manner in situ data from data providers in order to fit
the needs of internal and external users. It provides access
to integrated data sets of core parameters for initialization
of, assimilation into, and validation of ocean numerical mod-
els, which are used for forecasting, analysis, and re-analysis
of ocean physical and biogeochemical conditions. Since the
primary objective of Copernicus Marine is to forecast ocean
state, the initial focus has been on observations from au-
tonomous observatories at sea (e.g. floats, buoys, gliders,
FerryBox systems, drifters, and ships of opportunity). The
second objective is to set up a system for re-analysis pur-
poses that requires products integrated over the past 25 to
60 years. The Copernicus Marine INS TAC comprises a
global in situ centre and six regional in situ centres: one for
each EuroGOOS Regional Operational Oceanographic Sys-

tem (ROOS). The INS TAC was designed to fulfil the Coper-
nicus Marine Service and EuroGOOS ROOS needs. The fo-
cus is on essential ocean variables (EOVs) that are presently
necessary for Copernicus monitoring and forecasting cen-
tres, namely temperature, salinity, sea level, current, waves,
chlorophyll/fluorescence, oxygen, and nutrients. Additional
atmospheric parameters (such as wind, air temperature, and
air pressure) are added by some ROOSs to these regional
in situ portals to fulfil additional downstream applications
needs.

For near-real-time and delayed-mode products, the Coper-
nicus Marine In Situ Thematic Assembly Centre is connected
to the GOOS global networks and each Regional Opera-
tional Oceanographic System (ROOS) of EuroGOOS. In the
case of DM products, it is also connected to the SeaDataNet
Network, which comprises national oceanographic data cen-
tres (NODCs). The Copernicus Marine INS TAC integrates
data from various observation programmes, including Argo,
OceanGliders, the Data Buoy Cooperation Panel (DBCP),
OceanSITES, and ship data obtained via NODCs, leverag-
ing the GOOS network observations. Whenever possible, the
Copernicus Marine INS TAC adheres to the standards devel-
oped within the SeaDataNet framework.

2.2 European Marine Observation and Data Network
(EMODnet)

The European Marine Observation and Data Network
(EMODnet) is the EU infrastructure for in situ marine data.
The goal of EMODnet is to provide access to a wide range of
standardized and harmonized marine data, making it easier
for researchers, policymakers, and the public to access and
use marine information. EMODnet focuses on various the-
matic areas, including bathymetry, geology, physics, chem-
istry, biology, and human activities in the marine environ-
ment (Shepherd, 2018). By pooling and harmonizing data
from various sources, EMODnet aims to create a comprehen-
sive and easily accessible marine data infrastructure that sup-
ports a wide range of marine and maritime activities (Schaap
et al., 2022).

EMODnet Physics (https://emodnet.ec.europa.eu/en/
physics, last access: 19 March 2025; Fig. 3) is the domain-
specific project (Martín Míguez et al., 2019) that provides in
situ ocean physics data and data products built with common
standards, free of charge, and without restrictions. These
services encompass a wide range of parameters, including
temperature, salinity, current profiles, sea level trends, wave
height and period, wind speed and direction, water turbidity
(light attenuation), underwater noise, river flow, and sea-ice
coverage.

EMODnet Physics offers an array of in situ data col-
lections (time series, profiles, and data sets) obtained from
various platforms (such as tide gauges, river stations,
floats, buoys, gliders, drifters, and ship-based observations).
EMODnet Physics does not operate platforms; instead, it
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Table 1. International marine data integrators (alphabetical order).

Region Name Description Link

Africa ODINAFRICA (Ocean Data and
Information Network for Africa)

Marine data collection, capacity
building, and information sharing
across Africa.

http://odinafrica.org/
(last access: 19 March 2025)

Arctic Ocean SAON (Sustaining Arctic
Observing Networks)

Enhances and coordinates monitoring
efforts in the Arctic region.

https://www.arcticobserving.org/
(last access: 19 March 2025)

Australia IMOS (Integrated Marine
Observing System)

Australia’s national ocean observing
system, providing open-access marine
data.

https://portal.aodn.org.au/
(last access: 19 March 2025)

India INCOIS (Indian National Centre
for Ocean Information Services)

Provides oceanographic data, forecasts,
and early warnings.

https://incois.gov.in/
(last access: 19 March 2025)

Japan JAMSTEC (Japan Agency for
Marine-Earth Science and
Technology)

Conducts deep-sea research, ocean
observations, and marine forecasting.

https://www.jamstec.go.jp/e/
(last access: 26 April 2025)

South
America

REMARCO (Research Network
of Marine-Coastal Stressors in
Latin America and the Caribbean)

Latin American and Caribbean
initiative for coastal and marine
environmental monitoring.

http://remarco.org/
(last access: 19 March 2025)

Southern
Ocean

SOOS (Southern Ocean
Observing System)

A network for sustained ocean
observations in the Southern Ocean.

https://www.soos.aq/
(last access: 19 March 2025)

United
Kingdom

UK-IMON (UK Integrated
Marine Observing Network)

The UK’s coordinated ocean and
coastal observing system, supporting
climate monitoring, marine safety, and
biodiversity research.

https://noc.ac.uk/
(last access: 19 March 2025)

United States
(IOOS)

IOOS (Integrated Ocean
Observing System)

US national ocean observation network
providing real-time and long-term data.

https://ioos.noaa.gov/
(last access: 19 March 2025)

integrates and federates key data infrastructures and pro-
grammes. For example, it is synchronized with Coperni-
cus Marine INS TAC and includes supplementary in situ
data from PANGAEA (https://www.pangaea.de/, last ac-
cess: 19 March 2025), the International Council for the Ex-
ploration of the Sea (https://www.ices.dk/data/data-portals/
Pages/ocean.aspx, last access: 19 March 2025), the Euro-
pean Multidisciplinary Seafloor and water column Observa-
tory (EMSO) (https://emso.eu/, last access: 19 March 2025),
the SeaDataNet network of national oceanographic data cen-
tres (NODCs), and other Global Ocean Observing System
networks (https://goosocean.org/). The data and data prod-
ucts are accompanied by metadata, offering users compre-
hensive information regarding the provenance, content, loca-
tion, time, data sources, and quality-check procedures.

It supports human-based data discovery (https://emodnet.
ec.europa.eu/geoviewer/, last access: 19 March 2025) and
machine-to-machine interoperability (https://data-erddap.
emodnet-physics.eu/erddap/, last access: 19 March 2025)
and contributes to enhancing our understanding of the phys-
ical aspects of the marine environment. EMODnet Physics
supports various applications, including scientific research,

coastal management, maritime operations, and policymak-
ing.

2.3 SeaDataNet

SeaDataNet (http://www.seadatanet.org, last access:
19 March 2025) is a Pan-European network of professional
marine data centres providing data and metadata standards
for the marine community and online access to their data
holdings of standardized quality (Schaap and Lowry, 2010).
Founding partners are the national oceanographic data
centres, major marine research institutes, UNESCO-IOC,
ICES, and the European Commission Joint Research Centre
(EC JRC). Over 3 decades, SeaDataNet has expanded its
network of data centres and infrastructure in a long series
of EU projects, mostly funded through EU DG RTD. Sea-
DataNet operates an infrastructure for managing, indexing,
and providing access to ocean and marine environmental
data sets and data products (e.g. physical, chemical, ge-
ological, and biological properties) and for safeguarding
the long-term archival and stewardship of these data sets.
Data are derived from many different sensors installed on
research vessels, satellites, and in situ platforms that are part
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Figure 3. In situ data discovery in EMODnet Physics. Wave height chart.

of various ocean and marine observing systems and research
programmes. A core SeaDataNet service is the Common
Data Index (CDI) data discovery and access service which
provides harmonized discovery and access to a large volume
of marine and ocean data sets. Currently, more than 110 data
centres are connected to the CDI service from 34 countries
around European seas, giving access to more than 2.5 million
data sets, originating from more than 650 organizations in
Europe. This imposes strong requirements towards ensuring
quality, elimination of duplicate data, and overall coherence
of the integrated data set. This is achieved in SeaDataNet by
establishing and maintaining accurate metadata directories
and data access services, as well as common standards like
vocabularies, metadata formats, data exchange formats,
quality-control methods, and quality flags. SeaDataNet data
resources are quality-controlled and are major input for
developing added-value services and products that serve
users from government, research, and industry (Simoncelli
et al., 2022).

3 Single-source integrators

Besides these key European multi-parameter ocean data in-
tegrators, there are a number of initiatives that focus on sin-
gle platforms or specific ocean variables. These initiatives
concentrate on specific aspects of the marine environment,
targeting a particular platform or variable for data collection
and integration. Examples include projects that solely focus

on buoys or floats for collecting oceanic data or on initia-
tives that specifically address parameters such as sea surface
temperature, ocean currents, or marine biodiversity. By spe-
cializing in a single platform or variable, they can provide
detailed and focused data products and services that cater to
specific user needs and applications and provide a simpli-
fied source for specific forecasting systems. The following
Table 2 summarizes the most used ones.

4 Ways forward in ocean data integration

In advancing ocean data integration, several key strategies
can push our understanding of marine ecosystems and facil-
itate more informed decision-making. Shared data reposito-
ries and standardized data formats can streamline the inte-
gration process, ensuring compatibility and accessibility and,
more generically, fair data (Wilkinson et al., 2016). Harness-
ing the power of emerging technologies, such as artificial in-
telligence and machine learning, offers opportunities to anal-
yse vast data sets swiftly and extract meaningful insights.
Implementing autonomous sensors and advanced monitoring
systems enhances real-time data collection, providing a more
comprehensive and dynamic picture of oceanic conditions.
To follow the evolution of ocean general metocean models
in terms of spatial resolution, which, in the future, will reach
the kilometric scale at the global level, there is a clear need
for more sensors deployed at the global, regional, and local
scale. In this framework, the inclusion of cost-effective and
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citizen-based data collection is also a key forward-looking
step, and long-term initiatives, such EMODnet, may play a
crucial role in setting up the data flow capacities for emerg-
ing networks not organized under GOOS networks.

Timeliness is also an important parameter to be improved
to ensure that data are available at each model run, partic-
ularly crucial for coastal applications where ocean dynam-
ics evolve rapidly. Nevertheless, data usability/consumability
strongly depends on the data policy licence, and there is an
increasing push for adopting the Creative Commons frame-
work and, in particular, the CC-BY licence, where the only
limitation is that credit must be given to the creator. Integrat-
ing these strategies collectively will not only advance ocean
data integration but also contribute to the ongoing evolution
of general metocean models, including digital twins of the
oceans, and foster a more comprehensive and accessible un-
derstanding of the marine environment.
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Abstract. Data assimilation (DA) is a process for integrating models and observations into comprehensive and
reliable estimates of the ocean state. It is used to produce near-real-time initial conditions (analyses) from which
ocean forecasts are produced and to generate reconstructions of the past state of the ocean (reanalyses). Here we
provide an overview of the methods currently used in ocean systems for assimilating satellite and in situ observa-
tions, together with a brief review of methods being developed which will be implemented in future operational
systems, including the use of machine learning (ML) techniques that provide a way to improve their efficiency. A
list of data assimilation software used by most of the global and regional operational ocean forecasting systems is
provided, together with the availability of each software. A discussion of practical considerations for employing
data assimilation software and techniques operationally is also given, including the types of observations which
are commonly used, and the implementation choices made by existing operational systems at global and regional
scales is summarised.

1 Introduction

Accurate estimates of the state of the ocean are required
for many purposes. Observations provide direct information
about the ocean but are sparse in time and space. Numer-
ical models can give information everywhere and describe
the time evolution of the ocean but are prone to error. Data
assimilation (DA) is the process by which these two sources
of imperfect information are combined, taking into account
their errors, in order to produce complete and accurate esti-
mates of the ocean (Moore et al., 2019; Hoteit et al., 2018;
Alvarez Fanjul et al., 2022; Stammer et al., 2016; Carrassi
et al., 2018). These estimates are used to produce historical
reanalyses of the ocean (Storto et al., 2019; Heimbach et al.,
2019) and in near real time to initialise forecasts (Moore et
al., 2019).

Data assimilation is used in global, regional, and coastal
ocean forecasting systems. The characteristics of the mod-
els used in each setting can be different, including the res-
olution, processes represented, and the model components.
Global models are usually coupled physical ocean–sea ice
models, with a strong move at many operational centres
to coupled atmosphere–ocean–sea ice models. Regional and
coastal models usually resolve more of the higher-frequency
processes which become more important in shallow seas, and
they often include coupled physical–biogeochemical compo-
nents. The observations available for assimilation also of-
ten have different characteristics with different technologies
needed to measure the ocean closer to the coast. The meth-
ods used to initialise forecasts in these different settings have
to take into account the characteristics of the model and ob-
servations available so that the variability associated with the
important processes can be constrained.

Published by Copernicus Publications.
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Many of the data assimilation methods used in ocean fore-
casting were originally developed for numerical weather pre-
diction, with the notable exception of the ensemble Kalman
filter (KF). The dominant spatial and temporal scales in the
ocean are quite different to the atmosphere, though, with the
first baroclinic Rossby radius of deformation being a few tens
of kilometres at mid-latitudes (see e.g. Chelton et al., 1998)
with temporal scales ranging from days to weeks. To re-
solve the open-ocean mesoscale at mid-latitudes, model res-
olutions of the order of at least 1/12° are required (Hewitt
et al., 2016), and the aim of many global ocean data assimi-
lation systems is to initialise the ocean state at these scales.
Observations of the surface ocean are available at fairly high
resolution from satellites, but observations of the sub-surface
ocean are much sparser. Sophisticated methods are therefore
required to make the most of the observations to constrain
models of the 3D ocean on the desired scales. The integration
of high-resolution models along with the high computational
processing required for implementing an advanced data as-
similation method demands computational resources that are
available at only a small number of ocean forecasting centres
and research institutions worldwide.

Errors in ocean models arise due to approximations in their
numerical formulation, errors in the parameterisation of un-
resolved physics, and errors in the inputs to the model in-
cluding the surface atmospheric forcing, river inputs, and the
lateral boundary conditions for regional systems. The ocean
is a chaotic system, so small differences in the initial state
grow over time, especially in strongly eddying regions. All
these sources of uncertainty contribute to the model forecast
error, estimates of which are needed for data assimilation.
Observations also contain errors and measure the ocean on
different spatial scales (to each other and to the model). Es-
timates of the errors in the different observations are there-
fore also needed, including the component due to the mea-
surement itself and the component due to the difference in
the representation of the ocean by the observation and model
(Janjić et al., 2018).

Here we provide a summary of the status of ocean data
assimilation as part of a special issue introduced by Alvarez
Fanjul and Bahurel (2025, in this report). The next section
gives a brief overview of data assimilation theory to put into
context the various schemes used in operational ocean fore-
casting centres. The data assimilation software used at many
of the operational centres is also described, including com-
munity open-source software and other code developed and
used at some of the main institutes. An overview of the prac-
tical considerations needed to apply data assimilation effec-
tively in an operational setting is given. We then describe the
current status of data assimilation as applied in many opera-
tional ocean forecasting centres, followed by a summary of
future directions.

2 Data assimilation methodology

A variety of DA methods are being used or currently tested
to develop operational ocean forecasting systems (OOFSs)
(Moore et al., 2019). These first followed the 3D formula-
tion of the DA problem (3DDA) in which the ocean state at
a given time is estimated based only on the available obser-
vations at that time. 3DDA is often cast as a least-squares
fitting problem whose solution minimises a composite ob-
jective function involving a data misfit term and a regulari-
sation term representing prior knowledge on the ocean state,
which is called the background/prior and is usually taken as
the most recent ocean forecast. Both terms of the objective
function are generally weighted by their respective observa-
tions and background error covariances, which can also be
imposed following a (stochastic) Bayesian inverse formula-
tion of the 3DDA problem under the assumption of Gaus-
sian observations and background errors (Moore et al., 2019;
Hoteit et al., 2018). When the observational operator relat-
ing the ocean state to the observations is linear, the 3DDA
problem has an analytical solution, known as the best lin-
ear unbiased estimator (BLUE); when not, this operator is
either linearised to compute the optimal interpolation (OI)
solution or the objective function is directly minimised using
a gradient-based iterative optimisation algorithm to compute
the 3D variational DA (3DVAR) solution.

The solution of the 4D DA problem is more advanced, as
it is estimated based on a set of observations that is avail-
able over a given period of time (Weaver et al., 2003). It
can be computed following a straightforward extension of
the 3DVAR problem by formulating an objective function in
which the data misfit term constrains the ocean model pre-
diction to the observations in time. When the ocean model
and its forcing are considered perfect, only the ocean state
at the start of the observation period needs to be estimated.
The resulting strongly constrained (by the ocean model equa-
tions) 4DVAR solution is then integrated forward with the
model beyond the observation period to compute the ocean
forecasts. In contrast, the weak constraint 4DVAR problem
considers model errors in the ocean model, which can then
be estimated as part of the objective function minimisation
process. Jointly estimating the ocean initial state and model
errors at every time step can quickly become computation-
ally intractable. This was elegantly addressed by moving the
optimisation in the observation space, which should be of
much smaller dimension in this case, using the dual formula-
tion or Representer method (Bennett, 2005). In between the
strong and weak constraint 4DVAR, a large variety of differ-
ent implementations exist, for instance, estimating the ocean
model parameters (e.g. mixing schemes) and inputs (e.g. at-
mospheric forcing, open boundary conditions, bathymetry)
as part of the minimisation process. This has been success-
fully demonstrated with the MIT general circulation model
(MITgcm) (Forget et al., 2015) and the Regional Ocean Mod-
eling System (ROMS) (Moore et al., 2019). In all 4DVAR
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methods, the computation of the objective function gradients
required for the minimisation process can be efficiently im-
plemented through the adjoint model, governed by the ad-
joint equations to the ocean tangent linear model (Moore et
al., 2004; Vidard et al., 2015). Coding and running the adjoint
model can be demanding on both human effort and compu-
tational resources.

The observational and background error covariances are
key in determining the 3D and 4D DA solutions. The first
sets the weights of the data misfit terms and their correla-
tions to avoid overfitting the observations while accounting
for redundant information (Moore et al., 2019). The second
constrains the DA solution by enforcing some dynamical re-
lationships in the initial state and/or smoothness on the esti-
mated inputs and parameters to enable a proper propagation
of the observations’ information into all ocean model vari-
ables (Moore et al., 2019).

The DA methods discussed so far are designed to compute
a deterministic estimate of the ocean state (the maximum a
posteriori of the Bayesian inversion problem) and therefore
do not provide a framework to quantify the uncertainties in
the ocean forecasts, the covariance of which could be used
as the background for the next DA cycle. This sets the stage
to the filtering DA methods which sequentially compute the
solution of the Bayesian inversion problem by considering
the observations as they become available. The filtering for-
mulation of the DA problem allows model and observational
errors and involves computing the probability distribution of
the ocean state conditioned on all previous observations. This
provides a recursive framework suitable for OOFSs where
the model is used for forecasting the ocean state and its error
statistics (forecast step), which are then updated with the new
incoming observations based on Bayes’ rule (analysis step)
(Hoteit et al., 2018).

The Bayesian filtering problem can be conceptually solved
by the Kalman filter (KF) when the underlying dynamical
and observational models are linear and their errors are Gaus-
sian, in which case the forecast and analysis distributions are
Gaussian and the analytical form of their mean (state esti-
mate) and covariance is available. Ocean general circulation
models are, however, nonlinear, and the discrete dimension
of the underlying ocean state can be very large. This moti-
vated the development of a variety of simplified and extended
variants of the KF for ocean DA, either by (i) linearising the
ocean dynamics and enforcing low-rank error covariance ma-
trices (e.g. singular evolutive extended Kalman (SEEK) fil-
ters) or (ii) using the widely celebrated ensemble KF (EnKF)
methods (Vetra-Carvalho et al., 2018). EnKF methods use
samples to compute statistical approximations of the first
two moments of the ocean state forecast and analysis dis-
tributions. Given an analysis ensemble, an EnKF integrates
its members, eventually with perturbed noise to account for
model errors, forward with the ocean model for forecasting,
and the resulting forecast ensemble statistics are then updated
with the incoming observations using the KF analysis step.

The latter is referred to as stochastic when the KF analysis
step is applied on each forecast ensemble member using per-
turbed observations, so that the analysis ensemble covariance
matches that of the KF, and deterministic (e.g. ETKF, EAKF,
SEIK, DEnKF) when the KF analysis step is directly applied
on the mean and covariance of the forecast ensemble, after
which a deterministic resampling step is needed to resample
a new analysis ensemble (Hoteit et al., 2018).

EnKFs are generally integrated with relatively small en-
sembles (∼ 100 samples) to limit their computational cost,
making their sample covariances low-rank and thus necessi-
tating localisation/covariance-tapering techniques to confine
the spatial range of their correlations (Hoteit et al., 2018).
Limited ensemble size can also result in underestimation of
the ensemble variance, leading to the need for ensemble in-
flation (Evensen et al., 2022). To further reduce the computa-
tional requirements, EnKFs are also often implemented with
static ensembles, only using the ocean model to compute the
forecast starting from the analysis state (ensemble OI (EnOI)
methods), or their ensembles augmented with pre-selected
static members (hybrid EnOI–EnKF methods) (Counillon et
al., 2009). On the other side of the spectrum, more sophis-
ticated filtering methods have also been proposed to move
beyond the Gaussian error assumption by employing Monte
Carlo approximations of the forecast and analysis distribu-
tions, so-called particle filters, or through Gaussian mixture
approximations, which, when implemented within an ensem-
ble framework, reduce to some sort of ensemble of EnKFs
(Van Leeuwen at al., 2019). These methods are, however, still
in testing phases and are yet to be applied in operational set-
tings.

4DVAR and EnKFs were proven to provide viable and ro-
bust solutions for many ocean DA applications, and most
ocean centres are currently developing their operational sys-
tems around these approaches. There are benefits and draw-
backs in using an EnKF or a 4DVAR (Lorenc, 2003; Kalnay
et al., 2007). EnKFs involve flow-dependent ensemble rep-
resentation of the background, though rank-deficient. On the
downside, the EnKF is generally only efficient for moderate
model nonlinearity because of its second-order moments ap-
proximation of the error statistics. 4DVAR, on the other hand,
should better handle nonlinearities, though the optimisation
of its objective function can be a complex task in the presence
of strongly nonlinear dynamics (Moore et al., 2019; Hoteit et
al., 2018), and can be implemented with a full-rank, albeit
static, background error covariance matrix. 4DVAR further
requires coding and maintaining the adjoint of the observa-
tion and forecasting models, which is quite demanding. The
use of automatic differentiation in distributed HPC environ-
ments, which is receiving a renaissance in the context of ma-
chine learning (ML), may overcome this limitation (Heim-
bach et al., 2005). Finally, 4DVAR does not lend itself easily
to parallelisation, while the important computational cost for
computing the forecast ensemble can be drastically mitigated
by trivial parallelisation.
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There have been various attempts to merge the 4DVAR and
EnKF approaches in order to combine their strengths, which
introduced a new family of hybrid ensemble-variational (En-
VAR) methods. This includes (i) consideration of an ensem-
ble of DA (EnDA) methods to obtain flow-dependent er-
ror representations, (ii) the iterative ensemble Kalman filters
(iEnKFs) and smoothers (iEnKSs) which use a forecast en-
semble to describe the background statistics and apply a non-
linear optimisation to the 4DVAR objective function in the
ensemble space (Sakov et al., 2012a), and (iii) the class of 4D
ensemble-variational (4DEnVAR) methods which also per-
forms a set of 4DVAR optimisations in the subspace spanned
by the ensemble using a set of perturbed observations (Liu
et al., 2008). Different 4DEnVAR versions have been pro-
posed (Bannister, 2017), employing hybrid background co-
variances, adjoint model or finite differences to compute the
gradients, and different types of perturbations.

Recently, machine learning (ML) techniques have also
been considered to enhance the efficiency of the DA meth-
ods, in terms of both capacity and computations (Cheng et
al., 2023). ML techniques harness the potential of neural
networks (NNs) to approximate highly nonlinear functions,
which may enable the development of computationally less
demanding forecasting models (Barthélémy et al., 2022), and
backward models for efficient data fitting. NNs were also
proposed as end-to-end replacement of the analysis steps
(Beauchamp et al., 2023) and to parameterise and account
for model errors (Farchi et al., 2021).

3 Data assimilation software

Data assimilation software packages come in all sizes and
flavours. A first distinction needs to be made between educa-
tional packages that can be used for methodological develop-
ments and operational codes designed for high-performance
computers. We will only consider the latter category in this
section. A second distinction can be made between software
packages aimed at 4DVAR methods and those that take the
EnKF as their target algorithm. These two types of software
differ in their complexity and size and therefore adopt dif-
ferent development strategies. There are thus several small-
sized EnKF packages and a few more ambitious 4DVAR
packages on the market. The latter may also include the
EnKF as a small addition to their ensemble-variational tool-
box. Some of the packages (DART, PDAF, JEDI) have users
in other research fields beyond ocean forecasting. See Table 1
for a list of commonly used DA software in ocean prediction
systems.

The software packages listed in Table 1 have mainly
been used on high-performance computers (HPCs), and
some of them have been used on personal computers. The
NEMOVAR and MITgcm 4DVAR codes and the NEDAS
ensemble code are actively being developed for use on GPU-
based systems. However, all the DA software packages listed

above have been around long enough to be ported several
times to different HPC architectures with different compilers
and can be qualified as portable.

4 Practical implementations in operational systems

Several factors dictate the practical implementation of ocean
DA systems within an operational environment. The primary
controlling factors in any operational environment typically
relate to (i) scheduling of the DA analysis and forecast phases
with respect to the competing demands of other essential ac-
tivities (e.g. numerical weather prediction, hydrological fore-
casts) and (ii) the release of analysis–forecast products in a
timely manner so that they are of maximum benefit to the
users. These overarching criteria therefore, in turn, dictate
the configuration of the forecast model and the data assimi-
lation approach that may be used.

In the case of ensemble approaches, such as the EnKF or
EnVar, there may be a trade-off between model resolution
and the ensemble size in that computation time increases
with resolution. Thus, with limited resources, fewer ensem-
ble members can be run within the constraints imposed by
items (i) and (ii). An advantage of ensemble approaches is
that each ensemble member can be computed independently,
meaning that, in very large HPC environments, many ensem-
ble members can be run simultaneously. Here again, though,
there can be a trade-off between resolution and ensemble
size. While most ocean models scale reasonably well on par-
allel computing architectures, wall-clock time typically does
not scale linearly with the number of cores. Hence, there is
a point of diminishing returns whereby it may be better to
allocate fewer cores to the business of computing ensemble
members at the expense of a longer wall-clock time for each
member, rather than dedicating a very large number of cores
to a single task.

Unlike ensemble methods, the traditional approaches to
variational data assimilation, namely 3DVAR and 4DVAR,
are strictly sequential and cannot be parallelised in time.
In other words, the inner- and outer-loop iterations of the
cost function minimisation algorithm must be performed se-
quentially. The sequential iterative nature of variational ap-
proaches therefore imposes a heavy computational burden on
the data assimilation phase of the analysis–forecast cycle, es-
pecially in the case of 4DVAR. This burden is alleviated in
some 4DVAR systems by performing the inner-loop minimi-
sation steps at lower model resolution – for example, a re-
duction in the horizontal resolution by a factor of 2 typically
yields a reduction in wall-clock time by a factor of 8 assum-
ing that the inner-loop time step can also be halved. Perform-
ing the inner loops at lower arithmetic precision (i.e. 32-bit
arithmetic versus 64-bit arithmetic) can lead to further cost
savings. In 4DVAR, the inner-loop iterations involve integra-
tions of the tangent linear (TL) and adjoint (AD) versions
of the forecast model. Further reductions in computational
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Table 1. Data assimilation software packages.

Software
name

Target
algorithm(s)

Programming
language

Development
community

Code availability

JEDI Variational DA C++ JCSDA, NOAA,
NASA, US Navy and
Air Force, Met Office

Open source.
https://github.com/JCSDA
(last access: 25 March 2025)

MITgcm Variational DA Fortran.
A version in Julia is
under development.

ECCO consortium,
GECCO, MIT, Uni
Texas

Open source.
https://mitgcm.readthedocs.io/
(last access: 25 March 2025)

NEMOVAR Variational DA Fortran CERFACS, ECMWF,
Met Office, INRIA

Not open source

OceanVar Variational DA Fortran CMCC, CNR Not open source

ROMS Variational DA Fortran ROMS community Open source.
https://www.myroms.org/
(last access: 25 March 2025)

DART Ensemble DA Fortran NCAR Open source.
https://dart.ucar.edu
(last access: 25 March 2025)

EnKF Ensemble DA Fortran NERSC Open source.
https://github.com/nansencenter/enkf-topaz
(last access: 25 March 2025)

EnKF-C Ensemble DA C Bureau of Meteorology Open source.
https://github.com/sakov/enkf-c
(last access: 25 March 2025)

NEDAS Ensemble DA Python, parallel NERSC Open source.
https://github.com/nansencenter/NEDAS
(last access: 25 March 2025)

OAK Sequential DA Fortran U. Liège Open source.
https://github.com/gher-uliege/OAK
(last access: 25 March 2025)

OpenDA Ensemble DA Java TU Delft Open source.
https://www.openda.org
(last access: 25 March 2025)

PDAF Ensemble DA Fortran AWI Open source.
https://pdaf.awi.de
(last access: 25 March 2025)

SAM2 SEEK filter Fortran Mercator Ocean
International, ECCC

Not open source

Sequoia Sequential DA Fortran OMP/LEGOS Available on request.
https://sirocco.obs-mip.fr/
(last access: 25 March 2025)

cost can therefore also be achieved by reducing the complex-
ity of the TL and AD models. Time-parallel formulations of
4DVAR based on a saddle-point algorithm also yield substan-
tial computational savings (Fisher and Gurol, 2017; Moore et
al., 2023).

The assimilation strategy employed also depends on the
types of observations that are to be assimilated and their dis-
tribution in time. In the case of a Kalman filter, while each
observation can be assimilated sequentially at the associated
observation time, this may not be an efficient strategy, since
this might require overly frequent stopping and restarting of
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the filter computations. Thus, it is often preferable to group
together observations that are closely spaced in time and
treat them as though they were available at the same time.
This approach underpins the strategy of first guess at appro-
priate time (FGAT), which is commonly employed in con-
junction with both ensemble approaches and 3DVAR. Such
approaches necessitate the choice of a time window over
which the observations will be aggregated for assimilation.
In between times, the forecast model is run to yield the first
guess or background for the next data assimilation cycle, so
the time window of aggregation also dictates how frequently
the analysis–forecast cycle can be performed. For an EnKF,
it is sufficient to store observation equivalents from each
model ensemble member to calculate asynchronous cross-
covariances (Sakov et al., 2010). In the case of 4DVAR, ob-
servations are typically assimilated at the actual time of ob-
servation. This involves integrations of the TL and AD mod-
els forward and backward in time. Since these are based on
a linearised version of the forecast model, the validity of
the linear assumption through time is an important consid-
eration. In particular, linear instabilities can develop if ap-
propriate care is not exercised. Therefore, while a long time
window in 4DVAR may be preferable so that the analysis
is informed by more observations, this must be balanced by
the validity of the linear assumptions employed in the TL
and AD models and the added computational burden of the
longer assimilation window.

5 Ocean observations

While there is a common subset of observations from the
global ocean observing system (GOOS) that are assimilated
into ocean models, additional sources of data may be avail-
able for assimilation into regional ocean models that are not
appropriate for global models. The GOOS and different types
of observations available are discussed in the ETOOFS guide
(Alvarez Fanjul et al., 2022). The mainstay of the GOOS
is remote sensing observations of sea surface temperature
(SST), sea surface height (SSH), sea surface salinity (SSS),
and sea ice concentration. This is supported by the Argo
network of profiling floats that provide vertical sections of
temperature and salinity (and in some cases biogeochemical
variables) mostly over the upper 2000 m of the water col-
umn, although deep Argo floats below 2000 m are now also
being deployed. In the tropical oceans, the observing sys-
tem is augmented by networks of buoys that provide profiles
of temperature (and in some cases salinity and currents) to
depths of ∼ 500 m. Observations from tagged marine mam-
mals also provide useful information in some regions of the
world ocean. In coastal regions, other data sources are often
available that cannot be readily assimilated into global mod-
els because of the disparity in horizontal resolution. These
include data from gliders and other autonomous underwater
vehicles (AUVs), estimates of surface currents from high-

frequency (HF) radars, other tagged marine mammals, moor-
ings, drifters, and (in some locations) dedicated coastal ar-
rays.

All observations, regardless of their origin, must be sub-
ject to strict quality control (QC) standards before they can
be assimilated into a model (Good et al., 2023). All oper-
ational centres employ sophisticated QC systems for flag-
ging and rejecting erroneous observations and those of poor
quality. In addition, the large volume of remote sensing ob-
servations from Earth-orbiting satellites must generally be
thinned in space and time. There are three main reasons for
this: firstly, remote sensing observations contain a great deal
of redundancy which can be reduced by judicious thinning;
secondly, the sheer volume of remote sensing observations
can quickly overwhelm a data assimilation system if not ap-
propriately thinned (particularly in light of the high redun-
dancy); and, lastly, accounting for correlated observation er-
rors in data assimilation systems is technically challenging,
so thinning the observations is one approach for reducing
the degree of correlation. Another important aspect of opera-
tional data assimilation systems is the formation of so-called
“super-observations”. This refers to the procedure for com-
bining multiple observations of the same type that fall within
a model grid cell at the same observation time into a single
datum (a super-observation). This usually entails some sim-
ple averaging or aggregation procedure and is necessary in
order to improve the numerical conditioning of the data as-
similation inverse problem.

The use of observations in data assimilation requires in-
formation about their uncertainties. The observation uncer-
tainty consists of a component due to the instrument error
and a component related to the different representation of
the ocean by the observations and the model (for example,
representing different spatial scales and/or timescales; Janjić
et al., 2018). Some observation types (e.g. satellite SST) are
provided together with information about the expected un-
certainty in each measurement, and this information can be
used directly in the data assimilation. For other observation
types, estimates of the uncertainty have to be obtained from
the literature. An example list of instrumental uncertainties
for different observation types assimilated in a global ocean
forecasting system is provided in Table 1 of Lea et al. (2022).

Since the observations are the only, albeit far from com-
plete, measure of the true state of the ocean, they often form
the basis for metrics that are used to monitor the performance
of data assimilation systems. The statistics of the observation
minus background (OmB) and observation minus analysis
(OmA) provide information about the fit of the model to ob-
servations before and after the observations have been assim-
ilated. The statistics of OmB and OmA provide an important
diagnostic check on prior assumptions made about the back-
ground error and observation error covariances (Desroziers et
al., 2005). Inconsistencies between the actual and expected
error statistics can be used to retune the data assimilation
system, regardless of the data assimilation methodology em-
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ployed. In variational data assimilation systems, continuous
monitoring of the cost function and cost function gradient
also provide useful diagnostics of system performance. The
impact of different components of the observing system can
also be quantified and monitored in various ways. This is
commonly done in terms of the impact on the skill of fore-
casts that are initialised from the data assimilation analyses.
By continuously monitoring the impact of each component
of the observing system on forecast skill, data streams that
consistently degrade the forecast skill can be flagged (and re-
moved) and the degradation of any data stream over time can
be identified.

6 Current status of data assimilation in operational
forecasting systems

An overview of operational ocean data assimilation systems
and their characteristics is provided in Fig. 1 for global sys-
tems and Fig. 2 for regional and coastal systems. Not all op-
erational systems are covered here, but the figures provide
information about the main choices which have been made
by some of the existing operational centres producing near-
real-time forecasts in the configuration of their data assimi-
lation schemes. The information represents the current oper-
ational status, but all centres are continually developing and
improving their systems, and many have research configura-
tions which are more sophisticated than those presented.

In general, the global systems use somewhat simpler DA
algorithms (though they are still complex in their implemen-
tation of those algorithms) than the regional and coastal sys-
tems, the exception being the BoM system which uses a hy-
brid EnKF with 48 dynamic members and 144 stationary
low-mode members (Brassington et al., 2023). Many global
forecasting groups use a 3DVAR-FGAT algorithm (Barbosa
Aguiar et al., 2024; Zuo et al., 2019; Cummings and Smed-
stad, 2013; Storto et al., 2016; Ravichandran et al., 2013),
with some groups using a SEEK filter or an LESTKF with a
static ensemble (Lellouche et al., 2018; Smith et al., 2016; Li
et al., 2021). The reason these algorithms are generally sim-
pler is largely due to the large number of grid points, espe-
cially in the higher-resolution global systems, which restricts
the options for more expensive algorithms when timely de-
livery of forecasts is the main goal. Some groups are test-
ing more sophisticated schemes in research mode, though,
including those which make use of ensembles; e.g. MOI
are testing LETKF, the Met Office and ECMWF are test-
ing hybrid 3DEnVAR schemes (Lea et al., 2022; Chrust et
al., 2024), and JMA are implementing 4DVAR (Fujii et al.,
2023). The observations assimilated in these systems are
fairly consistent across the different systems, with the main
difference being whether the systems include sea ice or at-
mosphere components. Some of the DA systems are focused
purely on the ocean, many include a sea ice component,
and some now run with a coupled atmospheric component,

though these systems all still use so-called “weakly” coupled
DA where the DA in the atmospheric and ocean/sea ice com-
ponents is run separately, despite using coupled models (see,
for example, Guiavarc’h et al., 2019, and de Rosnay et al.,
2022). There is a large range of time windows used by the
different systems, with the most common time window be-
ing 1 d. A short 6 h window is used in the Met Office coupled
DA system (to match the time window in the atmospheric
DA; Guiavarc’h et al., 2019), and longer time windows of
5–7 d are used by some systems.

There is a wider range of DA algorithms employed in
regional and coastal forecasting systems from EnOI/static
SEEK filters (Carvalho et al., 2019; Ji et al., 2017; Smith et
al., 2021; Escudier et al., 2022) and 3DVAR-FGAT schemes
(Rahaman et al., 2018; King and Martin, 2021; Coppini et al.,
2023) through to the more sophisticated EnKF (Sakov et al.,
2012b; Röhrs et al., 2023), LESTKF (Brüning et al., 2021),
and 4DVAR algorithms (Moore et al., 2023; Iversen et al.,
2023; Hirose et al., 2019; Lee et al., 2018). Many of these re-
gional systems also include biogeochemical DA (see Fennel
et al., 2022, for a recent review), and some include coupled
sea ice DA (e.g. Sakov et al., 2012b). The range of observa-
tions assimilated is also quite varied, with some systems only
assimilating SST data, while others include the full range of
available observations, including HF radar, gliders, and bio-
geochemical data from satellites and in situ platforms.

7 Future directions

Operational ocean forecasting systems are under constant de-
velopment, including the data assimilation component. There
is a continued push towards higher resolution at many centres
and an increase in the use of ensembles both for improved
data assimilation and for providing forecast uncertainty in-
formation to users. These directions both require significant
additional computational resources, so improving the com-
putational efficiency of data assimilation software, particu-
larly on new computer architectures like GPUs, is impor-
tant to allow more flexibility in the choice of algorithms and
resolutions used. While there is evidence that increasing en-
semble size provides greater improvements in forecast skill
once the important processes are resolved, rather than further
increasing model resolution (Thoppil et al., 2021), there is
also continued research in improving assimilation method-
ology to allow sub-mesoscale processes to be constrained
where there are sufficient observations (Ying, 2019; Jacobs et
al., 2023). New observing systems are being developed and
launched, particularly wide-swath altimeter missions such as
SWOT (Morrow et al., 2019), which allow improved con-
straints on mesoscale ocean forecasts (King et al., 2024;
Liu et al., 2024; Benkiran et al., 2024). Treatment of spa-
tially correlated observation errors is important to allow the
most information to be extracted from such data, and various
groups are developing methods to represent these in data as-
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Figure 1. Operational global ocean data assimilation systems. For each institute, the following are listed: the DA algorithm (∗ indicates the
fixed-basis version of the algorithm) and software, DA resolution and time window, Earth system components (O: physical ocean; SI: sea
ice; A: atmosphere; W: surface waves; BGC: ocean biogeochemistry; L: land), and observations assimilated (SST: sea surface temperature;
SLA: sea level anomaly; SIC: sea ice concentration; SID: sea ice drift; T/S: profiles of temperature and salinity; OC: satellite ocean colour;
BGC: biogeochemical profile data; HFR: HF radar).

Figure 2. Operational regional and coastal ocean data assimilation systems. See description for Fig. 1.
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similation systems (e.g. Guillet et al., 2019; Yaremchuk et al.,
2024). Coupled ocean–atmosphere data assimilation is also
an evolving area (de Rosnay et al., 2022), with the develop-
ment of more strongly coupled data assimilation algorithms
requiring the use of consistent software across the different
Earth system components. The use of machine learning in the
ocean forecasting process is also developing quickly, with
various applications in the context of data assimilation be-
ing tested and implemented (Heimbach et al., 2025, in this
report).
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Abstract. We describe, at an elementary level, the spatially varying properties of the ocean that physical ocean
models represent, the principles they use to evolve these properties with time, the physical phenomena that they
simulate, and some of the roles these phenomena play within the Earth system. We describe at an intermediate
level the governing equations the models use and the grids that they typically use and, at a more advanced
technical level, the methods and approximations that the models use and the difficulties that limit their accuracy
or reliability. We also briefly describe the wider context and future prospects for the development of these models.

1 Introduction

The models of ocean physics described in this paper use
physical principles to simulate how the three-dimensional
structures of the ocean’s temperature, salinity, and currents
evolve in time. Section 2 describes the models at an intro-
ductory level. It first outlines the spatially varying quanti-
ties they predict and the physical principles they use. It then
describes the circulations the models simulate and some of
the reasons why these circulations are important in the Earth
system. Section 3 describes the models at an intermediate
level, outlining their governing equations, some approxima-
tions used to improve their efficiency, and the grids they typ-
ically employ. Section 4 outlines at a more technical level the
main approximations the models typically use and the steps
in the discretization of their equations, drawing attention to
some of the difficulties which limit their accuracy or reliabil-
ity. Section 5 discusses wider and future perspectives.

Chassignet et al. (2019) provide an alterna-
tive non-technical introduction to ocean modelling.
McWilliams (1996) and Fox-Kemper et al. (2019) provide
more detailed reviews, and Griffies (2004) is still a helpful
primer on the basic techniques. Aspects of the design,
testing, documentation, and support for an ocean model code
that are crucial for it to be suitable for use in operational
predictions or climate simulations are covered in Wan et

al. (2025, in this report). Porter and Heimbach (2025, in this
report) discuss the adaptations of ocean models required for
them to perform efficiently on modern high-performance
computers (HPCs).

2 An overview of the models and what they simulate

2.1 The quantities simulated and the principles used

The temperature structure of the ocean at a given time in a
physical ocean model is represented by a three-dimensional
(3D) grid of temperature values. The three dimensions of the
grid correspond to the three dimensions of space. One of the
dimensions is aligned with the local vertical and the other
two with locally horizontal directions. The set of tempera-
ture values on the grid is referred to as the temperature field.
The salinity structure is similarly represented by a 3D grid of
salinity values, referred to as the salinity field. The currents in
the two locally horizontal directions are represented by two
fields and the locally vertical current by a third field. The
fluid’s density and pressure are also represented by fields. In
total, conceptually there are seven 3D fields (the temperature,
salinity, density, and pressure as well as three velocity fields)
and the physical ocean model simulates how these fields will
evolve in time. Given all these fields at time t , the model pre-
dicts how they will all evolve over the next few minutes or
hours – that is, over a time step �t – and hence their values
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at time t + �t . Model predictions to days, months, or years
ahead are generated by performing a large number of time
steps.

The equations used by physical ocean models are based on
the following physical principles:

– conservation of momentum (Newton’s laws of motion)
for each direction in space;

– conservation of the mass of water and salt;

– conservation of energy (the first law of thermodynam-
ics); and

– the thermodynamics determining the density at a point
from the temperature, salinity, and pressure (the equa-
tion of state).

Together with information about the momentum, heat, and
fresh water exchanged with the atmosphere and sea ice at
the ocean surface and with the solid Earth at the bottom of
the ocean (the boundary conditions), these seven sets of con-
straints are sufficient to determine how the seven fields will
evolve from given initial values at every point of the seven
fields (the initial conditions). In practice, the details of how
the equations are used to provide computationally efficient,
stable, and accurate solutions are quite intricate. The accu-
racy of the model predictions is primarily limited by the rep-
resentation of the ocean structure by the values on a grid
whose resolution is limited by computational power. Mo-
tions at scales comparable to or smaller than the grid are
not resolved. The effects of these subgrid-scale (SGS) mo-
tions on the resolved scales are calculated by parameteriza-
tion schemes. Although these are based on physical princi-
ples and detailed studies, their accuracy and reliability are
inevitably limited. This is one of the main areas where fur-
ther research has potential to improve the model simulations.

2.2 The circulations simulated and their impacts

The circulations and physical phenomena that these ocean
models are typically used to simulate are principally the fol-
lowing:

– the near-surface boundary layer where there is strong
turbulent mixing driven by surface winds and heating
or cooling (Large et al., 1994);

– gyre circulations associated with the region, called
the thermocline, where the vertical density gradient is
strongest – large-scale displacements in the thermocline
are primarily driven by Ekman pumping: in the subtrop-
ical gyres, the thermocline is bowl-shaped and in the
sub-polar gyres it is dome-shaped (Chap. 20 of Vallis,
2017);

– meridional overturning circulations (MOCs) associated
with heat loss and stirring of mixed layers at high lati-
tudes and wind-driven upwelling and heat uptake in the

Southern Ocean and near the Equator (Srokosz et al.,
2021);

– western boundary currents (WBCs) – the depth-mean
WBCs are associated with the wind-driven gyre circula-
tions (Pedlosky, 1982, Chap. 5) and oppositely directed
surface and deep WBCs (Hogg, 2001) with MOCs;

– mesoscale circulations (with horizontal scales
<100 km) associated with instabilities of the boundary
currents and gyre circulations (Robinson, 1983); and

– sub-mesoscale motions (with horizontal scales <10 km)
that are strongest in the near-surface boundary layer
(Taylor and Thompson, 2023).

These circulations and phenomena play important roles in
the Earth system. For example, the western boundary cur-
rents are responsible for very large meridional transports of
heat and geographically varying air–sea fluxes which con-
tribute to the shape of atmospheric circulations, interannual
variations in the slope of the thermocline along the Equator
in the Pacific Ocean are an essential component of the El
Niño–Southern Oscillation (ENSO) phenomenon, the advec-
tion of heat by large-scale ocean currents towards ice shelves
has a significant impact on their heat balance and evolution
(Stewart et al., 2018), and biogeochemical cycles are typi-
cally sensitive to the vertical advection of nutrients (Williams
and Follows, 2011).

The ocean models can be configured as a component of
a coupled system, with models of other components such as
the atmosphere, sea ice, surface waves, or biogeochemistry,
or as a stand-alone system with suitable datasets providing
surface forcing. They can be configured to cover the entire
global ocean, or to cover just a limited region with lateral
boundary conditions (that are often taken from a model of
a larger region). Their initial conditions can be specified by
climatologies based on historical measurements or regularly
updated by assimilating the latest measurements as in oper-
ational forecast systems (Martin et al., 2025, in this report).
The model coupling, domain, resolution, and initial condi-
tions should be chosen to suit the purpose of the modelling
and are constrained by the computational resources available.

3 A simple description of ocean models

3.1 Governing equations

There are many good books on the basics of fluid dynamics.
Fluid dynamics is usually formulated using the concepts of
vector calculus. Appendix A gives a brief introduction to vec-
tor calculus and its application to fluid dynamics, including
simplified derivations of Eqs. (1)–(3) below.

Tracers are defined to be properties that fluid parcels retain
unchanged with time. Using T to denote a tracer, u the veloc-
ity field, and D/Dt the Lagrangian time derivative (following
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the motion),

DT /Dt = ∂T /∂t + u.∇T = 0. (1)

The fraction of the mass of water in a fluid parcel due to
saline components, S, is a tracer and evolves according to the
prognostic equation (Eq. 1). Conservation of mass requires
that the rate of decrease of mass inside an infinitesimal vol-
ume be equal to the fluxes out of its faces and hence that the
density, ρ, satisfies

∂ρ

∂t
+ ∇. (ρu) = 0. (2)

Combining Eqs. (1) and (2) one obtains an alternative flux
form for the evolution of tracers,

∂(ρT )
∂t

+ ∇. (ρuT ) = 0. (3)

The thermodynamics of seawater is rather complex. Val-
lis (2017) Sections 1.5–1.7 give a helpful introduction to it.
The macroscopic motions models represent are taken to be
in thermodynamic equilibrium and reversible (e.g. not to in-
clude mixing). The internal energy of a fluid parcel (follow-
ing its motion) is then only changed by the heat (Q) input
into it and the work done on it by pressure forces on it re-
ducing its volume (work done equals force times distance
travelled). A potential temperature, θ , can be defined that is
equal to the temperature the fluid parcel would have if re-
versibly moved without input of heat (adiabatically) to a ref-
erence height (such as the surface or 2000 m). The potential
temperature evolves according to

cp
Dθ

Dt
=

θ

T
Q, (4)

where cp is the heat capacity of the seawater at constant pres-
sure and T is temperature. Ocean models generally use θ as a
prognostic variable. This requires that T and ρ be calculated
from the pressure p, θ , and S using the equation of state for
seawater.

The acceleration of fluid particles is determined from
Newton’s second law of motion: F = maI. The acceleration
aI in an inertial frame of reference must take into account
that the Earth is rotating and that the fluid velocity u is the
velocity relative to this rotating frame of motion. Represent-
ing the rotation by the vector � which is aligned with the
axis of rotation and equal to the rate of rotation, Vallis (2017)
Section 2.1 nicely shows that

aI =
Du

Dt
+ 2� × u + � × (� × r) . (5)

A perfect fluid does not resist shearing motions (Batchelor,
1967). Then the force exerted on an infinitesimal element of
the surface area of a fluid parcel by the fluid outside is inward
and in the direction normal to the surface. So with this force

F = −pn̂, where n̂ is the outward-pointing normal vector of
unit length and by an argument similar to that in Eq. (A7),
one finds that the pressure force on a volume δV is given by
−δV ∇p. The force due to gravity on this cell is downward
and equal to its mass ρδV times g. Putting these expressions
together for a perfect fluid we infer that

ρ

[
Du

Dt
+ 2� × u + � × (� × r)

]
= −∇p − ρgk̂, (6)

where k̂ is the local unit vector pointing upward.
In fluids, energy input at one scale does not stay at that

scale; some “propagates” to larger scales and some to smaller
scales. The smaller scales are visible in tracer fields where
one sees tongues of tracers drawn out into filaments that
become interleaved. The cascade of energy to small scales
results in dissipation of energy and vorticity. In the oceans
most mixing occurs on isopycnal (constant density) surfaces.
Models are formulated to mix tracers preferentially along
isopycnal surfaces (Redi, 1982) and aim to constrain the di-
apycnal mixing to realistic levels. The mesoscale motions
in the boundary currents usually derive their energy by ex-
tracting potential energy from the sloping isopycnals associ-
ated with the currents. Models which only partially resolve
mesoscale motions usually include formulations for addi-
tional velocities which flatten these sloping isopycnals (Gent
and McWilliams, 1990). The momentum equations also in-
clude terms which drain kinetic energy. These are usually
designed to be strongly scale-selective (e.g. biharmonic) in
order to drain energy preferentially from the grid scale. It is
important to restrict the grid-scale velocities to levels that do
not result in excessive diapycnal mixing of tracers (Ilicak et
al., 2012).

3.2 Principles of efficiency, accuracy, and stability

Ocean models should be designed to accurately represent the
motions of interest and to be as efficient in their calculations
as possible. It is also highly desirable that they possess ana-
logues of important conservation properties, such as conser-
vation of energy and momentum, and that they have opera-
tors that mimic the properties of div, grad, and curl for some
of the fields.

It is also essential that the model integrations are stable.
The prognostic equations are of the form ∂P/∂t = R. When
calculating P at time step tn+1 nearly all the terms in R need
to be written in terms of quantities at step tn or earlier steps
such as tn − 1. If the time step is too large one of these terms
will cause exponential growth of near-grid-scale fluctuations
in P . The Courant–Friedrichs–Lewy (CFL) criterion, which
requires c�t < �x, where c is a speed (such as |u| or the
phase speed of a gravity wave), �t is the time step, and �x is
the grid spacing, is of this form (Durran, 1999). If the terms
in R that are directly related to P are specified using P at
time step tn + 1, a resulting formulation whose time step is
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not restricted can usually be found. Such implicit schemes
usually require the solution of a matrix equation. If the matrix
involves the whole 2D or 3D domain its solution is usually
costly. Vertical mixing is a fast process (mixing across many
grid cells typically happens in one time step) and implicit
schemes result in 1D tridiagonal matrix equations that can
be solved robustly and efficiently, so most ocean models use
implicit schemes for vertical mixing.

3.3 Approximations that improve efficiency

Sound waves in the ocean travel at about 1500 m s−1 and sea
level variations associated with depth-independent motions
travel at about 200 m s−1. Other motions associated with
internal waves (gravity waves, Kelvin and Rossby waves)
and the currents themselves propagate signals at no more
than about 3 m s−1. Ocean models usually employ approx-
imations that make their solution more efficient by elimi-
nating sound waves and enabling special treatment of the
depth-independent motions. The Boussinesq approximation
takes the ocean density to be treated as a constant except
in the gravitational force −ρgk̂. The conservation of mass
(Eq. 2) then reduces to ∇ ·u = 0, which says that the fluid
is incompressible and the evolution of tracers simplifies to
∂T /∂t+∇·(uT ) = 0. The deliberate omission of ∂ρ/∂t from
Eq. (2) eliminates sound waves from the model’s solutions.
The external mode, which is almost depth-independent, is
usually calculated separately as a depth-independent mode.
It is usually calculated using variables that depend only on
the “horizontal” coordinates using time steps that are about
60 times smaller than those used for the 3D calculations.

Another approximation that is commonly used is to ne-
glect the vertical velocities in the vertical component of
the momentum equation. This hydrostatic approximation is
valid for motions with horizontal scales that are much larger
than their vertical scales. The vertical pressure gradient is
then diagnostic (rather than prognostic) and typically satis-
fies ∂p/∂z = −ρg.

3.4 Model grid cells

Finite-difference schemes take cell values to be point values
and calculate derivatives explicitly. The advection of tracers
might be calculated using Eq. (1). Finite-volume schemes
calculate the fluxes and forces across cell faces and treat cell
values as grid cell means. They conserve volume, heat, and
momentum and usually aim to conserve energy. Most ocean
models are formulated using finite-volume schemes, at least
for tracers.

Most ocean models use curvilinear orthogonal coordinates
in the horizontal (on spheroidal surfaces) but an increasing
number use triangular or hexagonal grids (Ringler et al.,
2010; Korn et al., 2022). Panels (a) and (b) of Fig. 1 illus-
trate the two most common choices for the placement of vari-
ables in grid cells, the Arakawa B- and C-grids, respectively

(Arakawa, 1988). Both grids store the tracers and the pres-
sure at the centre of each cell. The B-grid stores both compo-
nents of the velocities at each of the corners of the cell, whilst
the C-grid (Fig. 1b) stores them at the centres of the faces to
which they are normal and hence at different points. Particu-
larly when the Boussinesq approximation is made, the C-grid
is ideal for the evolution of tracers, conservation of volume,
and calculation of ∂p/∂x at the u points and ∂p/∂y at the v

points. The B-grid is ideal for the calculation of the Coriolis
terms, whereas the simplest expression for v at the u point on
the C-grid involves a four-point average of v at the surround-
ing grid points. On the B-grid the horizontal divergence and
vorticity are naturally centred at the tracer points, whilst on
the C-grid they are centred at the tracer points and the cell
corners, respectively (Fig. 1c).

The choice of vertical coordinate is particularly important
in an ocean model. A model level may have a constant height
(z coordinates), have constant potential density (isopycnal
coordinates), or vary in proportion to the local depth (terrain-
following coordinates). In principle the vertical coordinate
could aim to transition from z coordinates near the sea sur-
face to isopycnal coordinates in the interior and terrain co-
ordinates near the bottom. These coordinates are discussed
further in the next section. We note that the axes used by the
momentum equations are not altered by these schemes. It is
just the coordinates, not the axes, that are transformed.

Most of the terms in ocean models, including the bound-
ary conditions, are only calculated to second-order accuracy.
This means that if the model were used to simulate an ideal-
ized case in which the motions are reasonably well-resolved,
the errors in the solution should be reduced by a factor of 4 as
the grid spacing is reduced by a factor of 2. To second-order
accuracy, a grid cell mean value is equal to the point value at
its centre. So in some models it is not entirely clear what the
grid cell values are intended to represent. It has been found to
be advantageous to calculate the advection terms (usually the
fluxes through the cell faces) to higher-order accuracy and to
limit the values of the fluxes to avoid extending the range
of tracer values (Durran, 1999; Fox-Kemper et al., 2019).
Higher-order schemes for the calculation of pressure forces
are also advantageous for terrain-following coordinates.

4 Methods and approximations employed in ocean
models

4.1 Variables and equations used

The ocean models used in physical ocean prediction systems
evolve 3D fields of the active tracers and the three compo-
nents of velocity (see Section 5.5.1. of Alvarez Fanjul et
al., 2022). They also evolve either a 2D surface pressure (or
surface height) field or a 3D pressure field. The active trac-
ers used depend on the formulation of the equation of state.
When it is EOS80 (Fofonoff and Millard, 1983) the active
tracers are potential temperature and practical salinity, whilst
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Figure 1. The horizontal placement of variables on (a) the B-grid and (b) the C-grid. Tracers, T , and velocities u and v in the x and y

directions are located at the points marked by blue dots and red and green arrows, respectively. Panel (c) shows that on the C-grid the
vorticity is naturally centred at the corners of the tracer grid.

when it is TEOS10 (IOC et al., 2010) they are conservative
temperature and absolute salinity. The evolution of these
fields is determined by some form of the so-called primitive
equations (Griffies and Adcroft, 2008). The approximations
that are usually made are generally well-described in Sec-
tion 5.4 of Alvarez Fanjul et al. (2022). We note, however,
that the centripetal acceleration is not included in the equa-
tions because they have been transformed so that the spheroid
coincident with the Earth’s bulge follows a spherical surface
(Vallis, 2017). It is of course assumed (the turbulent closure
hypothesis) that the effect of small-scale motions on large-
scale motions can be represented (that is parameterized) in
terms of the large-scale motions. None of the Boussinesq, hy-
drostatic, incompressible, or additional Coriolis term approx-
imations are mandatory, but maintaining consistent, well-
behaved equations requires care. Some alternative forms of
the primitive equations which enjoy good conservation prop-
erties are derived in White et al. (2005). Compressible equa-
tions support rapidly travelling sound waves, which (can be
artificially slowed but) make a competitively efficient solu-
tion difficult.

4.2 Numerical discretization

Ocean models normally use a smoothly varying horizontal
grid consisting of triangular or quadrilateral elements (Sec-
tion 5.4.2. of Alvarez Fanjul et al., 2022). Where the grid
lines on the quadrilateral grids intersect, they are usually
orthogonal (hence called curvilinear orthogonal). The grids
are chosen to have rather uniform resolution (cubed sphere
grid; Ronchi et al., 1996) or to be isotropic (same resolu-
tion locally in the two directions) with grid spacing decreas-
ing away from the Equator and the poles of the grid placed
over land (Madec and Imbard, 1996). Triangular elements
have the obvious advantage that they can be chosen to fol-
low coastlines more accurately. With triangular elements, re-
duced grid spacing is often employed for selected regions
within one smoothly varying grid. With quadrilateral ele-
ments, reduced grid spacing is usually achieved by using sep-
arate “child” grids that are nested within the “parent” grid
with one-way nesting (the child takes boundary values from

the parent – Staniforth, 1997) or two-way nesting (the parent
also takes values from the child – Debreu and Blayo, 2008).

Finite-difference and finite-volume methods are usually
employed with the quadrilateral grids. Finite-volume mod-
els evolve their fields by calculating the fluxes across their
cell faces (the difference between the two is not significant
for terms that are calculated only to second-order accuracy).
Models using triangular elements use either finite-element or
finite-volume techniques (Danilov, 2010; FESOM has transi-
tioned from finite element to finite volume).

The main choices for the staggering of variables on orthog-
onal grids are the B-grid and C-grid (Arakawa, 1988). The
dispersion properties of gravity waves on the C-grid are bet-
ter (worse) than the B-grid when the grid resolves (does not
resolve) the Rossby radius. Stationary chequer-board modes
for the pressure field on the B-grid and the velocity field
on the C-grid can be associated with undesirable grid-scale
“noise”. The dispersion properties of gravity waves on trian-
gular grids are more problematic, though some finite-element
pairs (Le Roux et al., 1998) perform relatively well. There
has been significant recent progress in the development of C-
grid-like formulations for triangular grids (and their hexago-
nal dual grids) with good mimetic properties (Ringler et al.,
2010; Cotter and Shipton, 2012).

The choice of vertical “grid” is well-known to have far-
reaching consequences for ocean models. Lorenz grid stag-
gering is commonly used despite its computational mode and
susceptibility to spurious shortwave instabilities (Arakawa
and Moorthi, 1988; Bell and White, 2017). Ideally, the ver-
tical grid would have fine vertical spacing near the surface
so that the mixed layer can be well-represented. Also, the
surfaces on which the vertical coordinate takes constant val-
ues would follow isopycnals at mid-depths (so that advec-
tive velocities and spurious numerical time-mean advective
diapycnal transports are minimized) and would follow the
bathymetry at the ocean bottom so that flow down slopes
(with the associated vortex stretching) is well-represented.
Techniques to use coordinates that treat some parts of the
motions using Eulerian methods and others using Lagrangian
approaches with re-mapping are described in Petersen et
al. (2015), Griffies et al. (2020), and Hofmeister et al. (2010).
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The generation of an appropriate vertical grid for ocean mod-
els is an active area of research.

Most terms in ocean models are calculated using second-
order-accurate formulae. The advection of tracers should,
however, be calculated using schemes of higher-order accu-
racy (typically third or fourth order) which also take care to
retain the upper and lower bounds of the advected quantities.
There is a very extensive body of literature on this subject
(Durran, 1999; Brasseur and Jacob, 2017) and it is generally
agreed that the advecting velocity field should be constrained
to be sufficiently smooth (e.g. Ilicak et al., 2012). The ef-
fective resolution of the model also depends on how scale-
selective the dissipation of variance is near the grid scale
(Soufflet et al., 2016).

Specific terms in the equations of motion present differ-
ent challenges depending on the grid that has been chosen.
For terrain-following coordinates, calculation of the hori-
zontal pressure gradient to higher order (Shchepetkin and
McWilliams, 2003) and of the diffusion along isopycnal sur-
faces (Lemarié et al., 2011) is beneficial, and some smooth-
ing of the bathymetry is necessary. The formulation of the
governing equations for the cells that are only partially filled
by water is an active area of research (Adcroft, 2013; Debreu
et al., 2020). For C-grid models, calculation of the Coriolis
term should ensure conservation of energy, and some care
is needed to avoid unintended transfer of energy to the grid
scale (Hollingsworth et al., 1983; Bell et al., 2017; Ducousso
et al., 2017).

The strengths and weaknesses of various time-stepping
schemes used in ocean models are reviewed in Lemarié et
al. (2015). Various approaches have been taken to the time
stepping of the external (barotropic) mode (Shchepetkin and
McWilliams, 2003; Demange et al., 2019).

4.3 Parameterization of unresolved processes

The parameterization of unresolved processes is of primary
importance: Fox-Kemper et al. (2019) provide a useful re-
view. The classic parameterizations of isopycnal diffusion
(Redi, 1982; Visbeck et al., 1997) and of the slumping of
isotherms by baroclinic instabilities (Gent and McWilliams,
1990) work well in climate models with order 1° grid spac-
ing. The latter needs to be developed further for models of
higher resolution using ideas such as Bachman (2017) and
Mak et al. (2018). It is increasingly clear that sub-mesoscale
motions within the ocean surface boundary layer cause heat
to flux vertically (Fox-Kemper et al., 2011) and generate fil-
amentary structure. The interaction of these motions with
standard parameterizations of turbulence (Umlauf and Bur-
chard, 2005) and Langmuir turbulence (Reichl et al., 2016)
is an active area of research, as is the parameterization of
internal dissipation by internal gravity waves generated by
tidal displacements over steep bathymetry (de Lavergne et
al., 2020). Machine learning (ML) methods are being applied
to the parameterization of subgrid-scale motions (Zanna and

Bolton, 2020; Ross et al., 2023) and are likely to play impor-
tant roles in future ocean models.

5 Wider and future perspectives

Modern ocean models use large HPC resources and open-
source codes supported by communities of scientists and
software engineers. They support public safety and pro-
tection of the environment by contributing to short-range
weather predictions (including forecasts of hurricanes), sea-
sonal forecasts of El Niño, and information about climate
change. In order to properly appreciate their roles one needs
to see them as one component within the much wider range
of scientific activities required to provide this support. Inno-
vations in remote sensing and in situ measurement technol-
ogy and their internationally coordinated and sustainable im-
plementation are fundamental to these endeavours. The de-
velopment of seasonal predictions in the late 1980s and early
1990s, for example, was closely tied to the development of
the TOGA TAO array (Smith, 2001). The doubling of the
number of transistors in a CPU every 2 years from 1970–
2020 (Porter and Heimbach, 2025), and the emergence of ac-
curate near-real-time satellite altimetry and the ARGO sys-
tem of drifters around the turn of the century, enabled near-
global assimilation and prediction of the strongest mesoscale
ocean motions to first become a reality around 2015 (Bell et
al., 2015). What will be the major societal drivers and what
are the best opportunities for scientific improvement in the
next 10–20 years? We do not have a crystal ball but we can
offer some suggestions.

As mentioned at the end of the last section, ML methods
have recently emerged as a new set of tools that can be used
in many ways to improve Earth system models (Eyring et
al., 2024). Depending on the directions explored, the ocean
model codes may need to be rewritten as differentiable func-
tions to exploit ML methods fully (Silvestri et al., 2024).
Ocean reanalyses based on measurements from 1980 on-
wards are gradually being improved and together with at-
mospheric reanalyses will provide an essential resource for
inputs to ML and the assessment and improvement of cou-
pled ocean–atmosphere models. The international coordina-
tion established under CMIP (Coupled Model Intercompari-
son Project, https://www.wcrp-climate.org/wgcm-cmip, last
access: 17 February 2025) should enable much richer sets
of experiments to be conducted and more diverse ensem-
bles of ocean and Earth system models to be explored than
would otherwise be possible. There is also scope for more
traditional improvements to ocean models, such as improved
methodologies and choices for vertical coordinates, param-
eterization of vertical mixing, specification of surface ex-
changes (Yu, 2019; Storto et al., 2024), the use of finer hori-
zontal resolution in selected regions, and more efficient gen-
eration of ensembles of simulations. Coupled simulations of
ENSO still have significant deficiencies and simulations of
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the future Atlantic MOC are not as reliable as they need to be.
In summary, it is reasonable to be optimistic that successful
progress with significant societal impacts can be made over
the next 10–20 years.

Appendix A: An introduction to vector calculus for
fluid dynamics

Fluid dynamics is concerned with properties like tempera-
ture and salinity that vary spatially and evolve with time.
Such properties are referred to as fields. Just as y(x) repre-
sents any curve y that is a function of x in ordinary calculus,
F (x,y,z, t) represents any field that depends on x,y,z, and
t . In ordinary calculus we have δy ∼= y (x + δx) − y(x) and
consider δy/δx in the limit as δx becomes very small. For
“smooth” enough functions there is a limiting value dy/dx.
In vector calculus we consider how F varies with each of its
coordinates whilst keeping the other coordinates fixed. Vary-
ing x and considering the limit when δx becomes very small
we write

∂F

∂x
=

∂F

∂x

∣∣∣∣
y,z,t

=
F (x + δx,y,z, t) − F (x,y,z, t)

δx

in the limit as δx → 0. (A1)

∂F/∂x is termed the partial derivative of F with respect to x.
The variables that are held constant can be explicitly declared
as shown. For brevity they are often omitted, in which case
they are implicit. An extremely useful expression analogous
to δy ∼= y (x + δx) − y(x) is

δF ∼=
∂F

∂x
δx +

∂F

∂y
δy +

∂F

∂z
δz +

∂F

∂t
δt. (A2)

For the sake of simplicity we limit ourselves hereafter to
rectilinear Cartesian coordinates in which the axes are or-
thogonal straight lines, the coordinates of a point r are de-
noted by (x,y,z), the distance from the origin, d , is given by
the Pythagorean theorem (d2

= x2
+ y2

+ z2), and z points
upward. We explain later that the equations can be derived
for a more general set of locally orthogonal coordinates.

Consider first a curve r(s) between two points, r0 =

r(s0) and r1 = r(s1), as illustrated in Fig. A1a. Integrating
Eq. (A2) along the curve (with δt = 0) one sees that

F (r1) − F (r0) =

∫ s1

s0

(
∂F

∂x

dx

ds
+

∂F

∂y

dy

ds
+

∂F

∂z

dz

ds

)
ds. (A3)

Writing ∇F = (∂F/∂x,∂F/∂y,∂F/∂z) and dr/ds =

(dx/ds,dy/ds,dz/ds), Eq. (3) can be re-expressed as

F (r1) − F (r0) =

∫ s1

s0

∇F.
dr

ds
ds =

∫ r1

r0

∇F.dr. (A4)

Equation (A4) is the defining property of ∇F , which is
termed the gradient of F or “grad F ” for short. If one in-
tegrates around any path which closes on itself, i.e. r1 = r0,

one sees that the left-hand side of Eq. (A4) is equal to zero.
Hence the integral of ∇F around any closed curve is zero.

The rate of change with time of a field F following a fluid
particle moving at velocity u = (u,v,w) can also be inferred
from Eq. (A2) by dividing it by δt . Following the fluid parcel,
δx ∼= uδt , δy ∼= vδt , and δz ∼= wδt . So

DF

Dt
=

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
=

∂F

∂t
+ u.∇F. (A5)

Here we have used the standard notation DF/Dt to denote
the rate of change of F with respect to time following a fluid
parcel, which is often called the Lagrangian derivative. Trac-
ers are defined to be properties that fluid parcels retain un-
changed with time. Using T to denote a tracer we see that

DT /Dt =
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= 0. (A6)

An equation expressing conservation of mass can be de-
rived by considering the “notional” cuboid cell illustrated
in Fig. A1b. The density of a fluid, ρ, is defined to be its
mass per unit volume. The volume of the cell in Fig. A1b
equals δV = δxδyδz. The fluxes of mass through the two
side faces perpendicular to the x axis are U (x,y,z)δyδz and
U (x + δx,y,z)δyδz, where U = ρu. So in the limit as the
cell volume becomes very small the mass flux out of the cell
from these two faces equals

[
U (x + δx,y,z) − U (x,y,z)

]
δyδz ∼=

∂U

∂x
δxδyδz. (A7)

Conservation of mass requires that the increase in mass in-
side the cuboid plus the fluxes out of the three pairs of
side faces equal zero. Using expressions corresponding to
Eq. (A7) and dividing by δV one obtains

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)

∂z
=

∂ρ

∂t
+ ∇. (ρu) = 0. (A8)

The operator ∇. introduced in Eq. (A8) is called the diver-
gence. At any point it is defined to be the outward flux per
unit volume through a surface enclosing that point. Gauss’s
theorem shows that for smooth fields the divergence does not
depend on the shape of the volume (e.g. it is the same for in-
finitesimal spheres and cuboids). Combining Eqs. (A6) and
(A8) one obtains the flux form for the conservation of tracers,

∂(ρT )
∂t

+
∂(ρuT )

∂x
+

∂(ρvT )
∂y

+
∂(ρwT )

∂z
=

∂(ρT )
∂t

+ ∇. (ρuT ) = 0. (A9)

There is one other vector quantity that is particularly im-
portant in fluid dynamics: the curl of the velocity field,
∇ × u, which is termed the vorticity. The component of the
vorticity perpendicular to the infinitesimal square shown in
Fig. A1c is calculated by considering the line integral of
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u · dr anticlockwise around its sides. Similarly to Eq. (A7),[
v (x + δx,y) − v (x,y)

]
δy ∼=

∂v
∂x

δxδy and

∮
u.dr =

∫ ∫ (
∂v

∂x
−

∂u

∂y

)
dxdy =

∫ ∫
∇×u.dS. (A10)

Here dS is the vector perpendicular to the area enclosed by
the line integral whose length is equal to that area. Stokes’
theorem shows that the vorticity does not depend on the
shape of the area used to calculate it (e.g. it is the same for
infinitesimal circles and squares). The vorticity of the fluid
is particularly important because of Kelvin’s theorem, which
states that under certain conditions following a fluid parcel
the vorticity does not change with time (i.e. it is conserved).
Ertel’s theorem on conservation of potential vorticity is based
on Kelvin’s theorem (Pedlosky, 1982 Chap. 2).

Expressions for the gradient, divergence, and curl of vector
fields and relations between them can be derived for general-
ized curvilinear orthogonal coordinate systems (see Lorrain
and Corson, 1970, for a well-illustrated introduction and Ap-
pendix A of Batchelor, 1967, for a concise summary). Lati-
tude and longitude coordinates for the sphere are one exam-
ple of such coordinate systems.

Figure A1. (a) Illustration of a curve r (s) in 3D space obtained by varying the scalar parameter s from s0 to s1. (b) Illustration of the
contribution to the mass flux divergence for a cell of volume δxδyδz from the fluxes through the faces perpendicular to the x axis. (c) The
anticlockwise path around the sides of the infinitesimal cell with sides of length δx and δy used to calculate the area integral within the cell
of the normal component of vorticity.
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Abstract. Forecasting the sea level is crucial for supporting coastal management through early warning systems
and for adopting adaptation strategies to climate change impacts. Such objectives can be achieved by using
advanced numerical models, which are based on shallow-water equations used to simulate storm surge generation
and propagation due to atmospheric pressure and winds, or with ocean general circulation and baroclinic models.
We provide here an overview on models commonly used for sea level forecasting that can be based on storm
surge models or ocean circulation ones and is integrated on structured or unstructured grids, including an outlook
on new approaches based on ensemble methods.

1 Introduction

The low-elevation coastal zone, defined as the contiguous
and hydrologically connected zone of land along the coast
with an elevation above sea level of less than 10 m, cov-
ers only 2 % of the world’s land area, but close to 10 %
of the world population lives there (Neumann et al., 2015).
Due to the large economic value of coastal zones, economic
losses due to coastal flood risks induced by rising sea lev-
els and extreme sea levels at the coast are huge (Abadie et
al., 2020). Sea level rise and extremes can also exacerbate
coastal erosion, saltwater intrusion, and the degradation of
coastal ecosystems.

A wealth of factors is influencing sea level changes at the
coast (Woodworth et al., 2019). Extreme sea levels are due
to the combination of different drivers: astronomical tides,
storm surges, wind wave setup and swash, and mean sea level
changes. Mean sea level changes are themselves induced by
ocean circulation redistributing mass, heat, and salt in the
ocean and by the transfer of water mass from land to the
ocean (from mountain glaciers, ice sheets, and terrestrial wa-
ter level storage changes). Mean sea level changes, includ-
ing long-term trends, have been accurately monitored over
the quasi-global ocean through satellite altimetry (Legeais et

al., 2021). Sea levels at the coast, on the other hand, have
been monitored thanks to tide gauges (TGs), whose data have
been compiled in different datasets (e.g. Global Extreme Sea
Level Analysis (GESLA3), Permanent Service for Mean Sea
Level (PSMSL), Copernicus Marine Service). Tides, storm
surges, and wind waves can also change in response to cli-
mate change (Haigh et al., 2020; Kirezci et al., 2020; Morim
et al., 2019)

Numerical ocean models can be used to provide both con-
sistent retrospective datasets of sea level changes over the
global, regional, or coastal ocean and forecasts of sea level
change (Melet et al., 2021). Both can be used to support
adaptation to sea level rise (Alvarez Fanjul et al., 2022). Due
to sea level rise, the frequency of extreme sea levels at the
coast will increase (Kirezci et al., 2020), and associated im-
pacts on population and economic damages will, too, without
further adaptation (Fig. 1). Short-term (a few days) sea level
forecasts provided by ocean forecasting systems are neces-
sary information to feed early warning systems (EWSs) for
coastal floods. EWSs are integrated systems allowing a real-
time monitoring of potential natural hazards, issuing warn-
ings when a natural hazard is measured or forecasted, and
informing stakeholders (e.g. civil protection agencies, re-
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Figure 1. Map of risks for cities and settlements by the sea according to IPCC regions, extracted from IPCC AR6 (Glavovic et al., 2022).
The map shows risks to people (number of people at risk from a 100-year coastal flood event; Haasnoot et al., 2021), risks of loss of coastal
land (length of coast with more than 100 m retreat; Vousdoukas et al., 2020), risks to the built environment (airports at risk indicated by
expected annual number of flights disrupted by coastal flooding; Yesudian and Dawson, 2021), and risks to wetlands (± indicates positive or
negative area change; Schuerch et al., 2018). Risks are reported against the global mean sea level (GMSL) rise relative to 2020 (in metres),
depending on data availability.

gional and local authorities, ports, environmental agencies)
as part of an integrated risk assessment cycle to mitigate
risks. EWSs were found to be an efficient adaptation mea-
sure by providing more than a 10-fold return on investment
(Global Commission on Adaptation, 2019).

Monitoring of sea level change over past decades provides
the historical baseline for quantifying sea level rise and ex-
tremes and their return periods, along with synoptic sea level
variability in a broader sense. Ocean (wave) reanalyses com-
bine ocean (wave) model dynamics with in situ and satellite
observations through data assimilation. As such, reanalyses
provide a consistent view of the ocean in space and time and
across variables, accounting for observation information and
dynamics. The reliability of ocean reanalyses has increased
over the last decade (Forget et al., 2015; Lellouche et al.,
2021; Storto et al., 2019; Zuo et al., 2019).

2 Numerical models for forecasting sea level

Numerical modelling systems are the backbone of ocean
and wave hindcasts (modelling past evolutions over the last
decades), reanalyses (hindcasts constrained by observations

through routine assimilation of in situ and space observa-
tions), and forecasts (over a few days to weeks). Such models
are solving the equations governing ocean and wave dynam-
ics and are often constrained by observations through assim-
ilation of in situ and satellite observations (Alvarez Fanjul
et al., 2022). They provide a synoptic spatial and temporal
monitoring of the ocean.

Regarding sea level forecasts, both storm surge models
based on shallow-water equations (Fujiang et al., 2022) and
ocean general circulation models (OGCMs) based on prim-
itive equations (Ciliberti et al., 2022) are used. In terms
of model grids, both structured and unstructured grids can
also be used. Other details on model equations, discretiza-
tion methods, grid types, coordinates, data assimilation tech-
niques, and inventory of operational systems are available in
Alvarez Fanjul et al. (2022).

Wind waves also contribute to mean and extreme sea lev-
els through wave setup and to the fluctuation of the water line
at the coast through wave runup (Dodet et al., 2019). Wind
wave sea level contributions are estimated from wave mod-
els (Aouf et al., 2022). In addition, non-linear interactions
between mean sea level, tides, storm surges, and waves act
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on the total sea level at the coast (Chaigneau et al., 2023;
Idier et al., 2019).

The accuracy of numerical models in forecasting sea lev-
els is limited by several factors (e.g. discussion in Irazoqui
Apecechea et al., 2023), such as the accuracy of the atmo-
spheric forcing forecasts (especially so for the storm surge
and wave components of total sea level changes at the coast),
the tidal forcings for regional to coastal systems, the repre-
sentation of bathymetry, the lack of representation of non-
linear interactions between sea level components (mean-sea
level-tides-surges-wave), and the limitations of the ocean and
wave models themselves (e.g. model numerics, resolution,
lack of some coastal processes such as wetting and drying,
the river–estuary–ocean continuum).

2.1 Storm surge models

Storm surge models, also called hydrodynamic models here,
are usually based on shallow-water equations. They are the
most common tools to simulate the generation and prop-
agation of storm surges due to atmospheric surface pres-
sure and winds, thereby providing water levels and velocities
(e.g. SELFE, SCHISM, POM, Delft3D, ADCIRC, GTSM,
MIKE21, TuFlow, ROMS, FVCOM, SHYFEM) (Fujiang et
al., 2022; Ciliberti et al., 2022). They can also incorporate
astronomical tides. In these models, shallow-water equations
are often discretized based on unstructured meshes with ei-
ther finite-volume methods or finite-element methods. Un-
structured grids allow seamless modelling from the open
ocean to the coastal ocean using a spatially variable res-
olution with finer resolution in the coastal zones (Fig. 2),
which enhances the simulation of coastal processes (e.g. Fed-
erico et al., 2017; Ferrarin et al., 2018; Toomey et al., 2022;
Zhang et al., 2016). Mostly used in their 2D, barotropic ver-
sion, such models are computationally fast and can be used
over continent-wide regions or the global ocean to produce
hindcasts (Fernández-Montblanc et al., 2020, 2019) reach-
ing up to 1.25 km resolution at the coast (Muis et al., 2020)
and operational forecasts (NOAA, 2023) and to produce tidal
atlases (Lyard et al., 2021). However, barotropic hydrody-
namic models do not simulate changes in mean sea level due
to baroclinic effects, although this contribution can be sub-
stantial even for extreme sea levels, such as in micro-tidal or
non-stormy regions.

There are also 3D baroclinic hydrodynamic models, which
are able to solve additional physical processes, such as the
gradients of seawater-density-induced changes in mean sea
level (e.g. steric sea level), and lead to more accurate sea
level measurements with even greater impacts on currents
(Ye et al., 2020). Adding baroclinicity in a global barotropic
operational model can lead to significant improvements in
predictions of extreme water levels (Wang et al., 2022).

In storm surge models, the calibration of bottom friction
is especially important. Such systems can assimilate differ-
ent sources of observations notably to provide more accu-

rate initial conditions for their forecasts and increase fore-
cast skills over short lead times. Observations assimilated
in storm surge models include sea surface height from tide
gauges, for higher frequency and coastal processes, and/or
from satellite altimetry, for longer-period processes. Oper-
ational storm surge forecasting systems have been imple-
mented in many countries, based on different types of storm
surge models (Fujiang et al., 2022).

2.2 Ocean general circulation models

The 3D baroclinic ocean general circulation models, based
on primitive equations (Ciliberti et al., 2022), are widely used
in operational oceanography (e.g. NEMO, HYCOM, ROMS,
MOM, MITgcm, CROCO, FVCOM, SHYFEM, SCHISM,
FESOM, MPAS) for ocean circulation forecasting systems,
also providing a valuable solution for forecasting sea level
changes (Irazoqui Apecechea et al., 2023; Melet et al., 2021).
More complex and expensive than storm surge models pre-
viously described, they can simulate mean sea level changes
due to ocean circulations, along with tides and storm surges
when forced by surface atmospheric pressure and wind, co-
herently with other ocean state variables (e.g. 3D tempera-
ture, salinity, ocean currents). Operational systems also usu-
ally assimilate observations. Of particular importance for the
representation of sea level changes are the assimilation of
satellite altimetry data, to directly constrain total sea level; in
situ profiles of temperature and salinity, to constrain the steric
and dynamic component of sea level; and satellite gravime-
try data, to constrain the mass component of global mean
sea level (GMSL) rise. The assimilation of satellite altimetry
exerts a major constraint on such forecasting systems to in-
crease their skills (Hamon et al., 2019; Le Traon et al., 2017).

Due to the Boussinesq approximation in primitive-
equation models, the global mean (or spatial average in an
area-limited regional model) steric sea level change cannot
be explicitly simulated. However, this time-dependent scalar
can be diagnosed from the temperature and salinity fields
(Griffies and Greatbatch, 2012) and added to simulated sea
level changes. Spatial gradients of steric sea level changes
are directly simulated in primitive-equation models through
changes in temperature and salinity inducing differences in
density and circulation changes. Another limitation stems
from the use of a constant, uniform gravity field and the
approximation of spherical geopotential surfaces. This ap-
proximation does not allow us to represent the changes in the
Earth’s gravity and rotation or solid-Earth deformation (the
so-called GRD effects; Gregory et al., 2019; Mitrovica et al.,
2011) due to the transfer of water from land to the ocean (e.g.
melting mountain glaciers, mass loss of ice sheets, changes in
land water storage), which contribute to regional departures
from the global mean sea level rise.

As hydrodynamical models, operational OGCMs can be
used to forecast sea level changes from global scales (E.U.
Copernicus Marine Service Information, 2024) to coastal
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Figure 2. An example of an unstructured barotropic ocean model and bathymetry (here, from the System of HydrodYnamic Finite Element
Modules (SHYFEM); Bajo et al., 2023). The inset is a zoom of the grid in the northern Adriatic Sea. The blue and red dots mark the locations
of tide gauges.

scales (Fig. 3). For instance, the skills of the regional opera-
tional ocean forecasting systems (OOFSs) of the Copernicus
Marine Service covering European seas to forecast sea level
extremes were evaluated (Irazoqui Apecechea et al., 2023),
showing satisfactory performance, with an underprediction
of peak magnitudes of both extreme sea levels and their surge
components. For these OOFSs, forecast skills are stable for
the first 3 d of the forecasts but decrease at forecast lead times
of 4 d and longer, demonstrating the suitability of the sys-
tems for early warning applications. The possible sea level
processes included in these regional models must be taken
into consideration when comparing/validating with local tide
gauge data. This may require additional pre-processing of
tide gauge data to deal with higher-frequency sea level os-
cillations often recorded at very local scales and contributing
to local extremes. Adding sea ice effects in a global opera-
tional model was shown to improve total water level forecasts
(Wang and Bernier, 2023).

Regional or global operational ocean forecasting systems
can also be used to downscale sea level changes at more
coastal scales for local applications. Regional ocean models
can have higher resolutions than global ocean models (e.g.
ranging from 2 to 12 km for European seas in the Coperni-
cus Marine Service for operational forecasting systems as of
July 2023) and benefit from ocean models adapted to the re-
gional dynamics and from the representation of additional
processes.

Global and regional reanalysis can be used to provide a
baseline over the past decades of sea level changes, when
tide gauges are sparsely located along coastlines. Reanaly-

ses benefiting from data assimilation capture the spatial vari-
ability in altimetry-derived sea level trends (Lellouche et al.,
2021). Since altimetric observations capture sea level trends
due to land ice mass loss and land water storage changes,
in addition to trends due to sterodynamic sea level changes
(Gregory et al., 2019), a processing of the altimetric data to
be assimilated in OGCMs or a processing of the sea level rep-
resented in the model needs to be performed. For instance, in
the global ocean high-resolution reanalysis provided by the
Copernicus Marine Service (GLORYS12; Lellouche et al.,
2021), a global mean sea level trend is added at each time
step to the modelled dynamic sea level, prior to data assim-
ilation. This added GMSL signal is composed of the diag-
nosed global mean steric sea level change and of a barystatic
(land-ice-related as in Gregory et al., 2019) sea level trend.

2.3 Ensemble forecasting

Deterministic solutions provided by numerical models can
be complemented by multi-model systems, stochastic ap-
proaches, and ensemble estimates. Ensemble forecasting al-
lows us to account for different sources of uncertainties that
arise from errors in e.g. the initial or boundary conditions, the
atmospheric forcing or forcing functions, the physics or pa-
rameterization of the numerical model, the bathymetry, and
the spatial- or temporal-resolution limitations. Forecast skills
tend to decrease with increasing forecast lead times, as errors
grow. It is therefore possible to provide probabilistic fore-
casts that better support coastal decision-makers by adding
a confidence interval to the forecasted variable. This can be
achieved in different ways (Alvarez Fanjul et al., 2022), both
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Figure 3. Simulated (in dark red) and tide gauge (TG) (in blue) sea levels (including mean sea level, tides, surge) and surges observed during
a selection of extreme events in Europe. (a) Hoek Van Holland TG (Eleanor, 2018), (b) Huelva TG (Emma, 2018), (c) Marina Di Campo
TG (Vaia, 2018), (d) Venice TG (Detlef, 2019), (e) Valencia TG (Gloria, 2020), (f) Kiel TG (Alfrida, 2019). Water level and surge percentile
thresholds for the model and observations are shown in the corresponding colours as horizontal dashed lines. The vertical blue line denotes
the observed peak time for the plotted component. Extracted from Irazoqui Apecechea et al. (2023).

for hindcasts and short-term forecasts, taking into account
(or not) observational data to determine model performance
and decrease model errors.

A first immediate approach is considering existing oper-
ational forecasts over an overlapping area to build a multi-
model system. This is possible today thanks to the number
of general ocean circulation operational systems with a reli-
able coastal sea level solution, such as those of the Coper-
nicus Marine Service (global and regional marine forecast-
ing systems (MFCs)). The good performance of these mod-
els for coastal sea level (Irazoqui Apecechea et al., 2023) can
complement the solution provided by storm surge forecast-
ing systems run at national level. This is the approach fol-
lowed by Ports of Spain, which combines its 2D barotropic
storm surge forecasting system (Nivmar; Alvarez-Fanjul et
al., 2001) with the different MFCs covering the Spanish coast
since 2012 (Pérez-Gómez et al., 2021). Today, the system,
named ENSURF, combines Nivmar with two regional MFCs,
IBI-MFC (Aznar et al., 2016) and MedFS (Clementi et al.,
2021). It makes use of the Bayesian model averaging (BMA)
statistical technique (Beckers et al., 2008) for validation of
the different models with tide gauge data in near-real time

and provides the outperforming mean and spread of sea level
forecasts at the Spanish ports (Fujiang et al., 2022).

Thanks to the increased computational resources, storm
surge ensemble forecasts can rely today on a larger num-
ber of members. A more recent multi-model and higher-
resolution approach is in place today for the Adriatic Sea,
combining up to 19 sea level and wave models as described
in Ferrarin et al. (2020). Very often, the storm surge ensem-
ble members are obtained by forcing the same model with
an ensemble of meteorological forecasts providing different
wind and sea level pressure fields, which account for most of
the uncertainty during a storm. In this case, the model uncer-
tainty will reflect the one of the meteorological forcing. As
an example, the ECMWF ensemble (Molteni et al., 1996)
is used for storm surge operational forecasts in the North
Sea (Flowerdew et al., 2010, 2013). This approach was also
applied for sea level forecasting in Venice by Mel and Li-
onello (2014).

Machine learning techniques can also be used to improve
model performance locally and account for high-frequency
sea level oscillations. This is the approach followed by Rus
et al. (2023) in the northern Adriatic, where traditional en-
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semble forecasting is replaced by computationally efficient
machine-learning-based ensemble models, trained with tide
gauge data to improve the probabilistic forecast and account
for seiches at a single location.

3 Conclusions

Sea level forecasting is especially important at the coasts due
to impacts on population and assets. Many operational sys-
tems are already in place, based on different model types, as-
similating different observations (Capet et al., 2020; Fujiang
et al., 2022; Ciliberti et al., 2022). Storm surge numerical
modelling started in the 1950s, and operational oceanogra-
phy with OGCMs combined with data assimilation largely
developed in the 1980s and 1990s with the availability of
satellite observations and increase in computational capac-
ities. Despite decades of developments of such modelling
systems and satisfactory forecast skills at short lead time,
forecasting sea level changes at the coast at spatiotempo-
ral scales relevant for decision-making remains challenging.
This is notably due to the wealth of processes driving sea
level changes at the coast (Woodworth et al., 2019) and to
the short scales of coastal zone dynamics.
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Abstract. The ability to model biogeochemical features in the ocean is a key factor in predicting the health of
the ocean: it involves the representation of processes and cycles of chemical elements (such as carbon, nutrients,
and oxygen) and the dynamics of living organisms such as phytoplankton, zooplankton, and bacteria. This paper
gives an overview of the main modelling aspects aimed at describing the low trophic levels of marine ecosystems
and shows how they can be coupled with advection and diffusion models. The complexity of biogeochemical
models can vary considerably depending on the topics of interest, assumed hypotheses, and simplifications of the
numerical parameterizations. The paper also discusses the uncertainties in the numerical solution due to the lack
of knowledge about the parameterizations, the initial and boundary conditions, the lack of a robust observation
network, and the high computational cost of running such models.

1 Introduction

Marine biogeochemistry refers to the cycling of chemical el-
ements (e.g. carbon, nutrients, oxygen) resulting from physi-
cal transport, chemical reactions, and uptake and processing
by living organisms (e.g. phytoplankton, zooplankton, bacte-
ria). Biogeochemical models describe the low trophic levels
of marine ecosystems and are usually coupled with advec-
tion and diffusion models. Operational biogeochemical mod-
els have generally been developed by incorporating biogeo-
chemical models developed for research and process-based
studies into existing physical forecasting systems (Gehlen et
al., 2015) and are used to assess (i) past and current ma-
rine ecosystem states and trends and (ii) short-term (days
to weeks) or seasonal (months) forecasts (Le Traon et al.,
2019; Fennel et al., 2019). When observations are assimi-
lated, simulations of a past period are called reanalysis, while
unconstrained simulations of a past period are called hind-
cast. When the simulations are carried forward to the present,
they are referred to as nowcasts (Fennel et al., 2023). By pro-

viding timely information for the current state and a consis-
tent reconstruction of the past, biogeochemical operational
models can support ocean carbon sequestration and storage
estimations, monitoring effects of acidification and deoxy-
genation; marine spatial planning; and, as input for habitat
and food web modelling, marine biodiversity conservation
and fisheries management.

Biogeochemical models can have a wide range of com-
plexity, from a single nutrient and simple parameterizations
of processes to fully explicit representations of several nu-
trients, trophic levels, and functional groups. They can also
include carbonate systems, pollutants (e.g. Hg, persistent or-
ganic pollutants (POPs)), and other features, depending on
the specific goals and domains for which they were devel-
oped. This chapter provides a brief introduction to biogeo-
chemical modelling in the context of operational oceanogra-
phy, and more detailed descriptions and discussions can be
found in the following articles (Gutknecht et al., 2022; Fen-
nel et al., 2022; Ford et al., 2018). The focus is on the levels
of model complexity in existing biogeochemical prediction
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systems, with examples taken mainly from the Copernicus
Marine Service (Le Traon et al., 2019).

2 Biogeochemical models in oceanography

2.1 Formulations, processes, and elements of
biogeochemical models

In general, biogeochemical models solve a system of partial
differential equations. Eq. (1) describes the rate of change of
a set of state variables C representing biogeochemical trac-
ers: dissolved inorganic substances (e.g. nutrients), living or-
ganic compartments (e.g. primary producers and secondary
consumers), and non-living organic dissolved and particu-
late matter (Gutknecht et al., 2022; Fennel et al., 2022). The
first three terms on the right-hand side of Eq. (1) represent
the physical terms, advection (first term) and diffusion (sec-
ond (horizontal) and third (vertical) terms) of biogeochemi-
cal tracers, where KH and KV are the horizontal and verti-
cal diffusivities, respectively, which act on different spatial
scales. The remaining terms describe the sinking processes
that affect biological particles (fourth term) and biogeochem-
ical reactions (fifth term).

∂C

∂t
= − v · ∇(C) + ∇H (KH∇H(C)) +

∂

∂z

(
KV

∂C

∂z

)

+ wsink
∂C

∂z
+ Rbio (T , light,ρ,C) (1)

The last term, Rbio, represents the local source-minus-sink
terms for the biogeochemical tracers and is typically based
on the principle of conservation of mass to simulate the cy-
cling of chemical elements through various marine compart-
ments. Biogeochemical models (Eq. 1) are generally dis-
cretized on a grid covering a spatial region of interest, and
they are solved numerically by using appropriate initial and
boundary conditions for each of the tracers. The physical
parts of Eq. (1) can be solved directly by the advection–
diffusion component of ocean dynamic models (i.e. on-line
coupling). Alternatively, the output of the ocean dynamics
model is used to force the biogeochemistry off-line (Heinze
and Gehlen, 2013). Different schemes can be used to cou-
ple the physical and biogeochemical processes to optimize
accuracy and computational cost (Bruggeman and Bolding,
2014; Cossarini et al., 2017). Operational biogeochemical
models also include data assimilation schemes (Brasseur et
al., 2009; Fennel et al., 2019), with satellite observations be-
ing the most commonly used due to their spatial coverage
and time availability, even in near-real time. Ocean colour
chlorophyll is the variable most typically assimilated in bio-
geochemical models (Nerger and Gregg, 2008; Ciavatta et
al., 2011; Fontana et al., 2013; Teruzzi et al., 2014; Cia-
vatta et al., 2016), but other remote sensing variables have
also been tested: diffuse attenuation coefficient (Ciavatta et
al., 2014), phytoplankton functional type (PFT) chlorophyll
(Ciavatta et al., 2018; Skákala et al., 2018; Pradhan et al.,

2020), and inherent optical properties (Jones et al., 2016).
While ocean colour provides unique information about the
surface of the ocean, the transfer of surface information to
deeper layers usually requires approximations. The emer-
gence of autonomous underwater sensors (biogeochemical
gliders and Argo floats) has opened the possibility to better
constrain biogeochemical dynamics below the water surface
(Verdy and Mazloff, 2017; Cossarini et al., 2019; Teruzzi et
al., 2021; Skákala et al., 2021). Oxygen, chlorophyll, and ni-
trate profiles are currently used in forecast systems for as-
similation (Amadio et al., 2024) but also for parameter tun-
ing (Wang et al., 2020; Yumruktepe et al., 2023; Falls et al.,
2022), validation of operational systems (Salon et al., 2019;
Mignot et al., 2023), and adaptive monitoring of phytoplank-
ton blooms (Ford et al., 2022).

Unlike physical models based on Navier–Stokes equations
(Bell et al., 2025, in this report), there are no fundamen-
tal laws and principles for the biogeochemical term (Rbio).
Rather, equations describing biogeochemical processes rely
on empirical relationships based on laboratory experiments
(e.g. nutrient limitation experiments, grazing dilution exper-
iments), biological theories, and ecological principles based
also on biogeographic relationships.

The NPZD approach, which stands for nutrient–
phytoplankton–zooplankton–detritus (Fasham et al., 1990),
is the basis of most marine biogeochemical models. In its
simplest form, the cycling of a single nutrient (e.g. nitrogen)
is represented by four marine compartments: inorganic nutri-
ents, living organic matter (phytoplankton and zooplankton),
and non-living organic matter (detritus). The nutrient fluxes
between the compartments are the uptake of the nutrient as a
function of phytoplankton growth, the mortality and grazing
of phytoplankton and zooplankton, and the remineralization
of the detritus compartment. In the original Fasham model
(Fasham et al., 1990), the nutrient inorganic pool (nitrogen)
is divided into ammonium and nitrate, and the remineraliza-
tion process includes bacteria and dissolved organic nitrogen,
increasing the number of state variables from four to seven
and nearly doubling the number of processes described.

A schematic representation of the cycles of multiple chem-
ical elements (e.g. nutrients) among living and non-living
compartments, together with some additional features pre-
sented below, is shown in Fig. 1.

Increasing model complexity (e.g. greater number of state
variables and processes) enables the expansion of the model
objectives and the range of applications, but it is accom-
panied by larger uncertainties in the parameterization and
higher computational costs. There is no general consensus
on the level of complexity of biogeochemical models and the
priority for new components to be added. This often depends
on the specific objectives for which a model is being built. In
recent years, the complexity of biogeochemical models used
in operational oceanography has increased, as have their ap-
plications. These span multiple objectives: monitoring ocean
state and variability, assessing ocean health (acidification, eu-
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Figure 1. Simplified scheme of compartments (boxes) and processes (arrows) representing the cycles of multiple chemical elements typically
included in a biogeochemical model. The ellipses indicate the increase in the number of compartments and variables (e.g. multiple plankton
functional types, multiple size compartments of non-living organic matter, and additional variables resolved by the carbonate system).

trophication, deoxygenation), supporting resource manage-
ment, and studying pollutant impacts.

The number of chemical elements is often increased, typ-
ically including carbon, other macronutrients (such as phos-
phorus and silicon), and micronutrients (e.g. iron). The in-
crease in model complexity allows modellers to represent
a wider range of chemical and biological processes, such
as nitrification, denitrification, calcification, competition for
the limiting nutrients, and dimethylsulfide (DMS) dynamics.
Another typical tracer included in biogeochemical models is
oxygen because of its importance for ocean health (e.g. de-
oxygenation; Schmidtko et al., 2017; Grégoire et al., 2021;
Bopp et al., 2013) and the effects of low oxygen concentra-
tions (hypoxia) in changing ecosystem functions (Baird et
al., 2004).

Fixed or variable nutrient stoichiometry can then be
formulated within the simulated organisms, e.g. phy-
toplankton. Typical values of fixed nutrient ratios are
138[O2] : 106[C] : 16[N] : 15[Si] : 1[P] : 0.1–0.001[Fe] (Red-
field, 1934; Lenton and Watson, 2000). When models include
variable stoichiometry (e.g. Vichi et al., 2017; Tagliabue et
al., 2011), multiple state variables are required to represent
the living organic compartments, and a formulation of in-
tracellular ratios can be used to simulate the multiple nutri-
ent limitation of phytoplankton growth (Klausmeier et al.,
2004). Primary production, the basis of the marine food web,
is the chemical synthesis of organic compounds from dis-
solved carbon dioxide through chlorophyll-mediated photo-
synthesis. When chlorophyll is explicitly included in mod-
els, photosynthesis and acclimation to light can be dynam-
ically simulated to balance the growth rate and the variable
chlorophyll–carbon ratio as a function of light, nutrient limi-
tation, and temperature (Geider et al., 1997).

The complexity of biogeochemical models can be mea-
sured by the number of plankton functional types (PFTs)
used to simulate the trophic food web. The autotrophic com-
munity can be conceptually grouped considering various
ecological functions (e.g. silicifiers, calcifiers, nitrogen fix-

ers, and dimethylsulfide (DMS) producers); cell size (e.g.
pico-, nano-, and microphytoplankton); and specific physi-
ological traits, such as optical absorption, light use, growth
rate, and affinity for nutrients (Hood et al., 2006). To improve
the representation of the dynamics of phytoplankton func-
tional groups, biogeochemical models can include a spectral
radiative component which resolves solar radiation penetra-
tion in the water column (Dutkiewicz et al., 2009; Skákala
et al., 2020; Álvarez et al., 2022). The zooplankton com-
munity can be subdivided by size (nano-, micro-, meso-,
or macroplankton) and grazing strategy (herbivorous ver-
sus carnivorous). Additionally, a rigid partition between au-
totrophs and heterotrophs is not exhaustive, and the food web
can incorporate mixotrophs to account for organisms that ob-
tain energy through both photosynthesis and consumption of
others (Flynn et al., 2013; Mitra et al., 2014).

Biogeochemical models can target biodiversity (Litchman
and Klausmeier, 2008) if the number of functional plankton
groups is large enough to deterministically represent niches
based on certain factors (e.g. adaptation to the light spectrum;
Álvarez et al., 2022) or by including tens or hundreds of
PFTs with randomly prescribed parameters so that the fittest
groups can prevail in the resulting ecosystem (Follows et al.,
2007).

Assessing ocean carbon uptake and the associated ocean
acidification requires modelling of the marine carbonate sys-
tem: the two prognostic variables are typically dissolved in-
organic carbon and alkalinity, and carbonate chemistry is
solved to determine water acidity and to calculate the air–sea
CO2 gas exchange (Zeebe and Wolf-Gladrow, 2001; Artioli
et al., 2012; Cossarini et al., 2015a).

The microbial loop describes the role of bacteria in decom-
posing organic matter that is converted back to nutrients. It
also includes the channelling of energy and matter to higher
trophic levels (HTLs) by microzooplankton, which can be an
important pathway in oligotrophic conditions (Legendre and
Rassoulzadegan, 1995; Hood et al., 2006). In addition, mod-
els can describe the dynamics of multiple pools of dissolved
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organic matter (e.g. labile, semilabile, and refractory) char-
acterized by turnover timescales ranging from days to years
(Anderson et al., 2015; Glibert and Mitra, 2022). In coastal-
and shallow-water applications, a benthic model allows us
to represent the mutual interaction and nutrient, carbon, and
oxygen exchanges between the water column and the sedi-
ment (Soetaert et al., 2000).

Biogeochemical models can be linked or coupled to
higher-trophic-level or ecosystem models (Libralato, 2025,
in this report). This requires parameterization or explicit rep-
resentation of the link of phytoplankton productivity and
zooplankton mortality with higher-trophic-level (HTL) com-
partments, such as nekton and fishes, and possibly the feed-
backs from HTLs to biogeochemical processes (e.g. Travers
et al., 2009).

Although not yet ready to be integrated into an operational
prediction system, additional – and useful to society – com-
ponents of biogeochemical models could include the fate, dy-
namics, and transport of metals and POPs (Melaku Canu et
al., 2015; Wagner et al., 2019, Bieser et al., 2023), including
bioaccumulation in low-trophic-level compartments and cu-
mulative impacts on marine species and ecosystems (Rosati
et al., 2022; Zhang et al., 2020).

2.2 Main models used in operational systems

Unlike ocean dynamics, where a limited number of numeri-
cal models are used in operational applications (e.g. NEMO,
ROMS, MITGCM; see Alvarez-Fanjul et al., 2022), there
is a long list of biogeochemical models that have vary-
ing levels of complexity in response to specific regions
and topics of interest for which they were developed. As
part of the UN Decade of Ocean Science for Sustainable
Development programme, the Decade Collaborative Cen-
tre for Ocean Prediction (Alvarez-Fanjul et al., 2024) is
promoting the Atlas of Operational Systems, which also
describes their biogeochemical component (https://www.
unoceanprediction.org/en/homepage, last access: 18 April
2025). Some of the biogeochemical models used in op-
erational prediction systems are briefly presented below,
roughly ordered by increasing complexity:

– HadOCC (Palmer and Totterdell, 2001). A model of low
complexity (10 variables) with a single phytoplankton
and single zooplankton, with fixed stoichiometry used
to produce global reanalysis of the carbon cycle (Ford
and Barciela, 2017).

– SCOBI. Used for reanalysis of nutrient cycling in the
Baltic Sea (Liu et al., 2017), it has fixed nutrient sto-
ichiometry in three phytoplankton and one zooplank-
ton and includes anaerobic processes and a sediment
module for oxygen and nutrient dynamics (Eilola et al.,
2009).

– NEMURO (Kishi et al., 2007). A relatively simple low-
trophic-level model of the Pacific Ocean (11 state vari-
ables), based on N dynamics with two phytoplankton
and two zooplankton, that has been coupled with an
HLT model (e.g. bioenergetic fish model; Kishi et al.,
2011).

– ECB (Feng et al., 2015). Developed to study eutrophi-
cation in the Chesapeake Bay, it consists of 11 variables
(C and N cycles) with one single phytoplankton and one
single zooplankton and processes applicable for estuar-
ine ecosystems, such as inorganic suspended solid dy-
namics and the impact on light attenuation (Feng et al.,
2015; Irby and Friedrichs, 2019; Irby et al., 2018).

– GulfMexico. Developed to investigate eutrophication
and acidification in the Gulf of Mexico, it is a model
of intermediate complexity (15 variables) that simulates
N, P, O2, and C dynamics with a single phytoplankton
and single zooplankton group, a sediment-water flux pa-
rameterization, and the carbonate system (Fennel et al.,
2011; Laurent et al., 2017).

– PISCES. A model of intermediate complexity (24 state
variables) with five nutrients, fixed stoichiometry, and
two phytoplankton and two zooplankton size classes,
it includes carbonate system and dissolved oxygen dy-
namics (Aumont et al., 2015). It is currently used in
regional (northeastern Atlantic; Gutknecht et al., 2019)
and global operational systems (Mignot et al., 2023). A
version with variable stoichiometry (PISCES-QUOTA)
also exists and is used for climate scenario studies
(Kwiatkowski et al., 2018).

– ECOSMO (Daewel and Schrum, 2013). Its operational
version in use for the Northern Atlantic and Arc-
tic oceans (Yumruktepe et al., 2022) has two phyto-
plankton, two zooplankton, multiple nutrients (N, P,
and Si), and a fixed molar Redfield ratio but variable
chlorophyll-to-carbon dynamics, and it includes a nutri-
ent sediment layer.

– ERGOM. Used in the Baltic Sea operational system, it is
a model of intermediate complexity (25 variables) with
three phytoplankton and two zooplankton groups, and
it includes processes related to hypoxia and anoxia, a
carbonate system, and a radiative model with dynamics
for coloured dissolved organic matter (Neumann, 2000;
Neumann et al., 2015).

– BAMHBI. Developed for the Black Sea, which is char-
acterized by an anoxic deep layer, the model includes 33
pelagic state variables, with multiple nutrients and eight
plankton functional types, and explicitly describes pro-
cesses in the anoxic layer. It also includes dynamics of
the sedimentary stocks of organic C, N, P, and biogenic
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Si (Grégoire et al., 2008; Grégoire and Soetaert, 2010;
Capet et al., 2016; Ciliberti et al., 2022)

– eReefs/vB3p0. Designed for water quality in the Aus-
tralian Great Barrier Reef marine ecosystem, it is a com-
plex model resolving N, P, C, and O2 cycles in pelagic
(four phytoplankton and two zooplankton) and sediment
(seagrass and coral) environments. It includes carbonate
chemistry (Mongin et al., 2016), bio-optics, and bleach-
ing (Baird et al., 2016, 2020).

– BFM. A multi-nutrient and multi-plankton model (Ál-
varez et al., 2022) with more than 50 variables, it in-
cludes carbonate chemistry (Cossarini et al., 2015b,
2017), bio-optics (Lazzari et al., 2021), and pollutants
(Rosati et al., 2022) and is currently used in the opera-
tional system and reanalysis of the Mediterranean Sea
(Salon et al., 2019; Cossarini et al., 2021).

– ERSEM. Developed for regional (northeastern Atlantic
and North Sea) and global studies, it is a complex model
(more than 50 state variables) including multiple nu-
trients, multi-plankton, a carbonate system, and a sed-
iment layer (Baretta et al., 1995; Butenschön et al.,
2016).

– DARWIN. A complex multi-nutrient model in which
the plankton community comprises hundreds of groups
by taking into account cell size and functional traits to
study the biodiversity and biogeography (Dutkiewicz et
al., 2009).

3 Conclusions

Given the complexity of marine ecosystems, the develop-
ment of biogeochemical models is the result of compromises
and simplifications, and no single approach can realistically
encompass all relevant aspects of marine ecosystem dynam-
ics. Determining the appropriate level of complexity de-
pends on the specific objectives and supporting information
for each application, while standard assessment frameworks
(Hernandez et al., 2018) represent essential tools to assess
model performance. Increasing model complexity does not
necessarily mean better performance (Xiao and Friedrichs,
2014; Kwiatkowski et al., 2014; Gehlen et al., 2015; Séférian
et al., 2020). Indeed, despite recent significant technologi-
cal advances in observing systems, the lack of biogeochem-
ical observations, both in terms of the number of variables
and spatiotemporal availability, remains the major obstacle
for thorough validation and optimization (e.g. tuning param-
eters).

In addition to inherent uncertainties in model structures
and parameterizations, important sources of uncertainty arise
from numerical solution settings in spatially discretized do-
mains, e.g. initial conditions, lateral conditions for open
boundaries, inputs of chemical compounds and suspended

matter from rivers and atmospheric deposition, and ocean
dynamics driving the transport of biogeochemical tracers.
Despite major advances in high-performance computing, the
computational cost of a model still constitutes an issue when
the resolution of the numerical solution and the complexity
(e.g. the number of biogeochemical tracers) are increased.
Many of the biogeochemical models have emerged as com-
munity models that should guarantee a distributed and af-
fordable effort to keep them up to date with the advance-
ment in marine ecology knowledge and the requirements of
evolving computer science and of the coupling with phys-
ical and Earth system models and data assimilation frame-
works. Rapidly evolving applications of artificial intelligence
in marine biogeochemistry can assist in optimizing model pa-
rameters, developing hybrid models to improve predictions
and operational system efficiency, and detecting patterns in
large data sets from reanalysis. Linking microbial commu-
nity dynamics to ecosystem processes through metagenomic
data can improve models describing nutrient cycling, carbon
fluxes, and diversity. New coupling paradigms are needed to
promote the integration of biogeochemical models with the
dynamics of pollutants, high trophic levels, and Earth system
components.

In addition to science-driven developments, operational
biogeochemical systems can evolve to respond to societal
demands to assess the impacts of heat waves, oxygen deple-
tion and acidification on marine resources, and the role of the
oceans in achieving the goal of carbon neutrality.
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Abstract. Understanding and managing marine ecosystems under potential stress from human activities or
climate change requires the development of models with different degrees of sophistication in order to be capable
of predicting changes in living components in relation to human pressures and environmental variables. Recent
advances in ecosystem modelling are the focus of this paper, which reviews numerical approaches to analyse
the characteristics of marine conditions in terms of typical units, i.e. individuals, populations, communities, and
ecosystems. It specifically examines the current classification of numerical models of increasing complexity
– from individuals and population and stock assessment models to models representing the whole ecosystem
by covering all trophic levels – and presents examples and their operational maturity and readiness, finally
demonstrating their use for supporting marine resource management, conservation, planning, and mitigation
actions.

1 Introduction

Understanding and managing marine ecosystems under po-
tential stress from human activities and climate change re-
quires the development of modelling tools able to monitor
and forecast ocean ecosystem dynamics, from physics to fish
(deYoung et al., 2004). The challenge is to relate processes
occurring at individual, population, or community levels to
environmental variables, i.e. to connect the dynamics of ma-
rine ecosystems with the quite well-established physical and
biogeochemical products that exist for the ocean (Fennel et
al., 2022). A large variety of numerical ecosystem models
have been developed to predict the growth and dynamics
of individuals and populations of marine resources. Accord-
ing to the scope, the approaches are very diverse, ranging
from single to multiple species, and might include the effects
of various environmental changes and human impacts (Hol-
lowed et al., 2013; Nielsen et al., 2018).

To illustrate approaches that have the potential to become
the next generation of operational tools for ocean ecosys-
tem forecasts, this paper provides a structured synthesis of
models applied to marine higher trophic levels (i.e. from zoo-

plankton to fish and top predators) that can be connected with
lower-trophic-level models (physics and biogeochemistry).

A comprehensive analysis is challenging, but models can
be mapped in terms of their main scope and distinguishing
approaches incorporating age structure, environmental fac-
tors, representative trophic interactions, and spatial structure
(Hollowed et al., 2000). Based on the above characteristics,
numerical models for marine ecosystems can be divided into
six broad classes:

– bioenergetic models representing the processes related
to the growth, respiration, and excretion of an individ-
ual;

– population and fishery models (typically for single
species without trophic interactions and possibly age-
structured);

– connectivity models (considering propagule dispersal,
the larval cycle, spatial structures, and environmental
factors);

Published by Copernicus Publications.
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– species distribution models (statistical models based on
representation of spatial environmental variables and
biota);

– minimally realistic models (typically age-structured,
representing a few species with trophic interactions);
and

– whole ecosystem models (typically covering all trophic
levels and based on trophic interactions, which may in-
clude size structure and spatial variation).

These six classes of models are reviewed in the sections be-
low, considering the available syntheses and reviews (e.g.
Plagányi, 2007; Cowen and Sponaugle, 2009; Stock et al.,
2011; Hilborn and Walters, 2013; Itoh et al., 2018; Nielsen
et al., 2018; Rose et al., 2024). The work does not pre-
tend to be exhaustive, and readers are referred to the origi-
nal reviews, which provide in-depth analyses of each class
of model. It aims to provide a synthetic integration across
different classes, with examples provided to illustrate their
application in operational coupling with lower-trophic-level
models. For this purpose, the readiness and maturity of each
model were subjectively elaborated on based on the model’s
current application. The maturity of each example was as-
sessed based on the availability of the code, documentation,
test cases, routines for assessing model performances, and di-
agnostics, and this is used by a community of developers that
can provide support, updates, and advancement. Stock as-
sessment models routinely applied for fishery management,
for example, were considered more mature because the code
is publicly available and documented and input and output
test cases are developed and accessible. Readiness for oper-
ational purposes was defined based on existing knowledge
about possible connections of the model example to physical
and biogeochemical spatio-temporal models. The existence
of such applications, even if scarce, might show the difficul-
ties in connecting (one-way or two-way) with low-trophic-
level models. Operational readiness may be regarded as more
tentative and less precise, owing to the challenges in estab-
lishing a clearly objective definition, particularly in light of
its potentially limited application.

For each class of model, some examples are shown in Ta-
ble 1, including their characteristics in terms of typical units,
elemental structure, number of species typically represented,
and eventual trophic interactions. The table also contains
synthetic information on primary model focus, main output,
maturity, and readiness for operational purposes.

2 Bioenergetic models

Traditional bioenergetic models describe energy intake from
feeding and its allocation to maintenance, activity, growth,
reproduction, and excretion (for a review, see Rose et al.,
2024). Bioenergetic models are typically used to represent
the growth of the individual and can account for external

oceanographic conditions influencing uptakes, such as light,
nutrients, and temperature for autotrophs (Bocci et al., 1997)
or food availability and temperature for heterotrophs (Li-
bralato and Solidoro, 2009), while losses are usually related
to temperature and internal conditions (Kooijman, 2010).
Bioenergetic models can also explicitly consider gonadic de-
velopment and egg release (Pastres et al., 2002). Because of
these characteristics, bioenergetic models, other than provid-
ing realistic individual-level responses to environmental con-
ditions, permit us to project responses at the population and
food web levels and can support other classes of approaches
(Rose et al., 2024).

A widely used bioenergetic approach for fish and inverte-
brates is represented by the dynamic energy budget (DEB),
which is characterized by an explicit representation of energy
dynamics in somatic, gonadic, and storage tissues (Kooij-
man, 2010). Although the storage is challenging to measure
empirically (Pirotta et al., 2022), it allows representation of
delayed use of energy in individual development, resulting in
improved generality of the approach (Kooijman, 2010; Nis-
bet et al., 2012). Thus, the DEB has been developed into a
theory for scaling the parameters for all life cycles of indi-
viduals (from eggs to larvae to juveniles and adults), provides
setting parameters for a large number of marine species (see
also https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/, last
access: 19 May 2025), and is well-documented (Nisbet et al.,
2012; Kooijman, 2020). Thus, the DEB is considered to have
high maturity for routine use and is adapted to operational
applications, and because it is seldom connected to spatio-
temporal physical and biogeochemical models, the readiness
is considered to be of an intermediate level (Table 1).

3 Population and fishery models

Various types of numerical models of single populations are
used worldwide to support fishery management by determin-
ing populations at sea and the current status of exploited ma-
rine populations, thus providing insight for management in
a process called stock assessment (for a review, see Hilborn
and Walters, 2013). Stock assessment models typically rep-
resent the biomass or abundance of one species (Table 1), are
routinely used by management agencies, and include proba-
bility models to incorporate various sources of observational
data (Maunder and Punt, 2013).

The Stochastic surplus Production model in Continu-
ous Time (SPiCT), for example, provides estimates of ex-
ploitable biomass and fishing mortality at any point in time
from catch and survey data collected at arbitrary and possi-
bly irregular intervals (Pedersen and Berg, 2017). SPiCT is
available as an R package in the online GitHub repository at
https://github.com/mawp/spict (last access: 19 May 2025).

More sophisticated approaches use catch-by-age or size
classes (catch-at-age or catch-at-length models; Maunder
and Punt, 2013) to reconstruct the cohorts assuming natu-
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ral mortality for each class and considering information on
species growth, fecundity, and fishery selectivity (Methot
and Wetzel, 2013). Stock Synthesis (SS3; Anderson et al.,
2014) is an example of a catch-at-age model that can incor-
porate age or length composition information from surveys,
abundance indices, multi-gear effort, selectivity, and spatial
data in the most recent and advanced applications (e.g. Punt,
2019; Privitera-Johnson et al., 2022). Projections from stock
assessment models are generally made for annual to decadal
time periods, and SS3 provides estimates for biological ref-
erence points for management decisions (indicators based on
maximum sustainable yield; Hilborn and Walters, 2013). As
with many stock assessment fishery models, SS3 is routinely
used in formal assessments, is well-documented, and is eas-
ily accessible (https://github.com/nmfs-ost/ss3-source-code,
last access: 19 May 2025), and thus it has a very high degree
of maturity. Nevertheless, it is not spatially explicit and does
not explicitly consider oceanographic forcings; it might be
considered of intermediate readiness for operational oceano-
graphic applications (Table 1).

4 Connectivity models

The distribution and survival of small eggs and larvae of
marine fish and invertebrates as well as propagules of al-
gae and seagrass seeds are advected and are thus strongly
influenced by currents, which can disperse individuals both
near spawning sites and in distant areas (Cowen et al., 2007).
Therefore, biophysical dispersal (advection, diffusion, and
migratory behaviour of organisms) is fundamental for ex-
plaining marine population dynamics and connectivity (for
a review, see Cowen and Sponaugle, 2009). Connectivity
models are used to quantitatively integrate the large spatial
and temporal variability of oceanographic processes (phys-
ical connectivity) with processes inherent in the biology of
marine organisms (life history traits) to investigate the con-
nectivity between and within populations and across larval
stages (Gawarkiewicz et al., 2007; Melaku Canu et al., 2021).
Connectivity models such as the Larval TRANSport La-
grangian model (LTRANS, North et al., 2008) typically use
offline physical parameters (velocity, density, temperature,
and salinity) obtained from hydrodynamic models and esti-
mate the distribution of organisms. The advection–diffusion–
reaction equation is typically used for biomass distribution
(e.g. Sibert et al., 1999; Faugeras and Maury, 2005), while
Lagrangian approaches are used to track particles and thus
distribute individuals (e.g. Laurent et al., 2020). These ap-
proaches consider life history traits such as growth, mortal-
ity, and the behaviour of target organisms in terms of sea-
sonal variability, spawning sites, vertical movement, and set-
tlement preferences (Melaku Canu et al., 2021; Paris et al.,
2013; Lett et al., 2008). LTRANS is frequently applied and is
well-documented, and the code is available at https://github.
com/LTRANS/LTRANSv.2b (last access: 19 May 2025),
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designating it as being at the intermediate level of maturity. It
is coupled offline with hydrodynamic models and can incor-
porate several biological features (North et al., 2008), placing
its operational readiness at an intermediate level (Table 1).

5 Species distribution models

Species distribution models (SDMs, also called habitat suit-
ability models) are statistical models that predict the occur-
rence, abundance, or biomass of organisms using geopo-
sitional, biotic, and environmental data (for a review, see
Elith and Leathwick, 2009). Particularly useful when applied
to spatio-temporal scientific surveys of species abundance,
these approaches can also exploit opportunistic biological
data (e.g. https://www.obis.org, last access: 19 May 2025;
https://www.gbif.org, last access: 19 May 2025). SDMs
are implemented using various statistical approaches (Mar-
avelias et al., 2003; Melo-Merino et al., 2020; Brodie et al.,
2020), machine learning, artificial neural network methods
(Catucci et al., 2025), and maximum entropy (Jones et al.,
2012; Pittman and Brown, 2011; Reiss et al., 2011). The in-
clusion of physical and biogeochemical oceanographic co-
variates, which can have direct and indirect effects on species
distributions, can improve the abilities of SDMs to explain
observed biotic data compared to using only geopositional
variables (Panzeri et al., 2021; Thorson et al., 2015). Recent
advances include combining the approaches into an ensem-
ble (Jones et al., 2012; Panzeri et al., 2024) and including
multiple species as covariates in so-called joint species dis-
tribution models (JSDMs, Pollock et al., 2014; Thorson et
al., 2016). The SDMs are increasingly being used to describe
current and future distributions of exploited and endangered
species, identify hotspots, map essential fish habitats, support
conservation development, and feed other ecosystem models
(Jones et al., 2012; Colloca et al., 2015; Grüss et al., 2014;
Dolder et al., 2018).

The Dynamic Bioclimate Envelope Model (DBEM) es-
timates species distributions based on environmental pref-
erences and considers population dynamics and dispersal
(Cheung et al., 2009). The DBEM makes predictions of fu-
ture envelopes using physical and biogeochemical data from
oceanographic models and considers the response of organ-
isms to natural or anthropogenic environmental changes such
as growth, mortality, larval dispersal, and migration (Cheung
et al., 2013).

In general, SDMs are widely applied, well-documented,
and available (see for example https://github.com/helixcn/
sdm_r_packages, last access: 19 May 2025) and thus have
an intermediate level of maturity, but given their direct in-
tegration with physical–biogeochemical models, they have a
good readiness level for operational use (Table 1).

6 Minimally realistic models

Dynamic multi-species models or minimally realistic mod-
els (MRMs) are models that represent a limited number of
species (usually less than 10) that have important interac-
tions with a target species (for a review, see Plagányi, 2007).
MRMs often represent an evolution of single-species stock
assessment models: for example, GADGET (Globally appli-
cable Area-Disaggregated General Ecosystem Toolbox) is an
extension of stock Synthesis in the multi-species framework,
where populations can be partitioned by species, size classes,
age groups, areas, and time steps (Andonegi et al., 2011). In
particular, GADGET is flexible, allowing easy addition or
replacement of alternative model components for biological
processes such as growth, maturation, and predator–prey in-
teractions representing some species in age classes. GAD-
GET provides estimates of population dynamics under fish-
ery and biological interactions, with the ability to use differ-
ent growth functions and fitness functions (Plagányi, 2007).
Although well-documented (see https://gadget-framework.
github.io/gadget2/userguide/, last access: 19 May 2025), its
fitting is quite complex and thus has few applications: for
these reasons, maturity is considered intermediate and readi-
ness for operational purposes is low because of a lack of
interactions with physical and biogeochemical models (Ta-
ble 1).

An example of a minimally realistic model is the
Spatial Environmental POpulation Dynamics Model
(SEAPODYM), which is a two-dimensional coupled
physical–biological model originally developed for
tropical tuna in the Pacific (Lehodey et al., 2003).
SEAPODYM includes an age-structured population
model for top predators and a movement model based
on a diffusion–advection equation modelled as a func-
tion of habitat quality (sea surface temperature, ocean
currents, and primary production) obtained from oceano-
graphic models and satellites (Lehodey et al., 2015;
Senina et al., 2020). SEAPODYM is well-documented
and already used for operational global projections
(https://github.com/PacificCommunity/seapodym-codebase,
last access: 19 May 2025) and thus can be considered to
have a high degree of maturity and readiness for operational
purposes (Table 1).

7 Whole ecosystem models

Whole ecosystem models (WEMs) are designed to represent
all trophic levels in an ecosystem, from primary producers
to top predators, and to take advantage of data collected in
different disciplines (Agnetta et al., 2022). The main distin-
guishing feature of the different WEMs is the way in which
the ecosystem is described: (i) through compartments repre-
senting species or groups of species (Christensen and Wal-
ters, 2004; Fulton et al., 2011); (ii) through compartments
that represent size-structured communities, typically benthic
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and pelagic communities (Shin and Cury, 2004; Travers et
al., 2010); (iii) in a mixture of size-structured and trophic
communities (Maury, 2010); and (iv) using dynamic spec-
tra of trophic levels (e.g. Gasche and Gascuel, 2013). All
these models are based on biomass and consider rules such
as biomass conservation (Table 1; for a review, see Plagányi,
2007).

Ecopath with Ecosim (EwE; Christensen and Walters,
2004) is the most widely used WEM, is freely available
(https://www.ecopath.org, last access: 19 May 2025), and has
a flexible structure. It represents a suite of models developed
for more than 30 years for the whole ecosystem description.
EwE has been used to analyse past and future impacts of fish-
eries, nutrient inputs, invasive species, and climate change
(e.g. Heymans et al., 2014; Libralato et al., 2015; Serpetti
et al., 2017; Piroddi et al., 2021). It consists of three differ-
ent interconnected main modules, (i) a static mass-balanced
ecosystem network (Ecopath; Christensen and Pauly, 1992),
(ii) a temporally dynamic simulation module (Ecosim; Wal-
ters et al., 2000), and (iii) a spatially and temporally dynamic
module (Ecospace; Walters et al., 1999). EwE contains many
additional modules for calibration, uncertainty analysis, cal-
culation of indicators, and simulation of pollutant dynamics
(Steenbeek et al., 2016). Recent advances allow direct em-
bedding of two-dimensional monthly results from oceano-
graphic physical–biogeochemical models (Steenbeek et al.,
2013). EwE can be considered an approach of high matu-
rity and intermediate degree of readiness for operational ap-
plications (Table 1). A large set of WEMs (Table 1) is in-
creasingly being used to address the need for holistic ecosys-
tem approaches, and their framework is often applied to an-
swer strategic medium-term questions related to manage-
ment strategies, fishery issues, and climate or environmen-
tal change (e.g. Tittensor et al., 2021). Notably, WEMs can
be coupled with other classes of models (population dynam-
ics, SDMs, and connectivity models) as well as with biogeo-
chemical models, which is why most of the approaches in
this class have a high to intermediate level of maturity and
readiness (Table 1).

8 Conclusions

A wide range of models are used to represent ocean ecosys-
tems at different levels of organization, including individuals,
populations, communities, and entire ecosystems. Although
categorized into six classes for clarity, some modelling ap-
proaches are not confined to a single class. For instance, the
DEB modelling approach is used to also represent the growth
of individuals in connectivity models and MRM classes (see
for example Maury, 2010). Conversely, MICE (Model of In-
termediate Complexity for Ecosystem assessment; Plagányi
et al., 2014) of the MRM class was developed using different
levels of detail for the species represented by combining for

example age-structured and surplus production approaches
(Morello et al., 2014).

These models have been developed for specific societal is-
sues, i.e. effects of climate change, pollution, nutrient enrich-
ment, and fisheries.

The numerical approaches analysed here have characteris-
tic spatio-temporal resolutions that generally decrease when
moving from individual species models to whole ecosystem
models (Table 1). Increased represented complexity with the
MRM and WEM classes results in a general improvement
of realism at the cost of accuracy (generally declining from
individual models to the WEM class). Overall, the first set
of approaches (bioenergetic and population models) is more
adapted for tactical analyses, while the WEM class is cur-
rently considered useful, especially in strategic analyses (see
Table 1). Although very few of the reviewed approaches are
currently used operationally (i.e. SEAPODYM), many ap-
proaches are routinely applied to support management (e.g.
fishery stock assessment models). Most of the approaches re-
viewed have a repository for documentation, code, and test-
ing cases and thus have a high degree of maturity (Table 1).
Conversely, approaches in the MRM class are not widely ap-
plied, are often quite complex to fit, and therefore were cat-
egorized as being at a poor level of readiness for operational
purposes (Table 1). Nevertheless, all of the tools have some
degree of coupling (mainly offline) with physical and biogeo-
chemical variables and thus have great potential to become
operational and used for analysing ecosystem dynamics and
scenarios, which can be useful for a very wide range of issues
and management actions that could be prioritized eventually.
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Abstract. The severe changes in climate resulting in the polar oceans getting warmer – with drastic conse-
quences to their physical, biogeochemical, and biological state – require forecasting systems that can accurately
simulate and skilfully predict the state of the ice cover and its temporal evolution. Sea-ice processes significantly
impact ocean circulation, water mass formation and modifications, and air–sea fluxes. They comprise vertical
processes, mainly related to thermodynamics, and horizontal ones, due to internal sea-ice mechanics and motion.
We provide an overview on how these processes can be modelled and how operational systems work, in com-
bination with data assimilation techniques, to enhance accuracy and reliability. We also emphasise the need for
advancing research on improving such numerical techniques by highlighting current limits and ways forward.

1 Introduction

The main objective of an operational sea-ice forecasting sys-
tem is to provide users with a reliable estimate of the state
of the ice cover and its temporal evolution. To meet this
goal, the system needs to be coupled to, or use data from,
ocean and atmosphere forecasting systems. Some form of
data assimilation is also required to provide the model with
the best possible starting position, accounting for the chaotic
nature of the atmosphere–ocean–ice system. Users of sea-ice
forecasting systems can either be ship captains operating in
the polar regions or intermediate service providers. With a
changing climate and warming polar oceans, the number of
stakeholders interested in operating in ice-infested waters is
growing.

Sea-ice processes are profoundly important for the ocean
circulation and water mass modifications, so ocean models
of the polar regions are always coupled to a sea-ice model,
both for operational forecasting and climate projection pur-
poses. Sea-ice models have their origin in the climate mod-
elling community in the 1970s and were subsequently part

of the ocean general circulation model. They have since then
evolved to provide sea-ice forecasts in their own right and
have been made modular to avoid being bound to a given
choice of physical ocean model (Blockley et al., 2020). Sea-
ice observations from satellites are assimilated in the pre-
diction systems (Buehner et al., 2017). This chapter gives a
summary of the short-term (up to 10 d) sea-ice forecasting
systems for the polar regions.

2 Overview of processes in sea ice

The physical processes simulated by sea-ice models are com-
monly split into two: vertical processes, related to ther-
modynamic growth and melt, and mechanical and dynam-
ical processes influencing the horizontal movement of ice.
This dynamic–thermodynamic separation has practical ad-
vantages for computations.

Published by Copernicus Publications.
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2.1 Thermodynamics

The ocean can freeze in different phases of sea ice, start-
ing with frazil crystals and their conglomerates into a liquid
mush referred to as grease ice, then pancake ice in the pres-
ence of waves, or slush when the waves flood the snow (Wad-
hams, 2000). Slush, grease, pancakes, and ice may sound
like a perfect birthday party, until you realise that there is
also salt in the ice (Feltham et al., 2006; De La Rosa et al.,
2011; Jutras et al., 2016). The latter will be rejected to the
ocean through brine channels but usually after its multi-year
birthday party (e.g. Notz and Worster, 2009). Once a layer
of ice has formed on the surface of the ocean, new ice is
mostly formed from below as crystals moving upward from
the ocean mixed layer affix to the base of the ice in a process
known as “congelation growth”. Sea ice also freezes laterally
within open leads and between ice floes. Snow accumulates
on top of the sea ice and forms an efficient thermal insula-
tor and a white coating that reflects solar radiation back to
the atmosphere. A smaller amount of snow ice comes from
compacted snow above the ice. The insulating effect of snow
inhibits both sea-ice growth in early winter and sea-ice melt
in late winter (Bigdeli et al., 2020).

When summertime approaches, the snow melts first and
forms melt ponds at the surface of the ice. These dark ponds
absorb more solar radiation and enhance the summer melt.

The sea ice itself works as an insulating layer between the
ocean and the atmosphere, with thick ice a better insulator
than thin ice.

2.2 Mechanics

Sea ice deforms under the action of winds and currents. Their
surface drag accumulated over hundreds of kilometres of sea
ice results in formidable forces able to crack open the thick-
est ice or pile it up into pressure ridges, cracks, leads, and
ridges in what are called linear kinematic features of sea
ice. First-year ice (FYI) can become about 1 m thick, while
multi-year ice (MYI) is more often deformed via compres-
sive stresses and can easily reach 2 m or above. The conver-
gence of ice is a major threat to navigation, and only a few
ice-strengthened vessels or icebreakers are designed to with-
stand such forces. The deformation of sea ice has been mea-
sured by drifting buoys and satellite data, and scaling laws
have revealed multi-fractal properties (Weiss and Marsan,
2004) and power law behaviour (Weiss et al., 2009).

Waves formed in the open ocean will often reach the ice
and attenuate within the ice pack, flexing and occasionally
breaking the ice into smaller floes along the way. Smaller
ice floes offer more reflecting edges and are more efficient at
scattering waves. Wave scattering represents a negative feed-
back in the wave–ice interactions, among other nonlinear en-
ergy dissipation processes (Squire, 2020). This equilibrium
results in a wave-broken marginal ice zone (MIZ), which is
typically 100 km wide in the Arctic but can reach 1000 km

in the Southern Ocean where waves are bigger and the ice
is thinner. Sea ice can also be submerged by waves, mak-
ing the surface more saline. Wave-breaking effects enhance
the lateral melting of ice during summer but also enhance its
freezing during winter.

2.3 Biogeochemistry

There is life in sea ice, not only the occasional seal innocently
sunbathing as a polar bear lurks around, but as dense activ-
ity under the sea ice following the growth of red ice algae
(Duarte et al., 2017). The availability of light below the ice
and the size of brine channels determine the growth of algae
and the peculiar ecosystem that depends on them (Arrigo,
2014). The algae will find nutrients in the sea ice; some will
be trapped in the ice during freezing, providing a sheltered
food store for micro-organisms, and then later ejected to the
ocean through brine channels (Lund-Hansen et al., 2024).

Sea ice carries sediments while drifting from the shal-
low shelf seas to the central Arctic, together with nutri-
ents, various biological materials, and occasionally pollu-
tants (Krumpen et al., 2019).

Sea ice acts as a lid preventing the exchange of greenhouse
gases between ocean and atmosphere, but the sea ice also
holds its own carbon pump accounting for 30 % of the carbon
uptake in the Arctic (Richaud et al., 2023).

3 Numerical models

Operational sea-ice models are based on complex commu-
nity codes, simulating the dynamical properties (the constitu-
tive law or rheology) and the thermodynamics of sea ice. The
most widespread rheological model of sea ice is the viscous–
plastic model, often met in the elastic–viscous–plastic (EVP)
form which is more efficient for massively parallel com-
puting. One or the other is implemented in the Community
Ice CodE (CICE), the Sea Ice modeling Integrated Initiative
(SI3), the Louvain-la-Neuve sea Ice Model (LIM), the MIT
general circulation model (MITgcm), and GFDL’s Sea Ice
Simulator (SIS2). The previous models all use an Eulerian
model grid, but a recent code, the next-generation sea-ice
model (neXtSIM), has adopted an adaptive Lagrangian mesh,
along with a more recent brittle Bingham–Maxwell rheology
(Ólason et al., 2022) that exhibits linear features of sea-ice
deformations apparent in Fig. 1. All recent sea-ice models
are multi-category models and thus explicitly simulate an ice
thickness distribution. They also include a sea-ice age tracer
and can thus predict areas of FYI and MYI. Their use in op-
erational forecasts is indicated in Table 1.

The above ocean and sea-ice models are coupled via ad-
vanced software (OASIS, ESMF, CCSM) that make them
modular, but some ocean models come with an integrated
sea-ice model, for example, the NEMO, the MITgcm, the
MOM, the HBM and the FESOM2 codes. The latter is us-
ing finite volume (Danilov et al., 2017).

State Planet, 5-opsr, 14, 2025 https://doi.org/10.5194/sp-5-opsr-14-2025
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Figure 1. Example of sea-ice thickness analysis from the neXtSIM-F (left) system and the assimilated CS2SMOS data; visualisation from
the Copernicus Marine Service (http://marine.copernicus.eu, last access: 24 March 2025).

4 Data assimilation

The most important step to initialise a forecast is to assimi-
late the latest available observations into a numerical model.
Some of the most important observations are available in
near-real time with sea-ice concentration, thickness, and mo-
tions, but feeding them into the model is a delicate matter
(Bertino and Holland, 2017; Buehner et al., 2017). Unob-
served variables and the ocean properties below the ice must
be estimated by multivariate update because of the complex
processes both within the sea ice and between the ice and
ocean. The irregular observational sampling also requires a
flow-dependent spatial interpolation. Operational centres run
numerical models and data assimilation codes on dedicated
high-performance computers (HPCs).

The data assimilation methods in operation are most often
the 3D variational (3DVAR) method (Tonani et al., 2015; Wa-
ters et al., 2015; Mogensen et al., 2012; Hebert et al., 2015;
Smith et al., 2016; Usui et al., 2006), assimilating sea-ice
concentration and more recently sea-ice thickness (Mignac et
al., 2022). The 4DVAR method is not presently used in oper-
ational forecasts but can provide long-term optimised model
trajectories that are fully consistent with the model equations
(Nguyen et al., 2021). The ensemble Kalman filter (EnKF) is
also used in the TOPAZ system to assimilate concentrations,
thickness, and motion vectors (Xie et al., 2017) and has been
tested with neXtSIM (Cheng et al., 2023), although a cheaper
nudging is used operationally (Williams et al., 2021). The
EnKF does not intrude in the model software, and the re-
sulting forecast system is modular. Even though operational
centres use the state of the art with respect to sea-ice data
assimilation, they are still inaccurate in locating the ice edge

(about 40 km at analysis time; Carrières et al., 2017) and even
less accurate in locating the boundary between FYI and MYI
(200 km errors rather than 40 km).

Biases in sea-ice area coverage arise from multiple
sources, primarily from biased ocean and atmospheric
boundary conditions but also from intrinsic biases of the sea-
ice model itself. These biases interact with each other in com-
plex ways (feedback loops or cancellation of errors). Data
assimilation methods rely on unbiasedness assumptions and
do not remove biases entirely, often transferring them to un-
observed variables. Short of a complete observing network,
there are ongoing efforts in improving sea-ice models that
we believe can reduce biases, provided that incoming biases
from new ocean and atmospheric models are also reducing.

With improved observational data coverage, increased
computational power, and improved representation of key
physical processes, rapid improvements in sea-ice mod-
elling and forecasting capabilities are expected in the coming
decade. One research thrust concerns modelling the marginal
ice zone, most notably wave–ice interactions (e.g. Boutin et
al., 2022) and modelling sea ice as individual floes (e.g. Hor-
vat, 2022). A second thrust is improvements in the sea-ice
rheology used for the pack ice (e.g. Ólason et al., 2022). Im-
proved rheology will improve the ice drift and the location of
the boundary between FYI and MYI (e.g. Regan et al., 2023).
Finally, machine learning approaches are flourishing, which
seek to develop fast, surrogate modelling and forecasting ca-
pabilities (e.g. Hoffman et al., 2023; Durand et al., 2024;
Gregory et al., 2024). Sea-ice exists at the boundary between
the atmosphere and ocean, so sea-ice forecasts depend on ac-
curate atmosphere, ocean, and even wave forecasts. Improv-
ing those is, therefore, very important for improving sea-ice
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forecasts. We see fully coupled atmosphere–ocean–wave–ice
models with fully coupled data assimilation as a vital long-
term goal for sea-ice forecasting systems.

Even though every improvement to the atmosphere, ice,
and ocean models is welcome, they require time-consuming
rounds of testing in forced and coupled models. In the mean-
time, post-processing techniques, now aided by machine
learning, are a novelty in sea-ice forecasting (Palerme and
Müller, 2021; Palerme et al., 2024) and reanalysis (Edel et
al., 2025).

Data availability. Data used in Fig. 1 are freely available
at https://doi.org/10.48670/moi-00004 (EU Copernicus Ma-
rine Service Product, 2024a; Williams et al., 2021) and
https://doi.org/10.48670/moi-00125 (EU Copernicus Marine
Service Product, 2024b; Ricker et al., 2017).

Author contributions. LB prepared the article with contributions
from all co-authors.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors are grateful to Stefania Cilib-
erti and two anonymous reviewers who have helped improve the
original manuscript.

Financial support. This research has been supported by the
European Union’s Horizon Europe project ACCIBERG (grant
no. 101081568); Office of Naval Research (grant no. N00014-20-1-
2772); DOE (grant no. DE-SC002317); NSF (grant no. 2103942);
and Met Office Advancing Arctic meteorological and oceano-
graphic capabilities and services programme, which is supported
by the Department for Science, Innovation and Technology (DSIT).

Review statement. This paper was edited by Swadhin Behera
and reviewed by two anonymous referees.

References

Arrigo, K. R.: Sea Ice Ecosystems, Annu. Rev. Mar. Sci., 6, 439–
467, https://doi.org/10.1146/annurev-marine-010213-135103,
2014.

Bertino, L. and Holland, M. M.: Coupled ice-ocean modeling
and predictions. In The Sea, the Science of Ocean Prediction,
Part 2. Special Issue, Journal of Marine Resources, 75, 839–875,
https://doi.org/10.1357/002224017823524017, 2017.

Bigdeli, A., Nguyen, A. T., Pillar, H. R., Ocana, V., and Heim-
bach, P.: Atmospheric Warming Drives Growth in Arctic Sea
Ice: A Key Role for Snow, Geophys. Res. Lett., 47, 5204,
https://doi.org/10.1029/2020gl090236, 2020.

Blockley, E., Vancoppenolle, M., Hunke, E., Bitz, C., Feltham,
D., Lemieux, J., Losch, M., Maisonnave, E., Notz, D., Ram-
pal, P., Tietsche, S., Tremblay, B., Turner, A., Massonnet, F.,
Ólason, E., Roberts, A., Aksenov, Y., Fichefet, T., Garric, G.,
Iovino, D., Madec, G., Rousset, C., Salas y Melia, D., and
Schroeder, D.: The future of sea ice modeling: Where do we
go from here?, B. Am. Meteorol. Soc., 101, E1302–E1309,
https://doi.org/10.1175/BAMS-D-20-0073.1, 2020.

Boutin, G., Williams, T., Horvat, C., and Brodeau, L.: Mod-
elling the Arctic wave-affected marginal ice zone: a comparison
with ICESat-2 observations, Philos. T. Roy. Soc. A, 380, 2235,
https://doi.org/10.1098/rsta.2021.0262, 2022.

Buehner, M., Bertino, L., Caya, A., Heimbach, P., and Smith,
G.: Sea ice data assimilation. In Sea Ice Analysis and
Forecasting: Towards an Increased Reliance on Automated
Prediction Systems, Cambridge University Press, 51–108,
https://doi.org/10.1017/9781108277600.005, 2017.

Carrières, T., Casati, B., Caya, A., Posey, P., Metzger, E. J., Mel-
som, A., Sigmond, M., Kharin, V., and Dupont, F.: System eval-
uation, in: Sea Ice Analysis and Forecasting, edited by: Carrières
T., Buehner M., Lemieux J. F., and Pedersen, L. T., Cambridge
University Press, https://doi.org/10.1017/9781108277600, 2017.
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Abstract. Operating the ocean value chain requires the implementation of steps that must work systematically
and automatically to generate ocean predictions and deliver ocean data information in standard format. This
task, which represents the backbone of operational forecasting systems, implies the design of robust workflows
that organize pre-processing of the upstream data, run the core models, and handle post-processing before the
final delivery. Operational chains require dedicated computational resources to supply demanding modeling runs
but also processing and analysis of big volumes of data in relation to the specific spatial scale and consistently
for the forecast lead times. The monitoring of each step of the workflow through key performance metrics can
support not only timely delivery but also identifying problems and troubleshooting. The paper illustrates the
main challenges foreseen by operational chains in integrating complex numerical frameworks from the global to
coastal scale and discusses existing tools that facilitate orchestration of operational chain components, including
examples of existing systems and their consolidated capacity to provide high-quality and timely ocean forecasts.

1 Introduction

Operational ocean forecasting systems integrate advanced
numerical modeling, aimed at resolving ocean dynamics and
processes from the global to coastal scale, and robust compu-
tational suites that are devoted to running models and orches-
trating different data pre- and post-processing blocks, with
the ultimate goal of providing high-quality and reliable ocean
forecasts to enhance decision-making, monitoring, and plan-
ning for the sustainable use of ocean resources. In the last
years, ocean observations – from remote sensing (Gould et
al., 2013) and in situ (Le Traon et al., 2015) platforms – avail-
able for operational oceanography have increased in number,
quality, and timeliness, making it possible to improve ocean
models, to validate numerical ocean products, and to sup-
port monitoring activities (Tonani et al., 2015; Davidson et
al., 2019). Data assimilation techniques, aimed at blending

the observations into the model, have evolved numerically
to provide the most accurate description of the past and the
best initial conditions for the forecast. As computing power
has increased, numerical solvers have evolved towards high-
resolution models that can capture small-scale features en-
abling global, regional, and coastal simulations and predic-
tions at higher resolution and over longer time spans. The
numerical information produced is then processed to make it
usable by operational applications and services. Some recent
ocean modeling examples in support of operational ocean
and coastal services are compiled in Sect. 4.2. Therefore, as
shown in Chap. 4 of Alvarez Fanjul et al. (2022), the archi-
tecture of an operational ocean forecasting system includes
pre-processing of ocean observations, quality control assess-
ments, objective analysis, data assimilation, initial field gen-
eration, numerical forecasting, and data post-processing, to-
gether with the generation and dissemination of products. All
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these steps have influenced the evolution of forecasting sys-
tems from a technological point of view to accommodate the
need to harmoniously interconnect complex steps towards fi-
nal delivery to users. Section 2 provides an overview of the
technical characteristics of processing suites that guarantee
reliable operations and product provision.

2 Technical characteristics of an operational chain
for ocean forecasting

The objective of an operational chain is to systematically and
automatically perform a series of complex numerical steps to
ensure the generation of ocean predictions and the delivery of
related products to end users. The main phases of its work-
flow are pre-processing, modeling component runs, and post-
processing. Figure 1 shows, as an example, the overall work-
flow of the chain implemented for the Global Ocean Fore-
casting System operated by NMEFC (China). Here, the main
steps, as designed for the specific operational system, include
data pre-processing, data assimilation, numerical simulation,
and production for final delivery.

Pre-processing consists of accessing and preparing up-
stream data (i.e., observations, atmospheric forcings, and
other model outputs to be used as boundary conditions) to be
ingested by the modeling component. In the case of ocean
observations, it is responsible for collection, transmission,
analysis, and quality control. The time consumption of data
assimilation depends on the amount of data used and on
their complexity. Ocean models also need atmospheric forc-
ing fields. Indeed, the performance of ocean operational fore-
casting systems is very sensitive to the type of atmospheric
forcing used (Li et al., 2021), and atmospheric forecasting
variables need to be collected and interpolated into the ocean
model grid to compute wind stress, surface heat fluxes, or
surface water exchanges. The time needed for the prepara-
tion of the atmospheric forcing, usually part of the first step
of an operational suite, depends firstly on the (scheduled) at-
mospheric model forecast availability and secondly on the
computational efficiency, as well as the computational effi-
ciency in having the atmospheric forcing data ready to be
used by the ocean model.

Other forcing data sources, such as freshwater inputs from
river discharges, are progressively being included in ocean
forecast models. Unlike in global ocean models, in regional
models, this pre-processing block must include the prepara-
tion of the necessary data (usually from a global or basin
model) that will be imposed as boundary conditions along
the open boundaries of the regional domain.

Incorporating observations (from both satellites and in situ
platforms) into an ocean model via data assimilation is de-
sirable for operational forecasting (and reanalysis) systems
to obtain accurate estimates of the ocean state (Tonani et
al., 2015) and initial conditions for the forecast. Complex
methodologies are developed and implemented in oceans

forecasting chain that are strongly linked to the ocean model
used, to the model resolution, and to the observations assimi-
lated using different classes of data assimilation (Cummings
et al., 2009)

Running an ocean model is the most complex and demand-
ing part of the operational chain. Numerical models include
physical parameterizations and solvers for the numerical in-
tegration of the Navier–Stokes equations. This complexity
can be computationally demanding, so by employing paral-
lel computing, we can distribute this workload across multi-
ple cores. This allows us to run high-resolution ocean models
faster. Hence, the use of multiple cores and parallelization is
crucial in state-of-the-art ocean modeling.

Once the model run is complete, the resulting data must
be post-processed by interpolating the numerical outputs
(if needed) onto specific regular spatial grids and by ap-
plying procedures aimed at transforming the raw model
data into a standardized format (e.g., CF-compliant; https:
//cfconventions.org, last access: 28 February 2025). Such
post-processing must be executed afterwards as an indepen-
dent process or in parallel while the model is running.

Finally, the ocean forecast products are released directly
to users through different specific dissemination mechanisms
(such as FTP, THREDDS, web services and API, and cloud-
based solutions).

From a computational point of view, the execution of
an operational chain may require significant computing re-
sources, while the number of cores used must be such that
the forecast is produced on time: they can therefore be ex-
ecuted in dedicated clusters, benefitting from heterogeneous
computing capabilities by using CPU or GPU resources.

The operational chain is then required to orchestrate a
complex sequence of tasks in a flexible and efficient way,
allowing for monitoring and troubleshooting. When design-
ing an operational chain, it is important to decide which pro-
gramming language is most appropriate for coding each task
belonging to each of the main steps: this choice depends on
the characteristics of the numerical procedure to be adopted
for solving a specific task. For example, for acquisition of
upstream data from various external databases or data stores,
the forecaster can adopt the following.

– Bash or Shell scripting offers functions like wget or curl
for accessing files made available by a provider, as well
as cron for scheduling its execution.

– Python codes are available for accessing data through
web APIs (for example, the Copernicus Marine Toolbox
that is a Python-based tool for accessing the Coperni-
cus Marine Data Store) and for performing some initial
basic manipulation (i.e., subsetting in space and time,
interpolation to target grid).

The ocean model couple to data assimilation scheme is tech-
nically much more complex to run and there are also some
compilation and performance requirements to be met. The
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Figure 1. Operational chain of an ocean forecasting system (example of a global system in NMEFC, China).

operational chain is then instructed to launch a task that sub-
mits each model run to be executed directly on the dedi-
cated core(s) or to a job scheduler that verifies resource avail-
ability. In addition, the ocean model itself is usually coded
in a pre-defined programming language (such as Fortran,
C/C + +, or other) and can be executed in parallel mode
using MPI/OpenMP or GPU-based parallel paradigms (i.e.,
CUDA, OpenCL, OpenACC).

Data post-processing, product generation, and product de-
livery can usually be done in parallel during the model run
time as independent tasks from the overall workflow: again,
it can adopt procedures coded in Bash/Shell, Python, Julia,
or other interpreted languages that can guarantee flexibility,
simplicity, and preliminary data analysis tasks.

The operational chain workflow engine can be coded ad
hoc to sequentially organize the tasks to be executed. A basic
approach can be determined through the implementation of a
software package that includes the following:

– A main script, designed to collect the specific tasks and
subtasks as requested by the operational chain

– A list of scripts, each representing the task to execute

– One or more specific scripts that are designed to track
the status of the operational chain execution by creating
logs to further support monitoring

The evolution of this approach towards systematic monitor-
ing of the overall workflow and automatic detection of issues
are represented by the adoption of a workflow manager. It is
a tool that assists the forecaster in orchestrating complex se-
quences of tasks, including detection of anomalies during the
execution and supporting the seamless processing of infor-
mation. The workflow manager adopted by the Earth science
community includes the following.

– ECFLOW (https://confluence.ecmwf.int/display/
ECFLOW, last access: 28 February 2025), developed
by ECMWF

– Cylc (https://cylc.github.io/, last access: 28 Febru-
ary 2025)

Others, extensively used by industry but also progressively
chosen by forecasting centers, are the following.

– Apache Airflow (https://airflow.apache.org, last access:
28 February 2025)

https://doi.org/10.5194/sp-5-opsr-15-2025 State Planet, 5-opsr, 15, 2025
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– Prefect (https://www.prefect.io/, last access: 28 Febru-
ary 2025)

3 Key performance metrics

To ensure that an operational ocean forecasting system de-
livers accurate and timely products, it is necessary to identify
metrics that can be implemented for measuring performances
and that can support the resolution of potential anomalies and
issues.

Based on the analysis performed in Ciliberti et al. (2023),
the main properties of an operational forecasting system that
can be used to monitor its performance are as follows.

– Quality certifies that the delivered product or service
consistently performs well and provides useful results.
This can be measured by providing relevant metrics
aimed at measuring the degree to which the forecast
product matches the observation (through validation ex-
ercises).

– Reliability refers to whether the user can
rely on the forecast product to make deci-
sions. As shown by the World Climate Service
(https://www.worldclimateservice.com/2020/07/06/
what-is-forecast-reliability/, last access: 28 Febru-
ary 2025), it is a measure of the quality of a probability
forecast that varies between 0 % (i.e., the a posteriori
observation is never in the forecast range) and 100 %
(i.e., the a posteriori observation is always in the
forecast range).

– Timeliness is a measure of the time between the expec-
tation that the information will be available and the time
when it is actually available for use. To save time, it is
usual to execute in parallel two or three parts of the op-
erational chain. However, not all parts can run in paral-
lel. Pre-processing and data assimilation should be fin-
ished before the ocean model starts running. In contrast,
post-processing, product generation, and release can be
done in parallel with model running. Timeliness man-
agement depends on characteristics of different cases or
different user needs. With coupled and ensemble model
development, it is difficult to have a strict time control.

– Accessibility refers to the capacity for a user to get ac-
cess to forecast product, including authentication and
authorization (if needed).

– Usability involves the adoption of standards for data and
metadata to ensure that the product can be used well
and is self-describing. Data with a defined file format,
adequate documentation, and high quality can be used
and reused. This metric can be measured through user
surveys.

Timeliness management depends on characteristics of dif-
ferent cases or different user needs. With coupled and en-
semble model development, it is difficult to have a strict time
control (Liu et al., 2018).

The adoption of a workflow engine facilitates the monitor-
ing phase of the operational chain workflow. Figure 2 illus-
trates an example of how an operational forecasting service
needs to monitor all the components of a specific operational
suite to generate the proper KPIs (key performance indica-
tors) that should later be managed to ensure timely service.
The example shows how all the elements previously dis-
cussed, such as pre-processing, model execution, and post-
processing of raw model outputs, together with some time
dedicated to the data push to catalogs and later storage,
are included in this operational monitoring performed by
the Copernicus Marine Iberia–Biscay–Irish Monitoring and
Forecasting Center (IBI-MFC) for its operational suites. This
control of the different components is recommended and
helps operators to identify issues in the operational suites and
in the environment that could potentially lead to incidents.
Likewise, this monitoring by component helps to manage de-
lays in the service related to different types of incidents. The
operational KPIs for service timeliness that are usually used
to verify that the service is meeting the timeliness require-
ments stated in its proposed service level agreement (SLA)
are computed using the time statistics provided daily by these
time control monitoring processes. This monitoring is also
important to identify and manage temporary incidents or con-
tinuous problems that may result in service delays or product
outages.

4 Other operational-chain-relevant aspects

It is important to outline and summarize some general char-
acteristics a user needs to consider in the setup of numerical
ocean models for ocean forecasting.

– Infrastructure aspects.

– It is highly desirable that a model performs well on
most of the most powerful HPCs available. In prac-
tice, this requires that the code is parallelized (using
domain decomposition with MPI and/or OpenMP),
is not excessively memory-bound (particularly on
CPU machines), and supports the low-level parallel
processing required by GPUs. This requires analy-
sis of the scalability and portability of the code as
well as the restartability and reproducibility of the
numerical ocean model solution.

– Workflow tools can support proper monitoring of
the computing process workflow and facilitate trou-
bleshooting as well as scalability of the operational
configuration.

– The network is an essential element in the infras-
tructure of an operational chain; it must allow an
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Figure 2. Example from the Copernicus Marine IBI-MFC Service Monitoring. Monthly summary statistics (for January 2023) from the
time control monitoring performed for the IBI physical forecast operational suite. Monitoring of all the operational suite components (i.e.,
input data pre-processing, model execution, post-processing of raw model outputs, and processes to push products into the catalogs and later
storage) is included.

effective link between the distribution centers up-
stream and downstream of the production centers.

– Storage must be linked to the HPC center to ensure
effective back-up of production and enable produc-
tion to be restarted if necessary.

– Interfaces. To appropriately handle the spatiotemporal
scale of the ocean process that requires reproduction,
the following steps are necessary.

– Select a proper state-of-the-art option for subgrid-
scale parameterization: if the option is incompati-
ble, the model should be able to generate an error
message and stop.

– Use state-of-the-art bathymetries for the setup of
new configurations. The user should also be able to
use and specify smoothing techniques that can be
applied to avoid model instabilities while also tak-
ing into account the topographical peculiarities that
can play a fundamental role, especially in coastal
models.

– Specify time-varying river inflows (i.e., discharges,
nutrients) as inputs, generated from climatologies
or from real-time data (e.g., from observations).

– Specify surface fluxes of momentum, heat, and
freshwater and ancillary data such as surface tem-
peratures and surface wave fields.

– Couple the model to models of other physical sys-
tems (e.g., atmospheric, sea ice, or wave models)

through one or more of the standard coupling sys-
tems (e.g., OASIS, US system); in some cases (like
with waves and sea ice) alternative or ad hoc cou-
pling approaches should be provided.

– Run biogeochemical (BGC) models as part of the
overall integration (on line coupling) or generate
data to run the BGC model in offline mode.

– Interface the ocean model with data assimilation
systems.

– Generate restart and diagnostic files in a flexible
manner.

– Design and documentation. To meet quality assurance
requirements, it is highly desirable that the model

– has a clear design,

– has a well-chosen modularity,

– is easily readable,

– is written in a familiar language (such as Fortran90
or Python),

– has a user guide and a developer guide, and

– can be further developed without excessive effort.

– Sustained support. The model needs to be sustainably
supported by a lead agency, a consortium of agencies,
a committed user community, or a combination of the
above. This support should aim to ensure the following.
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– The model’s formulation is improved as the state of
the art evolves.

– Novel improvements are documented in peer-
reviewed publications.

– The code documentation is openly available and
kept up to date.

– The code is openly accessible or made available
subject to “legal” agreement (which might include,
e.g., a commitment by a new user to contribute to
further developments and testing of source code).

– New users are supported by instructions for setting
up relatively simple configurations which can easily
be compiled and run and outputs can be checked.

– New releases of the code are properly version-
controlled.

– The methods by which the code is verified are de-
scribed in its documentation.

– The results from standard test cases are made pub-
licly available (an aspiration at this stage).

Code and data availability. The data and code are available from
the websites, which are all mentioned in the paper:

– Argos data: ftp://ftp.ifremer.fr/ifremer/argo/latest_data (Argo
Program Office, 2025)

– TOGA data: https://www.pmel.noaa.gov/gtmba/ (Global Trop-
ical Moored Buoy Array, 2025)

– SLA data: https://doi.org/10.48670/moi-00149 (CMEMS,
2022a)

– SST data: https://doi.org/10.48670/moi-00165 (CMEMS,
2022b)

– MERCATOR reanalysis: https://doi.org/10.48670/moi-00021
(CMEMS, 2022c)

Other data are available from the authors upon request.
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Abstract. The architecture of operational forecasting systems requires clear identification of best practices for
assessing the quality of ocean products: it plays a key role not only for the qualification of prediction skill but
also for the advancing of the scientific understanding of the ocean dynamics from global to coastal scales. The
authors discuss the role of the observing network in performing validation of ocean model outputs, identifying
current gaps (i.e. different capacity to assess physical essential ocean variables versus biogeochemical ones)
but also emphasizing the need for new metrics (tailored for end users’ comprehension and usage). An analysis
on the level of maturity of validation processes from global to regional systems is provided. A rich variety of
approaches exist, and the more we move towards the coast, the higher the complexity in calculating such metrics
is, due to increased resolution, but we are also somehow limited by the lack of coastal observatories worldwide.
An example is provided of how the Copernicus Marine Service currently organizes product quality information
from producers (with dedicated scientific documentation, properly planned and designed) to end users (with
publication of targeted estimated accuracy numbers for its whole product catalogue).

1 Introduction

Product quality assessment is a key issue for operational
ocean forecasting systems (OOFSs). There is a long tradi-
tion in scientific research related to model validation, and,
through coordinated community initiatives, in recent times
there has been important progress in this field, related to
operational oceanographic services (Hernandez et al., 2015,
2018).

Strong efforts to define operational oceanography’s best
practices have started, among others the Ocean Best Practices
(Pearlman, et al., 2019 and https://www.oceanbestpractices.
org/, last access: 30 April 2025) and the Guide on Imple-
menting Operational Ocean Monitoring and Forecasting Sys-
tems delivered by ETOOFS (Expert Team on Operational
Ocean Forecasting Systems, https://www.mercator-ocean.
eu/en/guide-etoofs/, last access: 30 April 2025; Alvarez Fan-

jul et al., 2022). In the latest ETOOFS guide, several sections
are dedicated to model validation, i.e. Sect. 4.5 on valida-
tion and verification, and sub-sections on validation strate-
gies for ocean physical models (Sect. 5.7), sea ice mod-
els (Sect. 6.2.6), storm surge (Sect. 7.2.6), wave models
(Sect. 8.7) and biogeochemistry models (Sect. 9.2.6), as well
as a specific section (Sect. 12.9) on quality assessment for
intermediate and end users.

The main goal of this paper is to describe the status of
the validation of ocean forecasting products. In Sect. 2, the
crucial role that observational data sources play in the val-
idation of ocean models is discussed, as well as how iden-
tified gaps in the observations determine model validation
processes, limiting them for some Essential Ocean Variables
on some temporal scales and in specific zones (i.e. on shelf
and in the coastal zone). An analysis on the level of matu-
rity of validation processes applied by OOFSs is provided
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in Sect. 4. Operational processes implemented in the Coper-
nicus Marine Service for product quality across global and
(European) regional model systems are analysed in Sect. 4.1,
whereas Sect. 4.2 provides a view of model validation ap-
proaches applied by (non-European) regional and coastal op-
erational services around the world. Finally, conclusions are
delivered in Sect. 5.

2 Observations for model validation

The lack of observations is the primary, and obvious, diffi-
culty of validating an OOFS at a specific site. In that sense, it
is very difficult to overcome observational gaps, and, if they
exist, OOFS validation processes are seriously hindered by
them.

Validation is a global necessity and challenge. Capet et
al. (2020) provide a complete overview and mapping of the
current European capability in terms of OOFSs, including
contributions from 49 organizations around Europe about
104 operational model systems, mostly simulating hydrody-
namics, biogeochemistry and sea waves. This contribution
shows how, and to what extent, different observational data
sources are used for model skill assessment. As shown in
Fig. 1, most of the model validation systems mainly use fixed
platforms, satellite remote sensing and coastal tide gauges.

It is important to note that the aggregated results of the
study do not provide differences between basin/regional sys-
tems and the more coastal ones. Indeed, in this contribution
most of the near-real-time (NRT) systems of the Copernicus
Marine Service regional monitoring and forecasting centres
are included, causing some observational data sources that
are not so coastally oriented such as the Argo to be used by
a high number of European OOFSs. The same may happen
with the use of spaceborne remote sensing products, which
are more limited in their use for validation OOFSs as we
move to more limited small coastal model domains.

Use of satellite products for OOFS validation is common
in the case of global, basin and regional systems but lim-
ited in the case of coastal ones. If used, it is done mainly by
those coastal systems that present a bigger spatial geograph-
ical coverage (going beyond the shelf break). Furthermore,
new incoming observational technologies (i.e. the new Sen-
tinel missions, swath altimetry, HF radars, BGC-Argo, etc.)
and opportunities to use new coastal observing systems (links
with member state networks and/or specific research and de-
velopment projects) will enhance model validation capaci-
ties. New validation tools may also be developed for coordi-
nated Observing System Experiments (OSEs) and Observing
System Simulation Experiments (OSSEs), related to the opti-
mization of these observation networks. Taking advantage of
the framework of these OSSEs, AI-emulated variables will
be developed, which will increase validation capacities. In-
creased awareness of the need for enhancing observing net-
works, bringing new initiatives and efforts to better integrate

existing ocean observing systems with the OOFS validation
processes, is needed.

3 OOFS validation: a matter of EOVs

In terms of ocean model validation, there is a different level
of application depending on which Essential Ocean Variable
(EOV) is targeted. The Copernicus Marine Service, a com-
prehensive multi-product service dealing with more than 150
operational products that involves more than 60 EOVs for
the blue, green and white ocean, can illustrate such differ-
ences across EOVs. The document that provides the terms of
reference for all the product quality (PQ) assessment done
within the service and the long-term strategy for the PQ en-
hancement (Copernicus Marine PQ Strategic Plan; Sotillo et
al., 2021) includes the following points about the different
level of maturity in terms of model validation across EOVs
in its analysis of strengths and weaknesses.

– In terms of the physic blue world versus the green
biogeochemistry component, the assessment of physi-
cal parameters is more developed than the one for bio-
geochemistry parameters; the Copernicus Marine Ser-
vice identifies the need of special efforts for biogeo-
chemical model product validations. The lack of bio-
geochemistry observations conditions not only the bio-
geochemical model validation but even the modelling
itself. Due to the lack of in situ data, some phenom-
ena such as primary production and bloom of phyto-
plankton are assessed using chlorophyll Ocean Colour
satellite data most of the time, which have some limita-
tions related to coverage and resolution, especially for
the coastal zones. Furthermore, it is necessary to also
assess the factors that cause these blooms (i.e. transport
of nutrients) in biogeochemical models. Carbon, oxy-
gen and ocean acidification are parameters of interest at
both regional and global scales that need better valida-
tion. BGC-Argo floats can enhance the monitoring but
mostly off shelves and far from coastal areas. Finally it
is mentioned that in the biogeochemical model valida-
tion, it is important to evaluate the errors in the physical
system together, particularly vertical transport and mix-
ing, which strongly impact the coupled biogeochemical
models. Thus, monitoring of errors on key parameters
of the physical forcing should help to characterize the
causes of errors of biogeochemical products.

– Sea ice concentration, due mainly to observation by
satellites, is assessed and brings validation to sea ice
extent, sea ice drift, sea ice thickness and sea ice edge.
New validation metrics (some related to end-user needs)
should be developed for sea ice temperature and iceberg
concentration maps, and specific assessments of multi-
year sea ice parameters need to be specifically addressed
on interannual timescales.

State Planet, 5-opsr, 16, 2025 https://doi.org/10.5194/sp-5-opsr-16-2025
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Figure 1. From Capet et al. (2020). Observing platforms providing data used for model skill assessment and validation purposes and number
of models (from the EuroGOOS survey that uses them).

– Sea surface temperature is the most used EOV, being the
most monitored parameter that is usually assessed with
(in situ and remotely sensed) multi-product approaches
that consider regional specificities (for high-frequency
products, particular attention should be paid to diurnal
cycle and tidal mixing effects). Generally, validation on
surface layers is privileged with respect to the rest of
the layers across the water column, a clear decreasing
gradient existing towards deeper levels. The availabil-
ity of in situ observations has greatly improved since
the 2000s with the Argo programme. At depth, T and
S data are the most used observations in product qual-
ity assessment. However, at synoptic scales, water mass
distribution stays partially sampled in the upper ocean.
There are significant regional differences, the coastal ar-
eas not always being the privileged ones (indeed, the
autonomous Argo measure network changed the usual
fact of coastal and on-shelf areas being the more sam-
pled traditionally).

– In the case of salinity, in situ measurements from fixed
moorings, Argo drifters, or offshore coastal profiles
with CTD or XBT instruments, as well as surface tran-
sects with thermo-salinometers, are the most common
data sources used for OOFS model validation. Aver-
aged maps of sea surface salinity derived from remotely
sensed satellite data (such as the SMOS ones) can be
used to validate models, especially far from coastal ar-
eas.

– The approach to regionally validate sea level model so-
lutions is based on comparison to satellite altimetry, at
the scales of interest, from open-ocean to coastal dy-
namical responses. Enhancement of sea level validation
in coastal and on-shelf areas is needed, and preparation
for the use of the new wide-swath altimetry products
should be done in the coming years. On the other hand,
comparisons of coastal OOFS model products with in

situ sea level measurements from tide gauge are quite
common. External metrics linked to storm surge ser-
vices (including total sea levels, tidal solution and resid-
uals) are considered. For many coastal forecast systems,
especially for those with more limited spatial coverages,
the comparison of the simulated sea level with local ob-
servation from a tide gauge, usually installed in ports
and the unique NRT ocean measurement available, is
the only feasible direct model–observation comparison.

– Ocean currents and associated transport, especially near
the surface, are parameters with a strong impact in many
applications. Their assessment is usually done using
independent observations (as most of today’s systems
do not assimilate this kind of observation). For this
purpose, in situ observations from current meters and
acoustic Doppler current profilers (ADCPs), installed at
mooring buoy stations, as well as remotely sensed data
from coastal HF radar systems, are used to validate sim-
ulated currents at specific locations. The proliferation
of surface velocity products derived from drifters’ ob-
servations as pseudo-Eulerian estimated maps at global
and regional scales also contributes to the validation of
ocean models. Finally, satellite altimetry can also be
used to assess geostrophic/non-geostrophic properties
of the ocean, and some derived estimation of currents
from satellite synthetic-aperture radar (SAR), or from
sea surface temperature (SST) or Ocean Colour images,
can also be used in specific areas.

4 Operational validation: status across different
OOFSs

A discussion on the status of operational validation across
different existing OOFSs is provided here. There are signif-
icant differences in the status of the operational validation
procedures applied by global, basin and regional systems and
the ones applied by the coastal services.

https://doi.org/10.5194/sp-5-opsr-16-2025 State Planet, 5-opsr, 16, 2025
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To illustrate how operational validation is being performed
by basin and regional OOFSs, Sect. 4.1 provides the ap-
proach followed by the Copernicus Marine Service as an ex-
ample. In this service, outcomes from the validation of sev-
eral global and regional models contribute to the generation
of a variety of product quality information across products
that is delivered to users.

On the other hand, in the case of more localized nation-
al/coastal OOFSs, there is a variety of model validation ap-
proaches. Section 4.2 reviews them, providing the European
space information from the EuroGOOS coastal model capa-
bility mapping, and different examples are given from sys-
tems located all over the world (including North and South
America, Africa, and Asia).

4.1 Validation of global, basin and regional model
systems: the Copernicus Marine example

The Copernicus Marine Service (Le Traon et al., 2019) de-
livers consistent, reliable and state-of-the-art information de-
rived both from space or in situ observations and from mod-
els – including forecasts, analyses and reanalyses – on the
physical and biogeochemical state over the global ocean and
the European regional seas. As stated in the previous sec-
tion, the extensive multi-product portfolio offered, compris-
ing more than 150 operational products and involving more
than 60 EOVs for the blue, green and white ocean, estab-
lished the Copernicus Marine Service as a benchmark in
operational oceanography. The service relies on a network
of producers, interconnecting several European OOFSs at
global and regional scales: 7 Copernicus Monitoring and
Forecasting Centers (MFCs) run ocean numerical models,
assimilating data, in order to generate long-term reanalysis
products, as well as conducting near-real-time analysis and
10 d forecasts of the ocean.

Model validation in the Copernicus Marine Service is
closely linked to the operational production performed at the
OOFS level. This connection spans all service phases, from
design to the operational delivery of products, including as-
sociated communication and training activities. Furthermore,
a scientifically sound and effectively communicated prod-
uct quality assessment stands as one of the key cross-cutting
functions of the Copernicus Marine Service, Further details
of its achievements during the first phase of the service can
be found in Sotillo et al. (2022).

Individual OOFSs, producers of the regional components
of the Copernicus Marine Service, verify the scientific qual-
ity of their model products (i.e. NRT forecast/analysis and
MY reanalysis) daily, using quantitative validation metrics,
described in standard protocols and plans, and using any
available observational data sources extensively, as referred
to in previous sections. Regular updates of a subset of the
validation metrics assessed by the own producers, including
Class 2 validation of model products at mooring sites and
Class 4 regional validation metrics, are made available to

end users through a dedicated website (the Copernicus Ma-
rine Product Quality Dashboard, http://pqd.mercator-ocean.
fr, last access: 30 April 2025).

Furthermore, the Copernicus Marine Service is respon-
sible for informing end users about relevant PQ informa-
tion in a transparent way. For this purpose, reference scien-
tific PQ documentation is issued for each delivered product.
These documents, stating the expected quality of a product
by means of validation metrics computed along the qualifi-
cation phase of the new model system, are updated for every
quality change associated with any new operational release.

The Copernicus Marine Service model production needs
to be carefully monitored at each step, and then, the quality
of any upstream data used in the model runs can be properly
assessed (even if such upstream data are quality-controlled
by the data providers). Indeed, regular exchanges are orga-
nized between observations and model producers within the
service to discuss data assimilation and validation issues.
Scientific quality is one of the key performance indicators
for the OOFS, and producers report quarterly to the service
on quality monitoring activities. Any change affecting model
solutions required to be justified from a product quality per-
spective.

The consistency in the choice of model validation metrics,
and in the way they are presented, can be important because
it makes it easier for users to understand the product quality
information provided across products and to browse in the
service portfolio which products are fit for purpose. How-
ever, given the wide range of Copernicus Marine products
and production methods, it is not always scientifically mean-
ingful to provide the same type of information across prod-
ucts and for all involved systems. The product quality cross-
cutting strategy (Sotillo et al., 2021) thus aims to strike a
balance between the level of homogeneity of the information
delivered and its relevance. Indeed, the Copernicus Marine
Service is a first achievement towards the interconnection of
operational oceanography services at basin scale, and digital
ocean platforms based on cloud technology will enable new
validation capacities, facilitating the set-up of dynamic un-
certainty for most of their products. The frequency of the up-
dates will also increase to better serve coastal OOFS, where
short-term forecast and quality information should be deliv-
ered on a daily (preferred) or weekly basis.

4.2 Validation of coastal OOFSs: a world of variety

There is not a common operational validation approach in
coastal OOFSs, and the degree of operationality for the
model validation is highly dependent on the type of forecast-
ing system set-up (i.e. system with data assimilation scheme
activated, generating analysis, or on the other hand, OOFSs
based on a free forecast model system); the extension of the
area of interest (being different for very limited coastal sys-
tems or going into a larger regional extent); the service pur-
pose (system targeted on a primary end user with specific
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interests or needs, or if the OOFS delivers a general multi-
parameter/purpose service); and finally in the availability,
and degree of operational access, of local in situ observa-
tional data sources.

Most of the OOFSs have some system validation. Even
those models used for research purposes or in the process
of maturing their operationality (pre-operational state) have
some kind of model validation, typically the early stages
of the model set-up configuration, often running in hindcast
mode for specific time periods to take advantage of existing
observational data campaigns. In pre-operational systems, or
in the early stages of OOFS services, an operational valida-
tion system is not so common, while model providers are
working on the configuration of operational processes for
an automatic PQ model assessment and, meanwhile, main-
taining some offline model validation (using available ob-
servations or focused on specific targeted periods when out-
standing events occurred or when observational campaigns
are available).

It is worth noting that Capet et al. (2020) conclude that
only 20 % of models provide a dynamic uncertainty together
with the forecasted EOVs, which would be required for a
real-time provision of confidence levels associated with the
forecasts (e.g. as is usual for instance in weather forecasts).
Usually, model providers perform operational and offline val-
idations, focusing mostly on the best-estimate solution and
not so on the forecast skill assessment; scientific statistical
metrics are computed using available in situ observational
data sources from their own networks or external observa-
tional data providers (using observational products from core
services such as Copernicus; other national, regional or lo-
cal public providers; or the industry, if available); in coastal
high-resolution systems, with quite limited geographical do-
mains, the use of satellite data is not so common for model
validation due to both the lack of remotely sensed prod-
uct coverage and the higher uncertainty of remotely sensed
coastal data. This is the case of many OOFSs all over the
world. For instance, the South African ocean forecast sys-
tem (SOMISANA – Sustainable Ocean Modelling Initiative:
a South African approach; https://somisana.ac.za/, last ac-
cess: 30 April 2025) delivers downscaling of global model
products for specific coastal applications in key coastal ar-
eas. In these cases, scientific model validation is mostly done
offline by model producers, comparing their best estimated
hindcast solutions with the existing historic observations.
Given the coastal nature of the models, the validation pro-
cess is focussed mainly on coastal moorings with the model
domains. These include coastal temperature recorders, bot-
tom mounted thermistor strings, wire-walker moorings and
ADCP moorings from previously published datasets (e.g.
Lucas et al., 2014; Pitcher et al., 2014; Goschen et al.,
2015) as well as unpublished datasets from local institutes.
Currently, there is no direct transfer of information about
the product quality from the service to the OOFS users,
neither computation of forecast skill assessment nor end-

user-oriented metrics. However, some interesting initiatives,
mostly linked with the engaging of stakeholder and product
disseminations through end-user services platforms, are on-
going, and in the SOMISANA OOFS roadmap the imple-
mentation of an operational validation protocol is included,
including forecast assessment.

The most common situation is that model validation is
performed by the OOFS providers themselves. However, in
some cases (usually targeted services), there may be options
for some external validation, performed not by the provider
itself but directly by the targeted end user(s). This is the case
of the DREAMS service (Hirose et al., 2013, 2021) on the
west Japanese coast, where model solutions are validated di-
rectly by the end users of the service: in this case, fisheries,
through a programme with fishing boats as the ship of oppor-
tunity (Ito et al., 2021). The DREAMS model provider states
the following:

The fishers watch the coastal ocean carefully to
achieve better catches. They are inevitably the seri-
ous users who can claim the quality of prediction.

In the case of the Brazilian REMO service (Lima et al.,
2013; Franz et al., 2021), the validation is done in-house only
for targeted end users, either by the Navy or by the PETRO-
BRAS oil company teams. On the PETROBRAS side, they
have several current meter sites where they compare in situ
measurements, not only with the REMO forecast but also
with all the other available ocean forecasting systems that
deliver forecasts on that given day. On the Navy side, they
do several validations that include the thermohaline structure
and Taylor diagrams for a few properties, as well as the trans-
port for the Brazil Current and the tidal analysis of both level
and currents where they have data available. Furthermore,
there can be very high resolution coastal OOFSs that can be
implemented for specific purposes, running only along des-
ignated periods, to provide model data as input, for instance,
during the design and construction phases of large infrastruc-
tures. In such cases, the implementation of the specific model
solution can go together with some monitoring activity in the
targeted area, allowing some model validation throughout the
construction phase and after operations commence. In this
type of service, modelling and validation are typically done
in-house, with products and results rarely being publicly dis-
seminated, not contributing to the literature.

There are coastal systems that have big domains (going
into regional) and that may include data assimilation schemes
or pure forecast local coastal systems (run by providers
of regional/basin systems in which the local systems are
nested) that tend to have operational validation systems (tak-
ing advantage of the extensive use of the observational data
sources done for assimilation purposes). There are examples
of OOFSs supported by state agencies, such as the Cana-
dian Government CONCEPTS (Canadian Operational Net-
work for Coupled Environmental Prediction Systems) that
develops and operates a hierarchy of OOFSs. These include
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the whole downscaling approach: going in this Canadian case
from the Global Ice Ocean Prediction System (GIOPS; Smith
et al., 2016) used to initialize coupled deterministic medium
range predictions (Smith et al., 2018), as well as ensemble
predictions (Peterson et al., 2022). The global system pro-
vides boundary conditions to the Regional Ice-Ocean Predic-
tion System (RIOPS; Smith et al., 2021), which in turn pro-
vides boundary conditions and nudging fields for the Coastal
Ice Ocean Prediction System (CIOPS; Paquin et al., 2024).
Recently, six port-scale prediction systems have also been
put in place. Paquin et al. (2019) presented the prototype
of the mentioned port models, whereas Nudds et al. (2020)
presented the initial intercomparison projects that took place
to compare the NEMO model implementation described in
Paquin et al. (2019) with an unstructured model implementa-
tion using the Finite Volume Community Ocean Model (FV-
COM). CONCEPTS also develops and operates determinis-
tic and ensemble wave and storm surge prediction systems.
Proposed changes to these systems must follow a set of for-
malized verification standards. Evaluation of forecast skill
as a function of lead time is also done. Monitoring systems
are also in place to ensure the quality of real-time analy-
ses. Forecasts are evaluated in near-real time as part of the
OceanPredict Class 4 intercomparison activity (Ryan et al.,
2015), and evaluations are predominately made against avail-
able observations, but also include comparison to analyses
for the longer-range coupled forecasts. These include assim-
ilated satellite (sea level anomaly, sea surface temperature,
sea ice concentration) and in situ observations (Argo, buoys,
moorings, gliders, field campaigns, etc.). Additional inde-
pendent evaluations are made against tide gauges, ADCPs,
HF radars, drifters and ice beacons (Chikhar et al., 2019)
and estimates of sea ice and snow thickness. Evaluations are
also done of transports across reference sections and of sur-
face fluxes (both against observations as well as in terms of
budget; e.g. Roy et al., 2015; Dupont et al., 2015). Finally,
user-relevant verification is done in terms of sea ice (e.g.
probability of ice, ice formation and melt dates) and ocean
(e.g. eddy identification and properties) features (Smith and
Fortin, 2022). An ongoing effort is underway to quantify un-
constrained variability in the systems and to provide uncer-
tainty estimates to users.

There are also coastal OOFSs delivered by national agen-
cies or organisms that run their own observational networks.
This is the case in Spain of ocean model systems from dif-
ferent state and regional government agencies: i.e. Puertos
del Estado (SAMOA; Sotillo et al., 2019; García-León et al.,
2022), SOCIB (WMOP; Mourre et al., 2018), MeteoGalicia
(MG; Costa et al., 2012) or the case of the Marine Institute
ocean forecasting systems in Ireland (Nagy et al., 2020), with
coastal systems focused on very limited, highly monitored
bay areas. In these cases, usually they take advantage of syn-
ergies of the combination of high-resolution model solutions
and operational observational data sources (the in situ op-
erational observational capacity being developed by running

operational networks or through the sustained periodic mea-
surement at fixed stations) progressing towards more opera-
tional validation procedures. Even in these optimal cases, op-
erational validation is mainly limited to model best-estimate
solutions, and generation of end-user metrics or uncertainty
estimation is still missing but is still in the long-term evolu-
tion roadmaps.

5 Summary, conclusions and outlook

This paper reviews the status of the validation of operational
ocean forecasting products. Recent advancements in the field
of operational oceanographic services have significantly con-
tributed to scientific research on model validation. This is
achieved by the OOFS individually but also through coor-
dinated efforts, such as those developed within the Coper-
nicus Marine Service and other international initiatives, like
the evolution of GODAE to OceanPredict.

The crucial role of observations in ocean model validation
is discussed, highlighting how gaps in observational capabil-
ities significantly impact the validation processes in OOFSs.
These limitations particularly affect the validation of essen-
tial ocean variables at specific temporal scales and in certain
regions, such as shelf areas and coastal zones. Most model
validation systems primarily rely on observations from fleets
of floats, drifters, fixed in situ mooring platforms, coastal
tide gauges and satellite remote sensed data products. It is
pointed out how there are notable differences between the
validation of global/basin systems and more coastal-focused
ones. Some observational data sources, such as Argo, are cru-
cial for validating global, basin and regional systems; how-
ever, they are less relevant for coastal systems due to cover-
age limitations. Similarly, while satellite products are com-
monly used for validating global, basin and regional OOFSs,
their use is more constrained in coastal OOFSs, with much
smaller coastal model domains.

Across EOVs there are also significant differences. The as-
sessment of physical parameters is more developed than the
one for biogeochemistry parameters, the lack of biogeochem-
istry observations certainly being a shortcoming for the val-
idation of biogeochemical models. Generally, it is seen that
model validation tends to prioritize surface layers over the
rest of the water column. Likewise, there are significant re-
gional differences, and coastal areas are not always the most
prioritized. Indeed, the Argo network shifted the traditional
favoured focused on coastal and on-shelf areas to open ocean.
Among the physical EOVs, temperature is the most widely
sampled and therefore validated. Ocean current, particularly
the near surface one, is a critical parameter for many appli-
cations; however, it is less well monitored and thus less val-
idated. Recently, the scatter in situ monitoring has been re-
inforced locally in coastal zones with HF radar systems. For
sea level, the regional modelling solutions are typically val-
idated with satellite altimetry, while comparisons of coastal

State Planet, 5-opsr, 16, 2025 https://doi.org/10.5194/sp-5-opsr-16-2025



CHAPTER6.2

M. G. Sotillo et al.: A description of validation processes and techniques for ocean forecasting 7

OOFS model products and in situ sea level measurements
from tide gauges are also quite common. Lastly, simulated
sea ice parameters are primarily validated with satellite re-
mote sensing.

An analysis of the maturity of validation processes from
global to regional forecasting systems is presented, using
the approach followed by the Copernicus Marine Service
as an example. This service connects more than seven re-
gional production centres that run models for ocean physics,
including sea ice and wave modelling systems, as well as bio-
geochemistry. It delivers forecast and reanalysis products for
several EOVs, ensuring homogenized product quality infor-
mation across the entire range.

The Copernicus Marine Service organizes product qual-
ity information from producers, providing dedicated scien-
tific product quality documentation that is well planned and
designed. This PQ information is then communicated to end
users: every product in the Copernicus Marine product port-
folio is accompanied by the relevant product quality doc-
uments, and online publication of updated estimated accu-
racy values for the entire product catalogue is also ensured
through the Copernicus Product Quality Dashboard.

A wide variety of approaches exist as OOFSs work closer
to the coast. For high-resolution coastal models with very
limited geographical domains, the complexity of calculat-
ing validation metrics increases. This is due to the need
of higher resolution to validate local processes, but oper-
ational validation is also often constrained by the scarcity
of near-real-time coastal observations. The review presents
examples of model validation approaches used by regional
and coastal operational services worldwide, particularly from
outside Europe, to complement the European Copernicus ap-
proach described earlier. Detailed examples of OOFSs from
Canada, Brazil, South Africa and Japan are also included.
The case of coastal OOFSs delivered by national agencies
or organizations that operate their own observational net-
works is also highlighted as successful examples of opera-
tional model validation. These OOFSs benefit from synergies
between high-resolution model solutions and operational ob-
servational data sources, advancing towards more robust op-
erational validation procedures. However, even in these op-
timal cases, operational validation in most coastal OOFSs is
primarily limited to the validation of best-estimate model so-
lutions, typically on a daily basis at best.

Looking ahead, uncertainty estimation of OOFS products
is identified as a key focus and is included in the long-
term evolution roadmap of services like Copernicus Ma-
rine. The operational delivery of end-user-tailored metrics is
still largely lacking, with this being more feasible in coastal
OOFSs targeted and co-designed with specific end-user pur-
poses in mind (e.g. services for ports or support for spe-
cific activities, such as aquaculture) than in regional, basin or
global systems. New observational technologies (e.g. the up-
coming Sentinel missions, swath altimetry, HF radars, BGC-
Argo) and the opportunities presented by new coastal ob-

serving systems (through links with member state networks
and/or specific research and development projects) will en-
hance model validation capabilities. Improvements in sea
level validation in coastal and on-shelf areas are expected
using new wide-swath and higher-frequency altimetry prod-
ucts in the coming years. Finally, the integration of oper-
ational validation tools with future Observing System Ex-
periments (OSEs) and Observing System Simulation Exper-
iments (OSSEs) aimed at optimizing observation networks
could provide significant benefits. Leveraging these OSSE
frameworks, AI-derived emulated variables may be devel-
oped, enhancing validation capacities. Overall, increasing
awareness and fostering new initiatives to better integrate ex-
isting ocean observing systems with OOFS validation pro-
cesses will be a key focus for the future.
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Abstract. The availability of numerical simulations for ocean dynamics past estimates or future forecast world-
wide at multiple scales is opening new challenges in assessing their realism and predictive capacity through
an intercomparison exercise. This requires a huge effort in designing and implementing a proper assessment of
models’ performances, as already demonstrated by the atmospheric community that was pioneering in that sense.
Historically, the ocean community has only recently launched dedicated actions aimed at identifying robust pat-
terns in eddy-permitting simulations: it required definition of modelling configurations, execution of dedicated
experiments that also deal with the storing of the outputs and the implementation of evaluation frameworks.
Starting from this baseline, numerous initiatives like WCRP/Climate Variability and Predictability (CLIVAR) for
climate research and the Global Ocean Data Assimilation Experiment (GODAE) for operational systems have
arisen and are actively promoting best practice through specific intercomparison tasks, aimed at demonstrating
the efficient use of the Global Ocean Observing System and its operational capabilities, sharing expertise, and
increasing the scientific quality of the numerical systems. Examples, like the Ocean Reanalysis Intercompari-
son Project (ORA-IP) or the Class 4 near-real-time GODAE intercomparison, are introduced and commented
on, also discussing ways forward for making this kind of analysis more systematic using artificial intelligence
approaches for addressing monitoring of ocean state in operations or facilitating in-house routine verification in
ocean forecasting centres.

1 Historical development of model
intercomparisons

Historically, in oceanography, model comparisons began
with evaluations of “free” and “forced” numerical simula-
tions of ocean circulation over the same space and time
frames, assessing their differences within comparable situ-
ations. The international Atmospheric Model Intercompar-
ison Project (AMIP), under the World Climate Research
Programme (WCRP), played a pioneering role in guiding
the oceanic modelling community (Gates, 1992). AMIP’s
primary objective was to comprehensively evaluate each
model’s performance and document systematic errors. From

an academic standpoint, this intercomparison aimed to iden-
tify avenues for enhancing future atmospheric models and
driving further developments. Consequently, this approach
aligns clearly with the validation framework outlined in
Sotillo et al. (2025, in this report). To provide an objec-
tive assessment of each “competing” model’s performance,
a common “reference truth” was selected, such as climatol-
ogy or atmospheric reanalysis (deemed more realistic than
the AMIP simulations). This process involved analysing a se-
ries of targeted key variables extracted from the model state
to provide an overview of the model’s skill in representing
various atmospheric aspects.

Published by Copernicus Publications.
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In 1996, the same atmospheric community, involved in cli-
mate studies, settled the basis of the Coupled Model Inter-
comparison Project (CMIP) under the auspice of the WCR-
P/Climate Variability and Predictability (CLIVAR) panel to
document systematic errors of global couple climate simula-
tions in support of the Intergovernmental Panel on Climate
Change (IPCC) framework (Meehl et al., 1997). Over the six
phases of the CMIP, intercomparisons have refined the as-
sessments, increasingly including the physical, biochemical
and ecosystem components of the Earth system, by testing
various climate scenarios of past, present and future CO2
emissions. In the current phase, the CMIP6, the variety of
models, simulations and their objectives have led the com-
munity to redefine the federated structure through a common
specific framework, the Diagnostic, Evaluation and Char-
acterization of Klima (DECK) experiments, which set out
the simulations and scientific questions to be addressed. The
DECK is the new acceptance criterion for a climate intercom-
parison project in the CMIP (Eyring et al., 2016). The evolu-
tion of the CMIP has been accompanied by the gradual adop-
tion by the climate community of common standards, coor-
dination, infrastructure and documentation, accessible to all.
This persistent framework aims to ensure continuity in cli-
mate model performance assessment of future CMIP phases
in which re-processed historical simulations defined in the
AMIP would allow changes and benefits of more elaborated
components of the Earth system models (ESMs).

The ocean modelling research community adopted a sim-
ilar approach to the AMIP when the first global- or basin-
scale eddy-permitting ocean simulations were achieved in
the 1990s. The US–German Community Modelling Effort
(CME), in support of the World Ocean Circulation Exper-
iment (WOCE), started to infer model parametrization and
sensitivity studies in modelling the North Atlantic basin
(Böning and Bryan, 1996). Sources of errors like ocean
boundaries or vertical mixing parametrization were identi-
fied. The DYNAMO project, dedicated to offering intercom-
parison among three classes of ocean models of the North
Atlantic Ocean in a similar numerical experiment framework
(Meincke et al., 2001), allowed patterns of the North Atlantic
Ocean circulation to be identified that were robust and other
patterns that were sensitive to model parametrization. In this
case, the intercomparison approach brought another benefit
than just identifying performances among the simulations:
the common and matching patterns represented by the sim-
ulations were considered updated knowledge of the North
Atlantic circulation. In other terms, the “ensemble pattern”
from the simulations is identified as a robust representation
of the “ocean truth” at the scales simulated by these models.

This first initiative led to the development of a common
ocean modelling framework from the ocean community also
involved in the CMIP projects, the Coordinated Ocean-ice
Reference Experiments (COREs), aiming to provide com-
mon references for consistent assessment from a multi-model
perspective (Griffies et al., 2009). CORE-I intends to evalu-

ate model mean biases under a normal year forcing, using a
prescribed series of metrics (e.g. Danabasoglu et al., 2014).
The CORE-II framework extends the ocean model evaluation
under the common interannual forcing – starting in 1948 –
proposed initially by Large and Yeager (2009). It offers more
direct comparison to ocean observations and to the effective
ocean interannual variability. An intercomparison of 18 time-
dependent ocean numerical simulations have been performed
so far, with useful outcomes for global ocean model improve-
ments. The CORE-II approach is the foundation of the Ocean
Model Intercomparison Projects (OMIPs) carried out in sup-
port of the successive CMIPs, with a coordinated evalua-
tion of the ocean, sea ice, tracer and biogeochemistry sim-
ulations forced by common atmospheric datasets (Eyring et
al., 2016). The OMIP version 1 contribution to CMIP6, with
ocean simulations’ intercomparisons over the 1948–2009 pe-
riod, is described by Griffies et al. (2016) and contains a com-
prehensive list of metrics and guidance to evaluate ocean–sea
ice model skills as part of ESMs. A companion article by Orr
et al. (2017) proposes the evaluation framework for the bio-
geochemical coupled model simulations in CMIP6. Under
the CLIVAR Ocean Model Development Panel (OMDP) co-
ordination, OMIP version 2 is ongoing using the more recent
JRA-55 reanalysis forcings (Kobayashi et al., 2015). Met-
rics of the ocean (equivalent here to diagnostics) endorsed
by the OMIP are those recommended for the assessment of
ocean climate behaviour, impacts and scenarios in the CMIP
DECK.

These first ocean intercomparison projects witness the
community effort, trying to commonly define modelling
strategies; conduct the simulations individually; and then in-
tercompare the simulations in order to evaluate the model’s
performance with regard to observed realistic references. The
projects bring better characterization of model errors and
weaknesses considering specific ocean processes, from phys-
ical to biogeochemical aspects, over decadal, interannual and
seasonal timescales. Implicitly, these efforts have involved
strategies for distributing, storing and sharing simulations
and metrics, under constraints of computer server limita-
tions in capacity and communication bandwidth. In practice,
this added to the common technical definition of standards
shared by all participants and a fitness-for-purpose evalua-
tion framework to be applied in similar ways for every sim-
ulation. And finally, a common synthesis effort is carried out
in order to provide valuable conclusions.

The first intercomparison project that involved the op-
erational oceanography has been carried out in the frame
of the CLIVAR Global Synthesis and Observation Panel
(GSOP). In practice, this involved intercomparing different
ocean reanalyses computed over several decades and pro-
viding “ocean synthesis” on ocean state estimation through
a chosen series of essential ocean variables (EOVs) consid-
ered in climate research (Stammer et al., 2009). A step was
taken since it was no longer comparison of model outputs but
of products issued from the more complex system produc-
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ing each reanalysis (observation + model + assimilation), in-
creasing the factors of discrepancies among them. The idea
is that multi-system ensemble approaches should be useful
to obtain better estimates of the ocean evolution. The GSOP
objectives were (1) to assess the consistency of the synthe-
sis through intercomparison; (2) to evaluate the accuracy of
the products, possibly by comparison to observations; (3) to
estimate uncertainties; (4) to identify areas where improve-
ments were needed; (5) to evaluate the lack of assimilated
observations that directly impacted the synthesis and pro-
pose future observational requirements; and (6) to work on
new approaches, like coupled data assimilation. One of the
outcomes was to highlight common behaviour among some
products, that is, evidence “clusters” and correlated patterns
that sometimes had just inappropriate biases.

In the atmospheric and weather-forecast side, usually
responsible for marine meteorology predictions, routine
intercomparison for wave forecast has been settled for
many years under the World Meteorological Organization
(WMO) framework. The European Centre for Medium-
Range Weather Forecasts (ECMWF) hosts the ongoing
WMO Lead Centre for Wave Forecast Verification where
18 regional and global wave forecast systems are com-
pared (https://confluence.ecmwf.int/display/WLW, last ac-
cess: 29 January 2025). Beyond wave forecasts’ verification
and quality monitoring, the ECMWF commits to maintaining
an archive of the verification statistics to allow the generation
and display of trends in performance over time.

A first dedicated intercomparison of ocean operational
systems, operated on routine, was achieved by the Global
Ocean Data Assimilation Experiment (GODAE) community
(Bell et al., 2009), through an intercomparison of hindcasts
over 2008. The main objectives were to (a) demonstrate GO-
DAE operational systems in operations, (b) share expertise
and design validation tools and metrics endorsed by all GO-
DAE operational centres, and (c) evaluate the overall sci-
entific quality of the different GODAE operational systems.
The preliminary task was to define the validation concepts
and methodologies (Hernandez et al., 2015a), with the so-
called “Class 1 to 4 metrics” described in this report (Sotillo
et al., 2025), and those directly inherited from the weather
forecast verification methods (Murphy, 1993). A demanding
task was to provide similar “Class 1”, “Class 2” and “Class
3” files from each Operational Ocean Forecasting System
(OOFS) and then to carry out the evaluation through inter-
comparison and validation against “truth references” (Her-
nandez, 2011).

2 Key findings for state-of-the-art model
intercomparison

2.1 From academia to operation: adoption of best
practice

The legacy of the first 10 years of GODAE was the imple-
mentation of an expert community for OOFS intercompari-
son: the Intercomparison and Validation Task Team (IVTT).
This group was created during GODAE, continuing its ac-
tivity in GODAE OceanView and, up to present day, in
Ocean Predict (https://oceanpredict.org/, last access: 29 Jan-
uary 2025). A second benefit was the development of an ad
hoc validation and intercomparison methodology, improved
and tested regularly since, until it was adopted as best prac-
tice and recommended by the Expert Team on Operational
Ocean Forecasting Systems (ETOOFS; Alvarez-Fanjul et al.,
2022).

As a result of these activities, it was found that performing
intercomparison of OOFSs and models brought the following
aspects to address:

– Characterize the performance of individual OOFSs of
the same kind relatively to a given “truth”, identify out-
liers and give clues for further OOFS improvements.

– Allow “ensemble estimation” that provides qualitatively
more robust and reliable estimates, i.e. the “ensemble
mean” approach. In some cases, if the “ocean truth” is
missing, the ensemble mean can be considered a refer-
ence and be used to validate individually the systems.

– Provide an ad hoc methodology for operational qualifi-
cation; see Sotillo et al. (2025) for detailed explanation
on OOFS qualification or “calibration”. In other words,
when the OOFS is upgraded, inter-comparing the old
and new systems informs on the benefits of the upgrade
and justifies “go/no-go” decisions.

– Adopt or refine technologies supporting large ex-
changes of information among the community: in this
sense, the NetCDF file format and climate forecast
standardization has greatly facilitated the “shareability”
(Hernandez et al., 2015a, b) and prefigured the FAIR
best practice (Findability, Accessibility, Interoperabil-
ity and Reuse of digital assets), proposed more recently
(Wilkinson et al., 2016).

An exceptionally illustrative intercomparison example
emerged from the tragic crash of the Rio de Janeiro–Paris
Air France plane in 2009 and the subsequent intensive search
for the wreckage in the tropical Atlantic. Evaluation of the
accuracy of current fields from OOFSs and observed prod-
ucts, a user-centric approach based on dispersion and La-
grangian metrics, was employed within an intercomparison
framework. It was demonstrated that the ensemble mean
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yielded more reliable results compared to individual es-
timates (Drévillon et al., 2013). A similar approach was
also adopted to identify the crash area for the March 2014
Malaysia Airlines flight MH370 in the Indian Ocean (Griffin
and Oke, 2017; Durgadoo et al., 2021).

2.2 Intercomparison: key aspects to be addressed

Intercomparing routinely or during specific phases OOFSs
and their products is now common practice in operational
centres. However, various aspects need to be reiterated and
addressed:

– Common validation/verification methodology needs to
be adopted by all participants, preferably adopting rec-
ommendations, as reiterated in this report (Sotillo et al.,
2025).

– Interoperability, shareability of products and common
standards are key: the large number of products offered
by the different centres cannot be spread in every single
centre. The FAIR principles of best practice are essen-
tial.

– Representativity is a central aspect of intercomparison:
scales and ocean processes represented in each prod-
uct (observations and models) need to be correctly doc-
umented to reduce mis-interpretation when intercom-
pared. In particular, the following points should be
noted.

– Re-gridding by downscaling or upscaling ocean
products toward a common grid might generate er-
rors and not conservative effects of ocean dynam-
ics.

– Comparing ocean re-gridded products with re-
gridded observations containing different ocean
scales might create double penalty scores.

– Due to operational oceanography growing activity,
it is worth remembering that an increasing number
of products are available for each EOV, for each
area. The Copernicus Marine Environment Moni-
toring Service (CMEMS) Data Store is a good il-
lustration of this, with a large number of products
derived from models or from space or in situ obser-
vations for a given EOV. This reinforces the impor-
tance of an a priori assessment of the representativ-
ity of each product before any intercomparison.

– Intercomparison is a first path toward ocean state esti-
mation from various sources and products: it is promis-
ing to use novel approaches based on data mining, con-
sensus clustering, machine learning, and other tools de-
veloped in the frame of ensemble estimation and fore-
cast (e.g. Sonnewald et al., 2021).

– User-oriented metrics and process-oriented metrics are
increasingly being implemented in operational centres.
They are also new insight for establishing the perfor-
mance of intercompared OOFSs into the user-oriented
framework.

3 Ongoing ocean models and forecasting systems
intercomparison activities

3.1 Class 4 metrics: model intercomparison in the
observation space for verification forecast

Ocean observations provide an accurate estimation of the
“ocean truth”. However, the Global Ocean Observing System
(GOOS) provides a sparse representation over time of three-
dimensional ocean dynamics. Their quantity and quality have
increased substantially with permanent mooring and pro-
grammes such as Argo and the Global Drifter Program, to-
gether with satellite measurements (e.g. Tanhua et al., 2019).
The GOOS is providing these recent years a valuable repre-
sentation of the large-scale dynamics and some aliased rep-
resentation of the ocean fine scales where measurements are
performed. This led to the evaluation of OOFS performance
by direct comparison with observations and to the definition
of the Class 4 metrics detailed in Sotillo et al. (2025).

In summary, Class 4 metrics aims to compare observa-
tions with the equivalent model forecast at the same time
and place, for different lead times (Hernandez et al., 2015a).
Thus, these metrics, for different kinds of ocean variables,
characterize the performance of a given OOFS against ob-
servations in the observation space. One of the advantages
of using the observations as the reference frame is that other
OOFSs can similarly be compared to the same data, in the
same manner. Hence Class 4 metrics have been used since
the beginning when comparing several OOFSs and their per-
formance with the same “truth” (Hernandez et al., 2015a).
When the observations are not assimilated by the OOFS, one
can get a fully independent error assessment that can be sta-
tistically representative of the overall quality of the OOFS.
Otherwise, one can consider that the overall error level is un-
derestimated. However, this still provides an objective mea-
sure of the actual gap between the OOFS estimate and the
“ocean truth” at the exact location and time of the observa-
tion used as reference.

Within GODAE OceanView, the Class 4 intercomparison
project has been operating since 2013. A first set of intercom-
parison of six global OOFSs (Ryan et al., 2015) was an op-
portunity to present new metrics (radar plot, Taylor diagrams,
best system mapping, bar charts, rank histograms, etc.). The
same Class 4 information was also used with more specific
metrics around Australia (Divakaran et al., 2015), with the
objective of the Australian Bureau of Meteorology to iden-
tify a path of improvements for its own OOFS. This was
also a first demonstration of one of the benefits of such inter-
comparison: the in-house routine validation in Australia took
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advantage of the internationally shared and compared multi-
system Class 4 information to enhance its own daily basis
verification procedures. The Class 4 intercomparison is still
routinely performed (Fig. 1) and is continuously extended. A
recent intercomparison based on Class 4 for surface velocity
using drifters by Aijaz et al. (2023) offers an additional eval-
uation of OOFS surface dynamics performance, key for ap-
plications like search and rescue, marine pollution forecasts,
and many other drift-dependent applications.

Another issue of Class 4 comparison to observations was
the routine evaluation of the overall quality of the GOOS.
Performing comparisons with observations of several OOFSs
also gives more confidence in identifying observation out-
liers and incorrect measurements: a feedback procedure was
proposed to inform data centres that could carry out a sec-
ond loop of data corrections, for the benefit of all data users
(Hernandez et al., 2015b). This approach is now considered
in the frame of the recent project SYNOBS endorsed by the
United Nations Ocean Decade programme (Fujii et al., 2019,
2024). SYNOBS aims at evaluating the best combinations of
ocean-observing platforms through observing system design
carried out by different operational centres (e.g. Balmaseda
et al., 2024a). The existing intercomparison framework will
allow faster common assessment among the different con-
tributors.

Mentioned above, comparison to observations raises the
key issue of representativity, both from the observation and
the modelling side. And subsequently, double penalty effects
must be taken into account when measuring the skill of a
given product for given scales or ocean regimes. It is neces-
sary to carefully address the following questions: what are
the scales sampled by a given observing system? What are
the effective scales and ocean processes represented by a
given OOFS? What ocean processes do they represent? The
classical example is comparison of satellite altimetry and/or
tide gauge observations with the sea surface height given by
an OOFS: if the latter does not represent the tidal dynam-
ics, obviously, observations need to be pre-processed to filter
out tidal signals. This is the reason that the concept of “inter-
nal” metrics, aiming to measure the efficiency of the OOFS
at the expected scales, was distinguished from the concept
of “external” metrics, where operational products’ reliability
and fitness for purpose need to be assessed in the light of the
user’s requirements (Hernandez et al., 2018) and taken into
account while performing intercomparisons. In addition, par-
ticular attention needs to be given to the representativity and
uncertainty of observations. It is mandatory to take them into
account while comparing several OOFSs with observations,
in particular when referring to re-processed/re-gridded obser-
vation products (also called Level 4 or L4 type of observed
products).

3.2 Ensemble forecast comparison: assessment
through ensemble mean, ensemble spread and
clusters

The atmospheric community developed ensemble forecasts,
first to represent uncertainties of seasonal predictions consid-
ering the stochastic behaviour of atmospheric simulations.
This was done using an individual forecasting system, by
running a series of deterministic forecasts in parallel where
some initial or forcing conditions were stochastically modi-
fied between members. The purpose of performing the inter-
comparison of the forecast members was to (1) identify com-
mon patterns from the probability distribution for eventually
defining clusters, (2) compute probabilistic occurrences of
specific events, and (3) use the ensemble spread as a proxy
for forecast skill and performance assessment and try to
separate outliers. The associated verification framework has
been largely documented (e.g. Casati et al., 2008) and de-
fined for the atmospheric components of the seasonal fore-
cast activities (e.g. Coelho et al., 2019). For the ocean en-
vironment, this approach is currently used by weather pre-
diction centres in charge of marine meteorology forecasting,
i.e. wind and wave forecasts. For instance, the evaluation ex-
ercise performed by the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmen-
tal Prediction (NCEP), evaluating ensemble and determinis-
tic forecasts, concluded, among other results, that the ensem-
ble wave skill score at day 10 outperformed the deterministic
one at day 7 (Campos et al., 2018). Another example is the
recent intercomparison of seasonal ensemble forecasts from
two centres contributing to the Copernicus Climate Change
Service (C3S), which quantified their respective skill on sea
surface height, ocean heat content and sea surface tempera-
ture (Balmaseda et al., 2024b).

At this stage, unlike weather prediction centres, ensemble
forecasting from individual systems is not generalized in op-
erational oceanography, although dedicated experiments are
carried out in many areas (e.g. Pinardi et al., 2011; Schiller
et al., 2020). And through specific data assimilation methods
like the ensemble Kalman filter (Evensen, 2003), several cen-
tres are producing ensemble forecasts routinely (e.g. Lisæter
et al., 2003; Keppenne et al., 2008; Seo et al., 2009). How-
ever, a large community effort dedicated to intercomparisons
of ensemble forecasts produced by different centres has not
yet been achieved.

Here we propose to illustrate ensemble approach bene-
fits with a multi-system intercomparison as proposed by the
CLIVAR/GSOP initiative (mentioned above) and the Ocean
Reanalysis Intercomparison Project (ORA-IP) (detailed in
Sect. 3.4 below and also discussed by Storto et al., (2019)).
Figure 2 illustrates the assessment of a commonly used indi-
cator for the so-called “Atlantic Niño” regimes in the tropical
Atlantic, associated with the “Atlantic zonal mode” and tar-
geting the equatorial cold tongue that develops in the Gulf
of Guinea from April to July (Vallès-Casanova et al., 2020).
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Figure 1. Operational centres and countries involved in a common intercomparison international framework during the last 20 years. Circles
indicate their size and numbers the products/locations participating in the ORA-IP (Balmaseda et al., 2015). Green circles for ORA-IP only
and red circles for centres that are contributing in addition to the Class 4 routine intercomparison (Hernandez et al., 2015a). Red stars indicate
centres solely participating in the Class 4 intercomparison. Countries in pink, yellow and orange contribute, respectively, to Class 4, ORA-IP
and both exercises.

All products –observation-derived-only and reanalysis esti-
mates (see Balmaseda et al., 2015, for products’ details) –
give a consistent representation of the seasonal and interan-
nual variability, from which an interannual trend can be de-
duced over the 1980–2024 period (ensemble-average trend in
Fig. 2c of 0.02 °C per year). The ensemble average is com-
puted like the multi-product-mean in Uotila et al. (2018) and
without ARMOR3D, the observation-derived-only product
used as “ground truth” (Guinehut et al., 2012), and without
the GREP reanalysis, already an ensemble average of var-
ious reanalyses (Masina et al., 2015). Figure 2b shows the
time series of the so-called SST (sea surface temperature) in-
dex: the box-averaged temperature anomalies relative to the
annual climatology (computed with the ensemble average).
All products exhibit the same interannual patterns, although
some discrepancies are observed at intra-seasonal timescales.
This is reflected by the small differences in the standard de-
viations computed for each time series over the denser pe-
riod (1993–2023). A more precise view of the differences of
each product’s SST index with the ensemble average is given
by Fig. 2a, quantified by their respective root-mean-square
differences. Before 1993, the ensemble average is computed
only with the ERA5 reanalysis and the OSTIA-observation-
derived-only product, covering this period. Consequently,
Fig. 2a exhibits a large discrepancy of these two products
with respect to the ensemble average. The 1993–2023 period
is chosen to assess the relative merit of each product, quan-
tified using the ARMOR3D observation-derived-only prod-
uct, not included in the ensemble-average computation in the
Taylor diagram (Fig. 2d). First, one can see very large differ-
ences with OSTIA, the other observation-derived-only prod-
uct, suggesting that the impact of their respective representa-
tivity of SST in the ATL3 box and possibly mapping/obser-
vation errors should be investigated further. The lesson here

is that the “ground truth” also presents subjective drawbacks
that need to be taken into account while measuring the rel-
ative merit in this multi-product ensemble assessment. The
Taylor diagram reflects the very close performances of all
products altogether in a cluster. The ensemble average per-
forms better than individual reanalyses. The GREP multi-
reanalyses product presents also good performances in repre-
senting the ATL3 index relatively to ARMOR3D. This con-
firms previous findings (e.g. Masina et al., 2015; Uotila et al.,
2018; Storto et al., 2019) showing the “bias-reduction” bene-
fits of ensemble averaging. In practice, the ensemble average
provides a valuable estimate of the decadal SST trend in the
ATL3 box. The ensemble-average estimate is also useful in
identifying outliers.

Note that in recent methodologies, ensemble forecast com-
parison is performed using “ensemble clustering”, also called
“consensus clustering”, which aims at producing a synthe-
sis among an identified cluster from a given dataset (e.g.
Hakobyan, 2010). The construction of the clusters from the
initial dataset (here the different members of the ensemble
forecast) can use many criteria. In the frame of GODAE
OceanView, the Class 1 metrics were designed to compare
OOFS variables on specific model grids and layers in simi-
lar ways (Hernandez et al., 2015b). In the Class 1 approach,
OOFS outputs are re-gridded and resampled in a common
grid and time frame (e.g. daily 2D model fields) and com-
pared to a common reference (e.g. a regular L4 mapping of
sea surface temperature from satellite retrievals). In this in-
tercomparison, Class 1 files from various global OOFSs were
used to compare and evaluate the quality of the ensemble
mean; the weighted ensemble mean; and the k-mean clus-
tering algorithm mean (Hartigan and Wong, 1979), which
proved to be the more accurate (Hernandez et al., 2015b).
Consensus clustering is now used for machine learning, and
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this might be one of the next stages associated with model
products’ intercomparison and ocean state estimation in the
near future.

3.3 Regional forecast intercomparison and nesting
strategy evaluation

Over recent years, the validation methodology proposed by
the GODAE global ocean community has been adopted by
many operational regional centres (some examples are given
by Hernandez et al., 2015b), in particular because the coastal
community started to relate inside GODAE OceanView with
the IVTT. Specific assessments also started to be carried out,
like assessing the behaviour of the ocean under tropical cy-
clone conditions using several OOFSs and ad hoc metrics
(Zhu et al., 2016) or predicting the beaching of Sargassum in
the Caribbean using global and regional OOFSs (Cailleau et
al., 2024).

On a regional basis, specific systematic multi-product val-
idation tools are gradually developed (e.g. Lorente et al.,
2016, 2019). These tools, operated by a given operational
centre, are efficient essentially if an inter-operable data server
policy is implemented among the operational ocean commu-
nity, in order to allow the real-time intercomparison of differ-
ent sources of products. In parallel, regional and coastal sys-
tem evaluation relies on specific local observing systems, like
high-frequency (HF) radar, offering an “ocean truth”, repre-
senting the ocean dynamics at higher resolution (Kourafalou
et al., 2015), which cannot be represented by global OOFSs.

However, it is worth noting that comprehensive multi-
product operational intercomparison is not common at re-
gional scales. Unlike global OOFSs, there are rarely many
fine-scale regional OOFSs that overlap in a given coastal re-
gion, even along the well-covered European marginal seas
(Capet et al., 2020). And conducting a regional intercompar-
ison gathering essentially global OOFSs would provide little
information compared with the global intercomparison ini-
tiatives already underway.

But there is an increasing number of operational centres, or
programmes like the CMEMS, that operate both regional and
global systems over the same area and that have started to in-
tercompare their different systems. For instance, two OOFSs
of the same kind, Mercator and MFS (Mediterranean Fore-
casting System), are compared in the western Mediterranean
basin, and their respective strengths and weaknesses are eval-
uated over specific subdomains (Juza et al., 2015). The ben-
efit of improving the resolution of a regional OOFS is mea-
sured by comparing the coarse and fine grid systems using
the same metrics (Crocker et al., 2020). In the CMEMS, most
regional systems are nested into the global system. Hence, in-
tercomparison between “parent” and “child” systems started
to arise with the objective of measuring the benefit and added
value for users of proposed regional and coastal products (De
Mey et al., 2009). Several overlapping regional systems in
the CMEMS can be compared to the global solution (Juza et

al., 2016; Lorente et al., 2019). Examples can also be given
for the Canadian Arctic and North Atlantic regional OOFS
(Dupont et al., 2015), the US East Coast OOFS and reanal-
yses (Wilkin et al., 2022), and the Australian global and re-
gional OOFS evaluations that focus on specific case stud-
ies and applications: disaster/search and rescue, defence/a-
coustic, and sea level/coastal management (Schiller et al.,
2020). Some of these intercomparisons compare the regional
OOFS of interest with several global products in order to
measures both the local and global forecast skill, consider-
ing fine scales. In this case, using similar metrics, typically
Class 4, for evaluating all these systems brings a series of
questions. Which are the scales represented by the child sys-
tem that is lacking in the parent system or in the observa-
tions? What is the impact of the different kind of forcings and
different kind of assimilated dataset? How do errors propa-
gate from the global to the nested system and degrade the
expected seamless transition from the open ocean to coastal
dynamics? How are specific ocean processes of interest rep-
resented in different systems? How reliable are they for end
users’ needs in different systems?

3.4 Evaluating retrospective views of the ocean
dynamics: dedicated ocean reanalyses
intercomparison project and ways to improve
intercomparison methodologies

Past numerical simulations and ocean reanalyses were natu-
rally the first step built in academia to study ocean processes
over long periods, with the support of the increasing num-
ber of ocean observations over time and the improvement of
assimilation techniques. Evaluation of such reanalysis repre-
senting decades of ocean behaviour through comprehensive
intercomparison projects requires considerable resources and
preparation. Most are conducted outside of routine opera-
tions by forecasting centres. They represent a milestone in
progress in the field, from the point of view of both the eval-
uation of the system/reanalysis itself and the new validation
methodologies that have been tested and implemented.

In the direct line of the GSOP project, the Ocean Reanaly-
sis Intercomparison Project (ORA-IP) brought together more
than 20 operational centres in order to intercompare more
than 25 products (including observed products) spanning 20
to 50 years and focusing on eight EOVs – ocean heat content,
steric height, sea level, surface heat fluxes, mixed layer depth,
salinity, depth of the 20 °C isotherm and sea ice (Fig. 1). One
of the objectives was to infer a new ocean state estimation
of the global ocean, trying to reduce the so-called structural
uncertainty, i.e. the uncertainty associated with the state esti-
mation methodology, which cannot be sampled with a single
system. Uncertainty is sensitive to the temporal variations of
the observing system and to the errors of the ocean model,
atmospheric fluxes and assimilation system, which are of-
ten flow-dependent and not easy to estimate. Following the
Class 1 metrics approach, the ORA-IP is based on common
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Figure 2. (a)–(c) Time series from 1980 to 2024 of SST products, monthly and spatially averaged into the ATL3 box located in the eastern
equatorial band [20° W–0° E, 2.5° S–2.5° N] of the tropical Atlantic. (a) Differences relative to the ensemble average (root-mean-square
differences (RMSDs) indicated in the legend). (b) The ATL3 index computed as anomalies relative to the climatology mean (standard
deviations indicated in the legend). (c) The time series of box-averaged SST in the ATL3 box. (d) The associated Taylor diagram of the ATL3
index, using the ARMOR3D product as a reference. Statistics of root-mean-square differences, correlation with ARMOR3D and standard
deviations for each product are given in the legend. All products were extracted from the Copernicus Marine Data Store and Climate Data
Store.

grid re-interpolated products and monthly averages that were
compared similarly over the 1993–2010 period under the re-
sponsibility of a leading expert for each of the eight EOVs.
Results highlighted impacts of model resolution, components
of the observing system assimilated, complexity of the ocean
models and the data assimilation scheme, and quality of ex-
ternal forcing (Palmer et al., 2015; Shi et al., 2015; Storto
et al., 2015; Toyoda et al., 2015a, b; Valdivieso et al., 2015;
Chevallier et al., 2016).

New independent metrics were tested and used to evalu-
ate each product and also the ensemble mean. The ensemble
spread was identified as a measure of uncertainty. Follow-
ing Storto et al. (2019), ocean reanalyses offer state-of-the-
art representation of the past and present state of the global
and regional oceans. Their accuracy depends on many fac-
tors, one of the most important being the observations avail-
able and the constraints they provide. Intercomparison helps
in identifying the impact of their absence in the past and de-
fines where they are most crucial in the quality of present
and future reanalyses. And consequently, suggestions for im-
provements of the GOOS are provided.

Figure 2 shows that multi-product intercomparisons al-
low key indicator of the ocean environment changes to be

inferred together with estimates of their uncertainties. Be-
yond reanalyses assessment based on EOVs, the next stage
of ocean reanalyses intercomparison should first target key
ocean processes that affect the climate system, identify their
past occurrences, and better unravel their mechanisms and
interactions, in order to estimate their present and future im-
pacts. Machine learning approaches are expected to explore
ocean variability in a multi-system framework more system-
atically and disentangle ocean key mechanisms for further
identification in ocean simulations (e.g. Ahmad, 2019; Son-
newald et al., 2021; Salman, 2023). In particular, in ESM
simulations, initial conditions are crucial: more realistic clus-
ters of ocean reanalyses with better characterization of their
errors and limitations (with or without the support of artifi-
cial intelligence) would ensure more reliable global and re-
gional climate projections and associated skill assessment.
Following this framework, ocean reanalyses intercomparison
initiatives should also target end users’ applications and so-
cietal impacts and identify requirements in terms of OOFS
resolution, frequency and complexity, together with adequate
observing systems, able to provide reliable and useful an-
swers. Emerging international panels like the OceanPredic-
tion Decade Collaborative Centre should help in providing
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intercomparison standards and recommendations from the
user’s point of view (Ciliberti et al., 2023). As already com-
mented above, large and comprehensive multi-reanalyses
intercomparisons are demanding and bring technical chal-
lenges in terms of storage, access, distribution and shareabil-
ity. Cloud computing, ad hoc data mining technics and other
artificial intelligence approaches will be needed to obtain
valuable outcomes from the increasing number of available
numerical ocean products resolving finer scales over longer
periods.

3.5 A perspective of ocean reanalyses intercomparison:
ocean state monitoring

An important outcome of the ORA-IP has been the devel-
opment of the Real Time Multiple Ocean Reanalysis Inter-
comparison, carried out routinely every month by NOAA/N-
CEP, whose main objective is to gather operational hind-
casts in order to perform ocean state monitoring (OSM)
over the tropical Pacific, inferring the state of the ocean by
computing the ensemble mean and identifying robust pat-
terns using the ensemble spread (Xue et al., 2017). Note
that OSM has growing importance in operational oceanog-
raphy: through key EOVs it offers an assessment of the evo-
lution of the ocean component as part of the real-time cli-
mate system evolution. Validation performed in the frame
of OSM also provides a level of uncertainty for seasonal
forecasts performed every month by many centres nowa-
days. OSM activity brought the CMEMS into routine cal-
culation of Ocean Monitoring Indicators (OMIs), whose re-
liability and uncertainty are estimated through intercom-
parison of multiple products. Using OMIs, in 2018 the
CMEMS started to produce the Ocean State Report (von
Schuckmann et al., 2018) on an annual basis, now on
its eighth edition (https://marine.copernicus.eu/access-data/
ocean-state-report, last access: 29 January 2025).

Data availability. Ocean products used to produce Fig. 2 were
downloaded in November 2024 from the Copernicus Marine Data
Store and Climate Data Store (https://marine.copernicus.eu/ and
https://climate.copernicus.eu/, last access: 29 January 2025).

– ERA5: https://doi.org/10.24381/cds.f17050d7 (Hersbach et
al., 2023).

– OSTIA: https://doi.org/10.48670/moi-00165 (CMEMS,
2023a; Good et al., 2020).

– GLORYS12V1: https://doi.org/10.48670/moi-00021
(CMEMS, 2023b; Lellouche et al., 2021).

– ARMOR3D: https://doi.org/10.48670/moi-00052 (CMEMS,
2024a; Guinehut et al., 2012).

– GLO12V4 and PSY4QV3R1: https://doi.org/10.48670/
moi-00016 (CMEMS, 2024b; Lellouche et al., 2018).

– GREP and FOAM/GloSea and C-GLORS and ORAS5 and
GLORYS2V4: https://doi.org/10.48670/moi-00024 (CMEMS,
2024c; Masina et al., 2015).

Figures 1 and 2 are produced using Python 3.6 Matplotlib modules.
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Abstract. The connection of the ocean component with the Earth system is subject to the way the atmosphere
interacts with it. The paper illustrates the state of the art in the way atmospheric fields are used in ocean models as
boundary conditions for the provisioning of the exchanges of heat, freshwater, and momentum fluxes. Such fluxes
are typically based on numerical weather prediction (NWP) systems which ingest observations from remote
sensing and in situ instruments. This study also discusses how the ocean–atmosphere fluxes are numerically
ingested in ocean models from global to regional to coastal scales. Today’s research frontiers on this topic are
opening challenging opportunities for developing more sophisticated coupled ocean–atmosphere systems and
improved ocean–atmosphere flux datasets.

1 Introduction

The exchanges of heat, freshwater, and momentum between
the oceans and the atmosphere play a critical role as bound-
ary conditions in global, regional, and coastal operational
ocean forecasting systems (OOFSs). Nowadays, the two pri-
mary sources of information regarding air–sea fluxes used
in OOFSs are satellite-based observations and atmospheric
model forecasts which assimilate various data types.

More specifically, using observation-based surface flux
products is, by definition, a way to drive an ocean monitor-
ing system or to produce an ocean reanalysis. Using an atmo-
spheric forecast appears mandatory to produce an ocean fore-
cast. In Sect. 2, we discuss the atmospheric forcing for ocean
forecasts, for ocean analyses/monitoring systems, and for
ocean reanalyses. Some basic aspects of air–sea flux datasets
of heat, freshwater, and momentum (which is equivalent to
wind stress), including their uncertainties, are also presented
in Sect. 2. For further information about the challenges as-
sociated with the closure of ocean–atmosphere energy and
water budgets, we refer the reader to Yu (2019) and the litera-
ture quoted therein. Section 3 discusses options for the imple-

mentation of ocean–atmosphere fluxes in OOFSs, and Sect. 4
discusses applications of air–sea flux datasets in OOFSs.

In recent years, several new flux products, which contain
fields at sub-daily and hourly timescales, have become avail-
able. This tendency has been driven, in part, by the high
time resolution possible with atmospheric forecasts and the
need to include high-frequency variability in forcing fields
for OOFSs. A complete survey of the wide range of flux
datasets and their technical details is beyond the scope of this
document. Instead, an overview of the main flux datasets is
presented in Sect. 4, with frequently used datasets in OOFSs
highlighted.

Sea-ice boundary conditions depend on the formulation of
sea-ice models and how they are implemented in an OOFS.
For example, sea-ice models can be part of an OOFS or a
numerical weather prediction (NWP) system or be coupled
to both. Consequently, respective input sourced from exter-
nal datasets depends on the exact model architecture. Sea-
ice boundary conditions are not discussed any further in this
study.
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2 Atmospheric forcing for different applications in
ocean models

2.1 Atmospheric forcing for ocean forecasts

Currently, all OOFSs in forecast mode rely on forcing param-
eters provided by NWP systems. This is primarily due to the
ubiquity and low latency of these systems and to the conve-
nience of receiving gridded outputs. Although NWP products
may not always be perfectly accurate, their self-consistency
is a key factor when considering the forcing for OOFSs.
These NWP systems often assimilate relevant satellite ob-
servations, noting that surface heat fluxes are not directly
observed by remote sensors but are computed by the NWP
systems by using a mixture of different observed geophys-
ical variables and parameterizations. These derived surface
fluxes are then used by OOFSs; hence, we briefly describe
some of the remotely sensed observations in the subsequent
paragraphs.

The net air–sea heat flux is the sum of four components:
two turbulent heat flux terms (the latent and sensible heat
fluxes) and two radiative terms (the shortwave and longwave
fluxes). Satellite-based estimates of air–sea heat flux terms
suffer because it is not yet possible to reliably measure near-
surface air temperature and humidity directly from space. For
example, satellites measure radiances in various wavelength
bands which must then be inverted to obtain temperature.
Bulk formulae are employed to estimate the latent and sensi-
ble heat fluxes, whereas radiative fluxes are determined either
from empirical formulae or from radiative transfer models
(Josey, 2011). These indirect techniques lead to a source of
uncertainty in the turbulent heat flux terms, which are crit-
ically dependent on the sea–air temperature and humidity
difference near the interface (Hooker et al., 2018; Tomita et
al., 2018). Estimates of the radiative flux terms are available
from various sources, e.g. Pinker et al. (2018), and can be
combined with indirect estimates of the turbulent fluxes to
form net heat flux products.

In contrast, wind stress has been well determined
from scatterometers since Seasat-A (1978), ERS-1 (1991),
QuikSCAT (1999) (Jones et al., 1982; Portabella and Stof-
felen, 2009; Hoffman and Leidner, 2005), and subsequent
satellite missions. Global wind measurements by synthetic
aperture radar (SAR) go all the way up to the coast due to its
high resolution, filling critical gaps in ocean wind speed and
direction observations in coastal areas (Khan et al., 2023).
However, despite quite some efforts having been devoted to
SAR wind retrievals over the past 2 decades (e.g. Horstmann
and Koch, 2005), there is currently no SAR wind processor
that can provide a coastal wind stress product of sufficient
quality and/or coverage for use in operations, while its use
for OOFS development purposes must be cautious and on a
test-case basis.

Precipitation is also remotely sensed using various tech-
niques, including infrared measurements of cloud top bright-

ness temperature (which acts as a proxy for rain rate) and
passive microwave measurements. Launched in 2014, the
US–Japanese-led Global Precipitation Measurement Mission
(GPM) is an international network of satellites that provides
global observations of rain and snow at different times of the
day (Hou et al., 2014). However, validation of these fields
over the ocean is challenging due to the lack of high-quality
measurements from rain sensors and the difficulty in taking
these measurements (Weller et al., 2008). As a consequence,
uncertainty remains in the precipitation fields over follow-on
effects for estimating the associated air–sea freshwater flux
(evaporation minus precipitation) (Josey, 2011).

Satellite-based fluxes are observations that lack a fore-
cast range, whereas OOFSs need forecasts – this is a signifi-
cant reason for using NWP models in forecast mode. Conse-
quently, NWP models have become a major source of com-
plete sets of air–sea flux fields for OOFSs at high resolu-
tion (3-hourly or better) with global spatial coverage. Fur-
thermore, air–sea fluxes from NWP systems are an attractive
option for OOFSs because of their operational reliability and
timely release of forcing fields akin to the operational cycles
of OOFSs. NWP models assimilate a wide range of observa-
tions, including surface meteorological reports, radiosonde
profiles, and remote sensing measurements. The turbulent
flux terms are estimated from the model’s surface meteorol-
ogy fields, while the shortwave and longwave flux are out-
put from the radiative transfer component of the atmospheric
model. However, NWP systems are, of course, dependent on
the model physics, which, although constrained to some ex-
tent by the assimilated observations, has the potential to pro-
duce biases, particularly in the radiative flux fields and pre-
cipitation (Trenberth et al., 2009; Weller et al., 2022) and
in the wind stress vector components (Belmonte Rivas and
Stoffelen, 2019; Trindade et al., 2020).

2.2 Atmospheric forcing for ocean analysis/monitoring
systems

An analysis is a snapshot of the state of the ocean or atmo-
sphere at any given time. It is created by using a model and
observations to provide a best fit. An ocean or atmosphere
analysis is generally used as a starting point for forecasts to
make them as close to reality as possible (i.e. with all the data
available). Consequently, surface forcing derived from the
analysis of an atmospheric forecasting system can be used
to calculate an ocean analysis, together with ocean in situ
and remotely sensed observations. Ocean analyses are a com-
mon by-product of an OOFS, especially when run with data
assimilation. An example is the Copernicus Marine Service
operated by Mercator Ocean International, which provides
global near-real-time (NRT) analysis datasets and forecasts
of the 3D ocean regularly every day, forced by the ECMWF
IFS atmospheric forecasting product (Drillet et al., 2025).
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2.3 Atmospheric forcing for ocean reanalyses

An ocean reanalysis consists of modelling the state of the
ocean over a long period of time (several years) while cor-
recting it with the best available past observations. Ocean re-
analyses can be used for validating OOFSs and enable past
case studies. For these purposes, using atmospheric reanal-
yses or any best fit of observed atmospheric data is rec-
ommended. Fixed versions of NWP models run over multi-
decadal periods are commonly referred to as atmospheric re-
analyses – two examples are those from the National Centers
for Environmental Prediction and the National Center for At-
mospheric Research (NCEP/NCAR) and ECMWF (Table 1).
Although not suitable for near-real-time OOFSs due to their
delayed-mode operation, air–sea fluxes derived from atmo-
spheric reanalyses have proven to be a valuable tool for test-
ing OOFSs during their development stages and in scenario
simulations and analyses of past extreme events. In essence,
atmospheric reanalyses are often used in OOFS development
and in ocean reanalyses for the following reasons: they are
typically of higher quality than output from operational NWP
systems (where there is less time for quality control); they
are available over an extended period of time, often covering
multiple years to decades, which allows the exploration of
various weather and climate phenomena in the ocean model
in response to the atmospheric forcing; and model parame-
ters in an atmospheric reanalysis are kept constant over the
integration period, thus producing a consistent dataset.

In addition to the primary classes of flux datasets described
above, flux fields for OOFSs are available from several other
types of products. An example is surface fluxes available
from various ocean synthesis efforts; that is, ocean models
with data assimilation such as the Estimating the Circulation
and Climate of the Ocean (ECCO) model (Stammer et al.,
2004). These systems are typically forced by global atmo-
spheric reanalysis fields which are then adjusted as a result of
the assimilation and optimization process. Similarly to atmo-
spheric reanalyses, air–sea datasets based on delayed-mode
synthesis efforts are suitable for testing OOFSs during their
development stages.

3 Implementation of atmospheric forcing fields in
OOFSs

This section briefly lists methods for implementing ocean–
atmosphere fluxes applicable in ocean forecasts, monitoring
and reanalyses. The four most common approaches are as
follows:

– directly using the atmospheric fluxes produced by NWP
systems of national meteorological services. Typically,
NWP systems produced by national meteorological
services provide atmospheric surface forcing fields to
OOFSs in order to compute water, heat, and momen-
tum fluxes. Such fields may also be supplemented by

real-time or near-real-time observations, e.g. satellite
data, and other averaged datasets including climatol-
ogy. For example, Trindade et al. (2020) show how
scatterometer-derived wind stress can be used to re-
move NWP model output local biases. Relevant points
to consider when using NWP products in OOFSs are
data availability, space–time resolution, and domains
for regional/coastal OOFSs (see next section). Table 1
provides examples of widely used global atmospheric
NWP and reanalysis products.

– using a so-called “bulk” forcing to simulate the near-
surface ocean–atmosphere interactions (Josey, 2011).
This method permits the use of sea-surface tempera-
ture to compute in line and at each time step the tur-
bulent fluxes and upward radiative fluxes and so to in-
troduce a pseudo-coupling. The bulk forcing requires
some atmospheric data: air temperature, air humidity,
downward shortwave radiation, downward longwave ra-
diation, precipitation, wind speed, and wind stress. The
latter can also be calculated from the wind speed. This
method raises the same questions as the previous one,
plus the choice of the surface flux parameterization and
associated choice of coefficients in the bulk formulae.

– using an intermediate simplified atmospheric model
(e.g. Lemarié et al., 2021) driven by atmospheric NWP
3D fields and producing ocean–atmosphere fluxes con-
sistent with the ocean evolution and resolution. This
method is more complex than the bulk forcing but
improves the feedbacks between the upper ocean and
lower atmosphere, especially when the intermediate
atmospheric model and the ocean model have the
same horizontal resolution, in order to provide high-
resolution atmospheric fields (Alvarez Fanjul et al.,
2022).

– using a fully coupled ocean–atmosphere modelling sys-
tem where the surface fluxes are an integral part of the
coupled system. Although this is the most advanced
physical approach to simulate ocean–atmosphere inter-
actions, it comes at a relatively high numerical/com-
putational cost, including the initialization/assimilation.
The advantages of a fully coupled system (compared to
the first three methods) are that there is no (or, for re-
gional OOFSs, a lower) dependence on the data avail-
ability from external sources and that it ensures a two-
way consistency of the ocean–atmosphere fluxes.

4 Applications of air–sea flux datasets in OOFSs

Each of the implementations described above has its own ad-
vantages and disadvantages, and it is not possible to recom-
mend a best air–sea flux product based on the method for
implementing surface fluxes in an ocean model; rather, the
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Table 1. Examples of global atmospheric forcing products and providers. Adapted from Alvarez Fanjul et al. (2022).

Dataset Description Provider

GFS Global Forecast System, produced by the National
Centers for Environmental Prediction (NCEP),
that provides analysis and forecast atmospheric
fields for the global ocean at a resolution of about
28 km

https://www.ncei.noaa.gov/products/weather-climate-models/
global-forecast (last access: 27 February 2025)

NAVGEM Navy Global Environmental Model run by the
United States Navy’s Fleet Numerical
Meteorology and Oceanography Center
(FNMOC)

https://www.usno.navy.mil/FNMOC/meteorology-products-1m
(last access: 27 February 2025)

ECMWF IFS
and ERA5

European Centre for Medium-Range Weather
Forecasts that provides reanalysis, analysis, and
forecast atmospheric fields at medium, extended,
and long range

https://www.ecmwf.int/ (last access: 27 February 2025)

Met Office
UK

United Kingdom Meteorological Office that
produces the Unified Model, a numerical model of
the atmosphere used for both weather and climate
applications

https://www.metoffice.gov.uk/ (last access: 27 February 2025)

GEM Global Environmental Multiscale model, an
integrated forecasting and data assimilation
system developed in the Recherche en Prévision
Numérique (RPN), the Meteorological Research
Branch (MRB), and the Canadian Meteorological
Centre (CMC)

https://www.canada.ca/en/environment-climate-change.html
(last access: 27 February 2025)

choice of flux dataset must be guided by the scientific fea-
sibility and by the application in mind. For example, near-
real-time NWP products are needed for operational ocean
forecasting purposes, whereas a reanalysis product might be
appropriate and more convenient to use during the develop-
ment stages of an OOFS and for validation purposes. Hence,
we offer some examples of possible air–sea forcing fields in
OOFSs in Table 1, but they are by no means complete or
prescriptive.

4.1 Applications in global OOFSs

Global NWP models, like those operated by centres listed in
Table 1 at present, have typical horizontal grid resolutions of
20 km or better (and 60 vertical levels or more). With this
kind of horizontal resolution, it is possible to capture large-
scale synoptic weather phenomena and associated signals in
the air–sea fluxes used to force ocean models.

However, in NWP systems with such grid resolutions, it
is not possible to accurately simulate smaller-scale ocean–
atmosphere interactions, such as oceanic fronts and oro-
graphic features like land–sea circulation or air–sea interac-
tions associated with mesoscale oceanic eddies, noting that
the synoptic (eddy) scale in the ocean is on the order of
∼ 100 km, which is about 1 order of magnitude smaller than
in the atmosphere at about ∼ 1000 km.

Atmospheric forcing fields are typically interpolated onto
the respective grid points of the ocean model, e.g. momentum
fluxes onto the velocity grid points, air–sea heat fluxes onto
the temperature grid points and evaporation minus precipi-
tation onto the salinity grid points of the ocean model (plus
volume or mass flux in the continuity equation). This interpo-
lation can be accomplished either by using an internal inter-
polation routine of the ocean model; by using bulk formulae
at the ocean grid to calculate surface fluxes of heat, freshwa-
ter, and momentum; or by using specific coupling software,
e.g. Craig et al. (2017), for fully coupled ocean–atmosphere–
wave–sea–ice models.

4.2 Applications in regional and coastal OOFSs

There is a plethora of regional and coastal ocean models with
fixed, variable, and adaptive grids and with horizontal reso-
lutions often in the 10–100 m range (Kourafalou et al., 2015).
It is therefore not possible to provide specific guidance about
the appropriate choice of air–sea fluxes required for these
types of models.

Regional- to basin-scale OOFSs are typically forced with
air–sea fluxes from the latest high-resolution global NWP
systems, e.g. O’Dea et al. (2012). In contrast, coastal OOFSs
require a different approach. Coastal air–sea circulation and
topographic features, like small islands and their interactions

State Planet, 5-opsr, 18, 2025 https://doi.org/10.5194/sp-5-opsr-18-2025
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with air–sea fluxes, are not reproduced by global-scale atmo-
spheric models; hence, much higher resolution coastal atmo-
spheric models are needed to provide reliable upper-ocean
boundary conditions. This can be accomplished by direct
coupling of high-resolution atmospheric models to coastal
ocean models or by using air–sea fluxes from a stand-alone
NWP higher-resolution coastal model (Hordoir et al., 2019).
Other examples of regional atmospheric models are the UK
Met Office Unified Model–JULES Regional Atmosphere and
Land configuration (Bush et al., 2023) and the Weather Re-
search and Forecasting (WRF) model (Skamarock et al.,
2008). Either way, these atmospheric models need to be
nested (in multiple) within coarser-resolution regional and/or
global models which provide lateral and upper boundary con-
ditions. This is an active field of R&D, where the develop-
ment of coastal NWP and OOFSs often goes hand in hand
with efforts to develop fully coupled ocean–atmosphere fore-
casting systems. However, it should be noted that, for both
components, atmosphere and ocean, not just suitable lateral
boundary conditions from coarser-component models are re-
quired, but it is also highly desirable to have an appropriately
dense atmospheric and oceanic observing system to constrain
these models and improve (coupled) forecasts.

High-resolution air–sea fluxes, which are based on re-
motely sensed fluxes, can also be used to evaluate the qual-
ity of the forcing fields in coastal ocean models. An ex-
ample is the synthetic aperture radar (SAR)-based remotely
sensed regional ocean wind speed and direction database,
which has been made available by the Australian Integrated
Marine Observing System (Khan et al., 2023). The dataset
is a kilometre-resolution ocean wind speed and direction
database over coastal seas of Australia, New Zealand, the
western Pacific Islands, and the Maritime Continent. It is ob-
tained from Europe’s Copernicus Sentinel-1A and Sentinel-
1B SAR satellites from 2017 up to the present. The dataset is
a first of its kind in the region and captures the spatial vari-
ability in coastal ocean winds over a wide swath (250 km).
However, and, as stated above, any SAR-derived wind stress
product available to date and its use for OOFS development
purposes needs to be treated with caution and should be as-
sessed on a case-by-case basis.

5 Conclusions

This study provides some information about the diverse
range of air–sea flux datasets that are now available for the
community to use as air–sea forcing in OOFSs. NWP sys-
tems provide the majority of flux products to force today’s
OOFSs. Generally speaking, the quality and usefulness of
these datasets are influenced by the spatial and temporal res-
olutions of remotely sensed and in situ observations that are
assimilated into the NWP systems and are limited by as-
sociated biases which should be taken into account when
choosing such datasets. Consequently, air–sea flux datasets

for OOFSs should be chosen with the applications and users
of the outputs in mind.
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Abstract. The connection between the ocean and the land is made possible thanks to rivers, which are a vi-
tal component of the Earth’s system. They govern the hydrological and biogeochemical contributions to the
coastal ocean through surface and subsurface water discharge and influence local circulation and the distribution
of water masses, modulating processes such as upwelling and mixing. This paper provides an overview of re-
cent approaches to representing coastal river discharges and processes in operational ocean forecasting systems
(OOFSs), with a particular focus on estuaries. The methods discussed include those currently adopted in coarse-
resolution ocean forecasting systems, where mixing processes are primarily parameterized, as well as more
advanced modelling and coupling approaches tailored to high-resolution coastal systems. A review of river data
availability is also presented, illustrating various sources of freshwater discharge and salinity, from observational
data to climatological datasets, alongside operational river discharge products that enhance the representation
of water discharges in operational systems. New satellite-derived datasets and emerging river modelling tech-
niques are also introduced. In addition, responses from a survey of existing OOFS providers are synthetized,
with a focus on how river forcing is treated, from global to coastal scales. Challenges such as data accuracy,
standardization, and model coupling are discussed, highlighting the need for improved interfaces between mon-
itoring and modelling systems. Finally, some recommendations and ways forward are formulated in relation to
identified limitations in current OOFSs.

1 Introduction

Rivers form the primary link between land and sea, de-
livering approximately 36 000 km3 of freshwater and over
20 × 109 tons of solid and dissolved material to the global
ocean each year (Milliman and Farnsworth, 2011). River dis-
charge into the ocean is a major component of the global
hydrological and biogeochemical cycles, which have under-
gone significant changes under the influence of climate and
human activities (Shi et al., 2019; Yan et al., 2022; Qin et
al., 2022; Chandanpurkar et al., 2022). Estuaries act as tran-
sitional zones where freshwater fluxes influence ocean circu-
lation, salinity, and upper-ocean stratification, which in turn
affects the mixed layer depth, ocean currents, and air–sea in-

teraction (Chandanpurkar et al., 2022; Dzwonkowski et al.,
2017; Sprintall and Tomczak, 1992; Sun et al., 2017; Pein et
al., 2021; Pein and Staneva, 2024). Freshwater inputs to the
ocean also modulate coastal upwelling events. Altogether,
these factors impact the productivity of the coastal marine
environment (Sotillo et al., 2021a).

Despite rivers’ influence on the coastal and basin-wide cir-
culation and dynamics, in global- and regional-scale models,
effectively accounting for riverine freshwater discharge into
the oceans is a challenging problem (Sun et al., 2017; Verri
et al., 2020). Accurately incorporating river flow into numeri-
cal ocean models requires appropriate parameterizations and
boundary conditions. The setup of practical open boundary
conditions (OBCs) is dependent on flow dynamics, model
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resolution, data availability, and other factors (Blayo and De-
breu, 2005). At coarse scales that cannot resolve the estuarine
dynamics, but even at finer scales in some cases, river outlets
are often represented in a simplistic way, with climatologi-
cal runoff and zero or constant salinity values, implicitly ne-
glecting estuarine mixing and exchange as well as seasonal
and non-seasonal variability (Sun et al., 2017; Verri et al.,
2020, 2021; Pein et al., 2021; Pein and Staneva, 2024). As a
result, key natural processes are often omitted, and depend-
ing on how river forcing is defined, ocean model outputs may
vary significantly. These discrepancies are most pronounced
in shelf areas, particularly in regions of freshwater influence
(ROFI), but can also propagate to regional and global scales
(Tseng et al., 2016).

This paper reviews existing methods and datasets used in
operational ocean forecasting systems (OOFSs) to represent
river forcing. As the focus is on freshwater discharges, the
river supply of nutrients and other materials are neglected in
this review but are partly addressed in a separate contribution
by Cossarini et al. (2025, in this report).

The paper is structured as follows: Sect. 2 reviews ap-
proaches for representing river forcing in global, regional,
and coastal ocean models, including estuarine mixing pa-
rameterizations and coupling techniques. Section 3 describes
available data sources from operational centers and data
providers as well as emerging techniques for estimating river
discharge. Section 4 presents examples of river forcing meth-
ods and data sources implemented in existing OOFSs, sum-
marizing findings from a survey conducted within the Ocean-
Predict community. Finally, Sect. 5 provides a summary and
recommendations regarding identified limitations in current
OOFSs.

2 River forcing in ocean models

2.1 Capturing seasonal and non-seasonal river
variability

Accurate representation of river discharges and associated
variables (e.g. salinity, temperature), whether model-derived
or observation-based, is crucial for capturing both seasonal
and non-seasonal effects in the coastal ocean. The Bay of
Bengal is one example where the inclusion of seasonal river
discharges and salinity in regional model simulations signif-
icantly improves the representation of sea surface tempera-
tures, near-surface salinity, stratification, mixed-layer depth,
and barrier-layer thickness, leading to a better simulation of
the formation, progression, and dispersion of the freshwater
plume (Jana et al., 2015).

Seasonal variability in river discharge not only impacts
coastal salinity and temperature but also contributes to the
sea level changes both locally and remotely, mostly via a
halosteric sea level contribution. This effect was observed,
for example, between the mouth of the Amazon River and
the continental shelves of the Gulf of Mexico and Caribbean

Sea (Giffard et al., 2019). Similarly, in the US Atlantic and
Gulf coasts, river discharge and sea level changes were found
to be significantly correlated (Piecuch et al., 2018). Such dy-
namic sea surface height (SSH) signals driven by river dis-
charge can explain 10 %–20 % of the regional-scale seasonal
variance around major rivers, such as the Amazon, Ganges,
Brahmaputra, Irrawaddy, Ob, Lena, and Yenisei (Piecuch and
Wadehra, 2020).

While the seasonal effects of river discharge on ocean
processes have been extensively documented, non-seasonal
influences of river runoff on sea level changes remain
largely unexplored due to the lack of consolidated discharge
databases (Durand et al., 2019). These influences, however,
can be significant when considering river runoff jointly with
wind-driven transport and heat fluxes, which also play a ma-
jor role in modulating regional sea level variability (Verri et
al., 2018).

2.2 Freshwater input in coarse-resolution models:
towards a parameterization of estuarine mixing
processes

Because many ocean models operate at resolutions too coarse
to resolve estuarine processes explicitly, an appropriate pa-
rameterization of estuarine mixing is required to capture their
influence on freshwater transport. In nature, estuaries trans-
port and transform water properties along their length, due
to tidal mixing, deposition, and resuspension, and up- and
down-estuary advection. Saltwater intrusion driven by tides
and other coastal signals (e.g. storm surges) controls the es-
tuarine water exchange and affects the net estuarine outflow
and corresponding salinity values (Sun et al., 2017; Verri et
al., 2020). However, although water properties at the head
differ from those at the mouth, in models too coarse to re-
solve the estuaries, river discharge observed far from the
river outlet is typically inputted at the coast with zero salin-
ity (Verri et al., 2021; Herzfeld, 2015). Alternatively, salinity
values can be prescribed based on constant annual or monthly
values derived from sensitivity tests and/or in situ campaigns,
when available (Verri et al., 2018).

Herzfeld (2015) describes and assesses the performance of
various methods for inputting freshwater into regional ocean
models. A first approach, referred to as a point source in-
put, adds a term of freshwater flux, entering as surface point
sources into one or more layers of the model to the diver-
gence of flow in the vertically integrated continuity equation,
with no associated velocity profile. It affects the vertical ve-
locity surface boundary condition of the free surface equation
and the surface boundary conditions for the diffusive heat
and salt fluxes. A second approach, the flow input, considers
the inertia of the river flow and prescribes a velocity profile
at the boundary whose vertical integral is equal to the in-
flow flux. These two methods must have a predefined depth
at the boundary over which to distribute the volume inflow.
A more accurate approach is to add an artificial channel to
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the coastline to give momentum to the flow and initiate mix-
ing between freshwater and saltwater (Lacroix et al., 2004;
Sobrinho et al., 2021).

The horizontal distribution of the runoff plays an impor-
tant role in the regional salinity distribution and in the verti-
cal stratification and mixing (Tseng et al., 2016). Additional
subtleties arise for large rivers or deltas, where the coastal
source points need to be spread laterally to avoid numerical
instabilities if inflow values are locally too large (Polton et
al., 2023). In global ocean models, however, freshwater in-
flow is frequently added at the ocean surface, either as an
increased precipitation rate over a specified area or by reduc-
ing surface salinity (i.e. a virtual salt flux) rather than being
introduced as a lateral inflow at the coastal boundary. This
freshwater can be distributed vertically over several layers
or diffused horizontally using enhanced mixing (Sun et al.,
2017; Tseng et al., 2016; Yin et al., 2010).

Several plume responses may result from the choice of
the horizontal and vertical distribution of freshwater input.
However, most model applications produce plumes whose
types differ from plumes associated with real river discharges
(Tseng et al., 2016; Garvine, 2001; Schiller and Kourafalou,
2010). Larger-scale offshore stratification is also expected to
be impacted by this choice.

MacCready and Geyer (2010) established the theoretical
foundation for estuarine mixing parameterizations, which
underpins some physics-based methods used to simulate un-
resolved estuarine processes in regional and global ocean
models, such as the estuary box model (EBM); see, for exam-
ple, Fig. 1 (Sun et al., 2017). These models attempt to param-
eterize mixing processes and to account for baroclinic and
barotropic flow, typically using a two-layer formulation (e.g.
Verri et al., 2020, 2021; Herzfeld, 2015; Rice et al., 2008;
Hordoir et al., 2008). From these representations, analytical
solutions can be found for the volume fluxes and outflow
salinity. Applied globally to the Community Earth System
Model (CESM), such an approach revealed substantial lo-
calized, regional, and long-range effects when compared to
cases without parameterization, highlighting once again the
strong sensitivity of ocean models to the treatment of rivers
(Sun et al., 2017).

New hybrid approaches, such as Hybrid-EBM (Maglietta
et al., 2025; Saccotelli et al., 2024), combine physics-based
models with machine learning techniques to predict the salt-
wedge intrusion length and salinity at river mouths. Hybrid-
EBM outperforms the classical EBM and addresses the short-
comings of the dimensional equations in the physics-based
EBM, which rely on several tunable coefficients and require
site-specific calibration, by substituting them with machine
learning algorithms (Maglietta et al., 2025).

Figure 1. Schematic diagram of the estuary box model (EBM) im-
plemented in the Community Earth System Model (CESM) (Sun et
al., 2017). The EBM is depicted as a two-layer rectangular box with
constant width, uniform local depth (H ), and a time-varying length
(L). Each layer has a fixed thickness (h for the lower layer and H−h

for the upper layer), with vertically uniform but horizontally vari-
able salinity and density. Thick solid lines represent closed bound-
aries, dotted lines mark open boundaries, and the dashed line shows
the interface between layers. Volume fluxes (Q) and salinities (S)
are indicated by arrows at open boundaries: riverine freshwater dis-
charge (QR) enters at the estuary head, oceanic saltwater flows into
the lower layer at the mouth (QLM), and QUt represents the aver-
age tidal volume flux during half a tidal cycle, driving net horizontal
salt flux into the upper layer at the mouth. Shear-induced turbulent
mixing (shown by paired upward and downward open arrows) and
upward advection from exchange flow (solid upward arrows) link
the upper and lower layers. The colour gradient illustrates salin-
ity variation, from fresher (lighter shades) to saltier (darker shades)
waters. Reprinted from Sun et al. (2017, p. 140), © Elsevier Ltd.
(2017), with permission from Elsevier.

2.3 Freshwater input in high-resolution models:
unstructured modelling of the river–sea continuum

In contrast, when the model resolution is higher than the es-
tuary width, the latter can be resolved explicitly by extending
the grid for some distance inland using either real bathymetry
or a straight channel approximation. When extending it be-
yond the salinity intrusion limit and/or the head of tides,
a freshwater flux can be directly specified at the upstream
boundary. This is the preferred option in many east coast
US studies (Herzfeld, 2015) (e.g. RISE – Liu et al., 2004;
LATTE – Choi and Wilkin, 2007; MerMADE – Hetland and
MacDonald, 2008).

The use of unstructured grids offers various advantages,
including a more accurate treatment of the freshwater inputs
from rivers, a realistic representation of river–sea interactions
and estuarine processes at spatial and temporal scales usually
not resolved in the ocean, and an improved interface between
estuaries and the open ocean, sometimes with higher-order
spatial discretizations (Staneva et al., 2025, in this report).
In addition, the unstructured grid modelling combined with
an efficient vertical coordinate system can better resolve the
coastal sea dynamics (Verri et al., 2023).

With seamless grid transitions between models or do-
mains, flexibility and cross-scale capabilities are augmented
(Zhang et al., 2016). As examples, a river–coastal-ocean con-
tinuum model has been developed for the Tiber River delta,
reproducing the coastal dynamic processes better than the
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classic coastal ocean representation, including the salt-wedge
intrusion, and revealing new features near the river mouth
induced by river discharge and coastal morphology (Bona-
mano et al., 2024). In the Columbia River estuary, where
both shelf and estuarine circulations are coupled, a multi-
scale model has proved to be able to reproduce key pro-
cesses driving the river plume dynamics in a region char-
acterized by complex bathymetry and marked gradients in
density and velocity (Vallaeys et al., 2018). Likewise, Val-
laeys et al. (2021) used a similar model in a topographically
challenging area of the Congo River estuary, characterized
by high river discharge, strong stratification, and great depth.
Similarly, Maicu et al. (2021) simulated the circulation in the
Goro Lagoon and Po River delta branches using downscal-
ing and a seamless chain of models integrating local forcings
and dynamics into a coarser OOFS based on a cascading ap-
proach.

While these examples were successful in representing dy-
namical processes across temporal and spatial scales, in
some contexts, the large inward tidal extent and/or complex
bathymetries and coastlines, often featuring coastal infras-
tructure, pose significant challenges for explicitly resolving
estuaries, making it impractical in many coastal models. As
a result, this approach has yet to become standard practice in
OOFSs.

2.4 One-way and two-way coupling

Coupling techniques can be used to link two or more models
to allow one-way data exchange, for example, between a hy-
drological model and an ocean model. In this approach, ex-
ternal forcing is reduced to a limited set of variables, simpli-
fying computational requirements but potentially overlook-
ing key processes at the land–sea interface. Additionally, it
requires extending the ocean domain boundaries far inland,
beyond the limit of tide and storm-surge propagation. While
some parameterizations (see Sect. 2.2) or use of unstructured
grids (see Sect. 2.3) can partly alleviate these shortcomings,
in a compound flooding context, two-way coupled models
are preferred because both land and ocean processes can be
represented along with their interactions (Bao et al., 2022;
Cheng et al., 2010). The inclusion of momentum flux ex-
changes between land and ocean improves the simulation of
estuarine water levels by capturing nonlinear feedbacks be-
tween runoff and residual ocean water levels. In a case study
of Hurricane Florence, Bao et al. (2022) achieved significant
improvement in simulated water levels (20 %–40 % at the
head of Cape Fear River estuary) during the post-hurricane
period by using a two-way coupled model compared to a
stand-alone and linked (one-way coupled) approach.

Alternative approaches for assessing the risk of compound
flooding have been proposed, including integrated hydrody-
namic and machine learning methods to predict water level
dynamics (Sampurno et al., 2022). Such approaches are par-
ticularly valuable in data-scarce regions, where developing

fully calibrated, computationally intensive models can be im-
practical or infeasible.

3 Data sources

3.1 Freshwater discharge

A persistent challenge in OOFSs with respect to river forc-
ing is the lack of a global network for observed river flows to
the oceans. While advances are being made in creating such
a network, several challenges remain pertaining to data qual-
ity, accessibility, and timeliness at the required spatial and
temporal scales.

In situ river discharge observations are necessary to build
climatologies. They represent a key component of the cal-
ibration of hydrological models and thereby of any reanal-
ysis, near-real-time (NRT) analysis, and forecast products.
The various types of discharge products used in OOFSs are
described in the following.

3.1.1 Climatologies

Most ocean models use climatologies to introduce river forc-
ing based on multi-decadal averages of observed and/or
modelled freshwater discharges, along with zero or con-
stant salinity values. Although climatological data are com-
monly used, even in cases where estuarine dynamics are
not explicitly resolved, more realistic volume flux and salin-
ity estimates would improve the modelling of coastal (e.g.
river plumes) to basin-wide circulation and dynamics (e.g.
dense water formation, overturning circulation cells, water
exchange at straits) (Verri et al., 2018), especially during
non-seasonal (e.g. storm-induced) events (Chandanpurkar et
al., 2022). Moreover, given the global decline of the hydro-
metric networks, building climatologies is not always possi-
ble, especially for small or less-studied rivers and even for
large rivers in regions where routine monitoring is absent
(Campuzano et al., 2016; Mishra and Coulibaly, 2009). Fur-
thermore, monthly climatological products are not adequate
for high-resolution coastal models where temporal variabil-
ity at daily or even higher frequency is needed (Sotillo et al.,
2021a).

3.1.2 River discharge databases

In contrast, river databases and services are progressively
becoming available and provide better estimates of coastal
runoff and river discharges at the global scale (Sotillo et
al., 2021a). These databases typically assemble information
from multiple data providers into coherent, gap-free, and
quality-controlled datasets. Examples below are categorized
by data source.

In situ databases.

– The Global Runoff Data Center (https://grdc.bafg.de/,
last access: 2 May 2025) (GRDC), under the WMO,
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archives quality-controlled historical mean daily and
monthly discharge data from over 10 000 stations across
159 countries. The Freshwater Fluxes into the World’s
Oceans (https://fwf.bafg.de/, last access: 2 May 2025)
dataset, based on the water balance model WaterGAP,
provides annual runoff estimates from 1901–2016.

– The Global Streamflow Indices and Metadata Archive
(GSIM) is a collection of metadata and indices derived
from more than 35 000 daily streamflow time series
worldwide gathered from 12 open databases (7 national
and 5 international collections) (Do et al., 2018; Gud-
mundsson et al., 2018).

– A global dataset of monthly streamflow for 925 of
the world’s largest rivers connecting to the ocean was
built by Dai et al. (2009), updated from Dai and Tren-
berth (2002).

– A global database of monthly mean runoff for 986 rivers
was incorporated in the NCOM, now HYCOM, US
model (Barron and Smedstad, 2002). It expands on the
work of Perry et al. (1996) with corrections and addi-
tions derived from monthly mean streamflow from the
U.S. Geological Survey (USGS) (Wahl et al., 1995) and
extends the basic RivDIS database (Vörösmarty et al.,
1998) to adjust for missing discharge attributed to small
(ungauged) rivers.

Model-derived databases.

– A 35-year daily and monthly global reconstruction of
river flows (GRADES) at 2.94 million river reaches,
with bias correction from machine-learning-derived
global runoff characteristics maps, was developed in
support of the Surface Water and Ocean Topography
(SWOT) satellite mission (Lin et al., 2019).

– A dataset of historical river discharge from 1958 to 2016
was created using the CaMa-Flood global river routing
model and adjusted runoff from the land component of
JRA-55 (Suzuki et al., 2018; Tsujino et al., 2018).

– A global freshwater budget is included in the CORE.v2
datasets that have an accompanying database for con-
tinental runoff from rivers, groundwater, and icebergs.
These are estimated from continental imbalances be-
tween precipitation, evaporation, and storage and then
distributed between bordering ocean basins based on
river routing schemes and flow estimates (Large and
Yeager, 2009).

Hybrid database.

– EMODnet Physics (https://emodnet.ec.europa.eu/
geoviewer/, last access: 2 May 2025) provides ocean
physics data and data products built with common
standards, consisting of collections of in situ data,

reanalysis, and aggregated in situ data and model
outputs. As part of the available parameters, the op-
erational river runoff data include near-real-time data
from European river stations and a subset of the GRDC
focusing on coastal areas and stations located near river
mouths, which extend beyond European borders. About
1200 rivers worldwide are connected and operationally
available.

Satellite-derived database.

– The largest known dataset compiles publicly available
river gauge data, with satellite-based rating curves used
to fill in the temporal gaps (Riggs et al., 2023).

Regional databases also exist, such as

– long-term (1993–2011) satellite-derived estimates of
continental freshwater discharge into the Bay of Bengal
(Papa et al., 2012)

– a database of pan-Arctic river discharge (R-Arcticnet,
https://www.r-arcticnet.sr.unh.edu/v4.0/index.html, last
access: 2 May 2025)

– a database for Greenland liquid water discharge from
1958 through 2019 (Mankoff et al., 2020)

– a river discharge climatology and corresponding histor-
ical time series for all rivers flowing into the Adriatic
Sea with an average climatological daily discharge ex-
ceeding 1 m3 s−1 (Aragão et al., 2024).

Of particular importance is the fact that some of these
databases use model-simulated runoff ratios (e.g. from Com-
munity Land Model (CLM) or river routing model) over
gauged and ungauged drainage areas to estimate the contri-
bution from the areas not monitored by the hydrometric net-
work and adjust the station flow to represent river mouth out-
flow (e.g. Dai et al., 2009). This allows more precise deriva-
tion of the total discharge into the global oceans through the
sum of both gauged and ungauged discharges.

Unless explicitly stated (e.g. for EMODnet Physics), most
of these databases lack clearly stated update schedules; some
remain static, while others update at irregular intervals. Such
databases are useful in the context of a reanalysis but less so
in an operational context where near-real-time data feeds are
required. Furthermore, a detailed comparative assessment of
these various data sources is still lacking.

Alternatively, indirect approaches using tidal statistics at
the estuarine entrance from tidal stations rather than direct
flow measurements have been developed to estimate the net
freshwater discharge at the mouth of an estuary, with the ad-
vantage of integrating processes at the basin scale, down-
stream of the last hydrometric station (Moftakhari et al.,
2013, 2016). Because tide gauge records at the coasts were
often installed well before the onset of systematic river gaug-
ing (Talke and Jay, 2013), such inverse techniques make it
possible to extend flow records back in time.
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Figure 2. Annual mean surface water discharge (m3 s−1) in
0.1° × 0.1° cells of the GloFAS analysis from Harrigan et al. (2020)
for the year 2023. Filled circles show the locations of 93 point
sources in the prototype East Coast Community Ocean Forecast
System (ECCOFS) ROMS model (domain denoted by the gray
perimeter box) associated with GloFAS points near the coast that
have long-term mean (2009–2019) discharge exceeding 50 m3 s−1.
River networks come from GloFAS.

3.1.3 Operational river discharge products

While most river discharge databases are static, operational
products have been developed for near-real-time applica-
tions. For example, the Global Flood Awareness System,
GloFAS-ERA5, is an operational global river discharge re-
analysis produced consistently with the ECMWF ERA5
atmospheric reanalysis and providing global gridded data
products from 1979 to near-real time (within a 7 d delay)
(Harrigan et al., 2020). Figure 2 illustrates the resolution of
the river network that emerges in the GloFAS gridded data
and the association of discharge at the coast to point sources
in a regional model of the northwest Atlantic Ocean that is in
development for future operations.

Several centers are also producing continental- and global-
scale hydrological (ensemble) forecasts operationally: the
European Flood Awareness System (EFAS) (Thielen et al.,
2009), the European Hydrological Predictions for the En-
vironment (E-HYPE) (Donnelly et al., 2015), the Hydro-
logic Ensemble Forecast System (HEPS) in the US (De-
margne et al., 2014), the Flood Forecasting and Warning
Service (FWWS) in Australia, the National Surface and
River Prediction System (NSRPS) in Canada (Fortin et al.,
2023), and globally World-Wide HYPE (WWH) (Arheimer
et al., 2020) and GloFAS (Harrigan et al., 2023). Notably, as
part of the GloFAS service evolution, global daily ensemble

river discharge reforecasts (20-year) and real-time forecast
(2020–present) datasets are made freely and openly available
through the Copernicus Climate Change Service (C3S) Cli-
mate Data Store (CDS) (Harrigan et al., 2023).

Other projects have been supported by the Copernicus
Marine Environment Monitoring Service (CMEMS): for ex-
ample, the LAMBDA project regionally focused on the
European Atlantic façade and the North Sea. The result-
ing freshwater model estimates and in situ observations are
operationally updated and made available via the project
viewer web interface (http://www.cmems-lambda.eu/home.
html, last access: 2 May 2025; Sotillo et al., 2021a).

The FOCCUS project (Forecasting and Observing the
Open-to-Coastal Ocean for Copernicus Users; https://
foccus-project.eu/, last access: 2 May 2025) further enhances
operational hydrological models by addressing the land–
ocean continuum through improved river runoff estimations
and the development of advanced coupling between hydro-
logical and coastal ocean models. FOCCUS builds on ex-
isting pan-European hydrological frameworks, such as E-
HYPE and LISFLOOD, to provide dynamic freshwater in-
puts, including nutrient and inorganic matter transport. Ad-
ditionally, the project integrates novel AI techniques to opti-
mize estuarine modelling and freshwater forcing for coastal
systems. These innovations directly contribute to refining
CMEMS and supporting all European coastal services with
more accurate and seamless coastal monitoring and forecast-
ing capabilities.

In some instances, the regional products may appear to be
the preferred option for some regional or local studies, as
they were designed to specifically represent the hydrologi-
cal characteristics of a given region, sometimes with higher
resolution and accuracy. However, a global solution is attrac-
tive in data-scarce areas and where consistency between dis-
charge products and across all forcing variables is required
over large domains (Polton et al., 2023).

3.1.4 Remotely sensed discharges

Remote sensing of river discharge is a rapidly advancing re-
search field (see Gleason and Durand, 2020, and references
therein). With the SWOT satellite launched in December
2022, global discharge products will soon be available at
a nominal resolution of 10 km for river reaches wider than
100 m, thus vastly expanding measurements of global rivers
in both gauged and ungauged basins (Durand et al., 2023).
Significant improvements in global uncalibrated models are
expected (Emery et al., 2018). SWOT-derived discharge data
are expected to improve global hydrological cycle represen-
tation and enhance ocean model solutions near the coast.

3.1.5 Machine-learning-derived discharge estimates

Machine learning is increasingly used in hydrology for rain-
fall runoff modelling, with long short-term memory (LSTM)

State Planet, 5-opsr, 19, 2025 https://doi.org/10.5194/sp-5-opsr-19-2025



CHAPTER7.2

P. Matte et al.: The representation of rivers in operational ocean forecasting systems: a review 7

networks (Greff et al., 2017; Hochreiter and Schmidhuber,
1997) proving particularly effective in capturing both peri-
odic and chaotic patterns in time-series data while accurately
learning long-term dependencies (Fang et al., 2017a; Hu et
al., 2019; Mouatadid et al., 2019). In numerous hydrological
studies, LSTM has demonstrated superior performance over
traditional process-based models in simulating runoff, pri-
marily in data-rich regions (Feng et al., 2020, 2021a; Frame
et al., 2022; Gauch et al., 2021; Hunt et al., 2022; Konapala
et al., 2020; Kratzert et al., 2019; Lees et al., 2021; Li et al.,
2023; Luppichini et al., 2024; Nearing et al., 2021; Reich-
stein et al., 2019). However, limited efforts have explored the
transferability of LSTM models to data-scarce regions (e.g.
Akpoti et al., 2024), with Ma et al. (2021) and Muhebwa et
al. (2024) (and references therein) being examples of such
exceptions. Recently, researchers have explored the poten-
tial of LSTM models for global river discharge estimations
(Rasiya Koya and Roy, 2024; Tang et al., 2023; Yang et al.,
2023; Zhao et al., 2021). However, extensive validation be-
yond the training basins is required to fully evaluate their
suitability for global-scale implementations.

3.2 Salinity and temperature

Estuarine mixing influences salinity distribution and its sea-
sonal variability near river mouths (Sun et al., 2019). Mod-
els are particularly sensitive to salinity in shelf areas and
ROFI zones, most often due to the diverse treatment of
OOFSs given to coastal and river freshwater forcing (Sotillo
et al., 2021a). Therefore, to assess the impact of a cho-
sen formulation and evaluate model performances, sea sur-
face salinity (SSS) and temperature (SST) are typically used.
The World Ocean Atlas climatology (Locarnini et al., 2013;
Zweng et al., 2013) often overestimates nearshore salinity,
making it unsuitable for model evaluation in coastal regions.
As an alternative, Sun et al. (2019) built on the original
World Ocean Database and developed an improved salin-
ity and temperature climatology with an enhanced repre-
sentation of the coastal ocean. In situ data and satellite ob-
servations from SMOS, Aquarius, and SMAP (Bao et al.,
2019) can also be used to assess the impact of river forc-
ing on sea surface salinity (Feng et al., 2021b). However,
seasonal variability in the skill of SSS retrievals can be as-
sociated with SST-dependent bias and strong land–sea dif-
ferences in microwave emissivity, making satellite obser-
vations unreliable within some 70 km of the coast (Grod-
sky et al., 2018; Menezes, 2020; Vazquez-Cuervo et al.,
2018). Higher-resolution coastal satellite products have been
developed based on empirical relationships between lo-
cal salinity and ocean colour observations (Geiger et al.,
2013; Chen and Hu, 2017), using deep neural networks
trained on Sentinel-2 Level-1C top-of-atmosphere (TOA)
reflectance data (Medina-Lopez and Ureña-Fuentes, 2019;
Medina-Lopez, 2020) or by relating the reflectance of the
visible bands from Sentinel-2 imagery with electrical con-

ductivity, influenced by the concentration and composition
of dissolved salts (Sakai et al., 2021), although these are not
applied globally.

A recent study in the German Bight (Thao et al., 2024)
demonstrated the critical role of high-resolution salinity in-
puts at estuarine mouths in improving the predictive ca-
pabilities of coupled wave–ocean models. Using GCOAST
(Geesthacht Coupled cOAstal model SysTem), which seam-
lessly integrates estuarine and coastal dynamics with regional
ocean models, researchers validated salinity and temperature
fields against in situ observations. The results highlighted
that estuarine inflows significantly enhance the accuracy of
coastal ocean models.

Alternatively, salinity predictions in estuaries and at river
mouths have been successfully estimated using machine
learning approaches. A few examples can be found in the
recent literature: Qiu and Wan (2013) developed an autore-
gressive model relating salinity at a given time to past ob-
servations of salinity and physical drivers (freshwater inflow,
rainfall, tidal elevation) in the Caloosahatchee River estuary;
Fang et al. (2017b) used a genetic algorithm coupled with a
support vector machine to predict salinity in the Min River
estuary; Qi et al. (2022) applied four neural network mod-
els to emulate salinity simulations in the Sacramento–San
Joaquin Delta from a process-based river, estuary, and land
modelling system; Guillou et al. (2023) were able to repro-
duce the seasonal and semi-diurnal variations in sea surface
salinity at the mouth of the Elorn estuary (Bay of Brest), with
support vector regression performing best among all tested
algorithms.

Despite these advancements, sustained high-resolution
salinity monitoring is needed to build confidence in numeri-
cal solutions near the coast. Integrating salinity, temperature,
and additional parameters such as nutrients and sediments
directly into river outflows could further improve model ac-
curacy (Verri et al., 2018; Thao et al., 2024). While these
factors play a secondary role in influencing oceanographic
processes, their inclusion could advance research on coastal
hypoxia, carbon cycling, and regional weather and climate,
ultimately supporting seamless predictions of land–ocean–
atmosphere feedbacks in next-generation Earth system mod-
els (Feng et al., 2021b).

4 Examples of current OOFSs

This section describes how river forcing is implemented in
current OOFSs. The objective is to get a picture of the cur-
rent landscape of approaches and data sources. While Cirano
et al. (2025, in this report) provide a comprehensive overview
of existing OOFSs worldwide, the representation of rivers in
these systems remains poorly documented and often buried
in model configuration files. The list of systems presented in
Appendix A is therefore not exhaustive and is limited to a
compilation of comments received as part of a survey con-
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Figure 3. Graphical summary from a survey on river forcing methods (a) and data sources (b) used in global, regional, coastal, and inland
OOFSs listed in Appendix A. Coloured bars indicate the primary data sources or methods, whereas dashed bars represent secondary data
sources used as a fallback when primary sources are unavailable.

ducted among members of the OceanPredict community in
May 2023. It is meant to illustrate the diversity of methods
employed for treating freshwater fluxes in OOFSs and asso-
ciated input data sources in 4 global, 12 regional, 4 coastal,
and 1 inland systems. Although the survey covers a limited
number of systems, the literature review in previous sections
offers additional examples to complete the picture.

Figure 3 provides a graphical summary of the six river
forcing methods and four data sources used in the OOFSs
listed in Appendix A. In terms of river forcing methods, most
systems specify vertical or lateral freshwater fluxes to ac-
count for riverine inputs. Only a few of them rely on more
sophisticated approaches that use channel extensions within
the ocean model or routing schemes from hydrological mod-
els to transport the water from the watershed to the coast.
Furthermore, none of the global systems surveyed use lateral
boundary conditions, likely due to insufficient spatial resolu-
tion near river mouths.

In terms of the data sources used in OOFSs, what stands
out from the survey is the use of in situ data as a primary
source in most systems and climatology as either a primary
or a fallback source of freshwater discharge. Global systems
tend to opt for climatologies in comparison with regional or
coastal systems that favour observed data when available,
which allows both seasonal and non-seasonal events and their
potential local or regional impacts to be captured. Only a few
regional and inland systems use hydrological models or re-
analyses as primary data sources.

Additional considerations were also highlighted by the re-
spondents, essential for appropriately representing river in-
flow in ocean models and addressing challenges such as nu-
merical instabilities and data limitations. For example, spa-

tial smoothing around the river source or, equivalently, op-
timizing the integration distance for equivalent coastal pre-
cipitation may be required to prevent numerical instabilities.
Similarly, an increased diffusivity within the surface mixing
layer can be implemented to simulate the effects of river in-
flow. Salinity and temperature of the input freshwater can be
set either to zero and to the local SST, respectively, or derived
from a combination of real-time gauge data and monthly av-
erages when available. For ungauged areas, river gauge data
can be scaled, or additional coastal runoff can be incorpo-
rated. In contrast, some systems directly convert precipita-
tion data into river discharges, disregarding hydrological pro-
cesses and assuming an instantaneous response.

In sum, the representation of rivers in OOFSs requires
careful consideration of various numerical methods, data
sources, and modelling approaches. However, some simpli-
fications may limit accuracy in applications requiring high
regional precision.

5 Summary and recommendations

The assessment of river forcing implementation in OOFSs
highlights the complexity and challenges of accurately in-
tegrating riverine freshwater discharges into ocean models.
Despite the growing demand for operational oceanographic
products, especially in coastal areas (Ciliberti et al., 2023),
OOFS river forcing still faces shortcomings related to the
representation of physical processes, data availability, and
data quality. The parameterization of river inputs and the
interaction between model components, often nonlinear, re-
main unresolved issues, underscoring the absence of stan-
dardized practices for river forcing. Addressing these gaps
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requires advancements in model physics; improved spatial
and temporal resolution; and enhanced coupling between
land, ocean, and atmosphere. Furthermore, the incorpora-
tion of river flow varies regionally, largely due to differences
in the availability and quality of river discharge, salinity,
and bathymetric datasets, and is further influenced by model
scale and resolution. As the demand for reliable coastal
forecasts grows, real-time, high-quality river discharge data
become increasingly pressing. Standardized methodologies
and improved integration of riverine parameters – including
salinity, temperature, and biogeochemical components – will
facilitate seamless watershed–ocean coupling and improve
predictions of coastal dynamics, particularly under extreme
conditions.

Service evolution roadmaps, such as those outlined by
CMEMS, emphasize the need for a better characterization
of coastal freshwater exchanges to improve forecasts, espe-
cially during severe weather events (Sotillo et al., 2021b).
A key step forward involves the progressive replacement
of static climatologies with real-time, updated time series
(past, present, and forecasts) of river inputs, covering both
major and minor or ephemeral streams. Recommendations
have been made towards standardized freshwater inputs (and
associated river inputs of nutrients and sediment loading),
harmonized river forcing approaches, and a more integrated
watershed–ocean strategy (Campuzano et al., 2016; Capet et
al., 2020; Sobrinho et al., 2021). Additionally, ensuring vali-
dated observational error estimates for estuary-mouth forc-
ing, including river discharge and auxiliary variables such
as coastal salinity, is crucial for model accuracy (De Mey-
Frémaux et al., 2019; Polton et al., 2023). Improved in-
terfaces between coastal monitoring and modelling systems
are therefore essential. The FOCCUS project exemplifies
progress in addressing these challenges through advance-
ments in hydrological and estuarine modelling, dynamic
freshwater inputs, and the integration of AI-driven tools to
refine river discharge estimations and coastal system fore-
casts.

Future efforts must focus on refining model physics,
resolution, and coupling strategies to better integrate the
land–ocean continuum. Standardized methodologies and in-
tegrated high-quality data sources, together with continued
interdisciplinary collaboration and technological advance-
ments, will be key to overcoming existing limitations and
ensuring more accurate and reliable ocean predictions. Such
efforts are critical for improving predictions of coastal dy-
namics and for fostering a deeper understanding of their im-
plications on global climate and ecosystem functioning.

Appendix A: Survey on river forcing methods and
data sources in current OOFSs

This appendix presents results of a survey conducted among
members of the OceanPredict community in May 2023. The
responses are reported in the following tables as given by
the participants; nearly no changes were made to each con-
tributed entry, except for a few added references and acronym
definitions.
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Abstract. Forecasting across different Earth system components has initially been achieved independently, but
increasing computer power, increasing model accuracy, increasing connectivity between experts, and increasing
need for multi-hazard weather warning is changing the scene. Coupling methods, which involve exchanging
information between discrete modelling systems, enable us to gain accuracy and consistency across Earth sys-
tem components. This paper explains the principles of two-way coupling, where models run simultaneously and
exchange information both ways. As individual models reach better accuracy, coupling becomes a key factor
to improve forecasting capability because it reproduces the natural complexity of the environment: a wealth of
literature shows the benefits of coupling. However, coupling is still limited in operational oceanography by its
large demands on computational resources, by data assimilation techniques (currently not very well harmonised
between the different models), and by administrative separation of forecasts across different Earth system com-
ponents. Overcoming these barriers will support ocean predictions towards a multi-hazard approach and a more
accurate representation of the Earth system component interactions and improve collaborations between multi-
disciplinary forecasting communities.

1 Introduction

Coupling can be loosely defined as the process of exchang-
ing information between discrete modelling systems, gener-
ally of components of the Earth system, to better represent
exchange processes (Shapiro et al., 2010). The number of
components of a coupled system, and indeed the level of
coupling between the components, varies depending on the
application. Coupled global climate models (GCMs) gener-
ally include the ocean, ice, atmosphere, and land surface. In-
creasingly, surface waves are included to represent the ex-
change between the ocean and the atmosphere better, espe-
cially for applications that require representation of natural
hazards such as storms. For Earth system models which need

to include predictions of the biogenic components to predict
carbon and other nutrient transfers, the components are often
extended to include ocean biogeochemistry and atmospheric
chemistry (Mulcahy et al., 2023).

There are a number of solutions to how this coupling may
be achieved, and which is preferred will depend both on the
scientific importance of the exchanges and the timescales on
which they occur and on technical limitations. In the “tradi-
tional” way of working, the models are run independently,
with a flux of information from adjacent components of the
Earth system being calculated based on independent and non-
interactive models. This implies that the winds, precipita-
tion, and air temperatures (“forcing”) used to drive the ex-
changes at the ocean’s surface do not respond to changes in
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the ocean conditions themselves. The forcing is not calcu-
lated on a time step basis but over a period generally some-
where between 1 h and 1 d. Forecasts run in this mode are
termed forced or one-way coupled.

Coupled systems exist with varying complexity of ex-
changes between models. For example, a common approach
for the coupling of hydrodynamics and sea ice is to run both
systems at the same time and exchange information both
ways. These are termed fully or two-way coupled systems.
In these two-way coupled systems, the independent models
often communicate with each other through an interface code
(“coupler”) which allows the independent models to operate
on different grids and with different time steps (Larson et al.,
2005; Valcke, 2013; Hanke et al., 2016). As the number of
components interacting with each other increases, the flex-
ibility of including a coupler becomes increasingly attrac-
tive. A coupling software creates a computational interface
between separate systems that allows the passing of infor-
mation between them without undue intrusion into the code
of the modelling systems. This approach is widely used (e.g.
Lewis et al., 2019a; Pianezze et al., 2022; Wahle et al., 2017),
but other approaches exist. ECMWF (Wedi et al., 2015) has
integrated its various modelling components into a single
executable, with the passing of information being done in-
ternally within the code rather than through a separate cou-
pling software. Figure 1 illustrates the Regional Environmen-
tal Prediction system under development in the United King-
dom, with complex exchanges between five different models,
using three different coupling approaches (Best et al., 2004;
Valcke, 2013; Bruggeman and Bolding, 2014).

2 Why is coupling important for ocean prediction?

Atmosphere–ocean coupling is common practice at seasonal
and decadal timescales. At these scales, most of the mem-
ory is contained in the ocean and in coupled interactions,
such as for the El Niño Southern Oscillation (ENSO). In-
deed, both the ocean and the atmosphere can propagate an
anomaly in the other component to remote places. For ex-
ample, oceanic equatorial waves generated by wind anoma-
lies can propagate to the whole tropical Pacific and generate
an El Niño event, and, in turn, the atmosphere may generate
teleconnections from the tropics to the mid-latitudes through
upper-level Rossby wave trains in the troposphere or plane-
tary waves in the stratosphere and influence the ocean back
in remote ocean basins (Hardiman et al., 2019; Kim et al.,
2012). These may take longer than 10 d to propagate and are
therefore sources of seasonal and multi-annual forecast sig-
nals. For short-term marine prediction, coupling is emerg-
ing as a new potential for improving both atmospheric and
oceanic predictions (Brassington et al., 2015).

A clear and extremely well documented weather situation
when air–sea coupling is key for both the atmosphere and
the ocean is tropical cyclone forecasts: the strength of tropi-

cal cyclones is decreased through large decreases in sea sur-
face temperature (SST) caused by intense turbulent fluxes,
by deepening of the surface mixed layer by entrainment (Vel-
linga et al., 2020; Mogensen et al., 2017; Castillo et al., 2022;
Feng et al., 2019), and (if the cyclone translation speed is
slow) by upwelling (Corale et al., 2023; Yablonsky and Gi-
nis, 2009). In more general situations, coupling reduces the
lifetime of mesoscale eddies and dampens submesoscale cur-
rents through dampening of the wind stress curl and heat
fluxes (Yang et al.,2019; Renault et al., 2016, 2018; Dawe
and Thompson, 2006). Coupling also sometimes involves a
higher-resolution atmosphere than forcing, which then re-
sults in more turbulent eddy kinetic energy in the ocean
(Storto et al., 2023). In the tropics, dynamical waves in the
atmosphere and ocean can influence each other. For exam-
ple, Madden–Julian Oscillation (MJO) atmospheric events in
the Indian Ocean can be modulated by coupling (Fu et al.,
2017) or simply by the diurnal cycle of SST (Karlowska et
al., 2023). Convectively coupled Kelvin waves also generate
a strong signal in the Indian Ocean (Azaneu et al., 2021).

At the coastal scale, coupling also becomes interesting,
since the assumptions of equilibrium between Earth system
components often break down (e.g. wave state is not in equi-
librium with winds in the sheltered North Sea; Grayek et al.,
2023; Wiese et al., 2019; Wahle et al., 2017). Some examples
in the literature include better near-surface currents and up-
welling forecasting with the inclusion of the Stokes–Coriolis
drift by a wave model, which induce an extra term of ad-
vection in the direction of wave group speed (Alari et al.,
2016; Bruciaferri et al., 2021). Coupling also benefits wave
modelling, for example, where tidal currents modulate wave
and wind activity (Renault and Marchesiello, 2022; Valiente
et al., 2021). Coupling an ocean with waves can have con-
siderable impacts on SSTs, which can go in either direction,
depending on the difference in momentum stress passed to
the ocean (more momentum input by the waves in the case
of Lewis et al. (2019b), resulting in a near-surface cooling,
but less momentum in Alari et al. (2016), resulting in warm-
ing) through modulation of the ocean stratification. Coupling
a wave model with an atmospheric model will tend to de-
crease wind speed over young seas and increase ocean mo-
mentum flux, which is especially important during storms
(Gentile et al., 2022; Bouin and Lebeaupin Brossier, 2020b).
In general, coupling will tend to dampen air–sea fluxes be-
cause components will tend to adjust to one another, so this
may decrease ocean spread at the start of ensemble forecasts
(Lea et al., 2022). However, the spread in SST will increase
rapidly in regions which have a shallow surface mixed layer,
which respond quickly to atmospheric spread (Lea et al.,
2022). Precipitation and river flow can also have a local influ-
ence on near-surface temperatures and salinity in the ocean,
especially during extreme precipitation events (Bouin and
Lebeaupin Brossier, 2020a; Sauvage et al., 2018). The ocean
can finally act as a memory between two intense atmospheric
events (e.g strong winds and strong precipitation; Berthou et
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Figure 1. Regional coupled system under development in the United Kingdom for the Regional Environmental Prediction project (Lewis
et al., 2019a), bringing together all the models run by the Met Office for short-term predictions and climate projections. Arrows repre-
sent exchanges between models, either as integrated coupling at the time step (Best et al., 2004) (UM/JULES), 2D coupling through the
OASIS coupler (Valcke, 2013) (UM/WaveWatch III/NEMO), or 3D coupling through the FABM coupler (Bruggeman and Bolding, 2014)
(NEMO/ERSEM).

al., 2018; Lebeaupin Brossier et al., 2012) or in the case of
marine heatwaves and extreme temperature or precipitation
events (Berthou et al., 2024; Martín et al., 2024), in which
case a coupled system is beneficial for longer-range fore-
casting (3–7 d). In regional atmospheric forecasts, using a
predicted SST (obtained through either coupling or forcing)
is beneficial for variables such as near-surface temperature
(Mahmood et al., 2021), fog (Fallmann et al., 2019) or snow
(Yamamoto et al., 2011).

However, it is worth noting that differences in near-surface
parameterisations can also generate differences which are as
large as or larger than coupling differences (Gentile et al.,
2022), indicating the need for continuous research and in-
vestment in observation systems of near-surface characteris-
tics. Coupling is most successful when the water, heat, and
momentum budgets are closed, which can be challenging
when model parameterisations are designed in forced mode.
Recent parameterisation improvements taking into account
coupled variables include wave coupling in the NEMO turbu-
lent kinetic energy scheme (Couvelard et al., 2020), current
feedback taken into account in atmospheric turbulence (Re-
nault et al., 2019), and the new wave-age-dependent stress
parameterisation (Bouin et al., 2024). In some situations, in-
creasing the complexity of air–sea exchanges can be benefi-
cial, for example, including sea spray effects on moisture and
heat fluxes (Yang et al., 2019; Xu et al., 2021; Zhang et al.,
2011; Bianco et al., 2011).

Coupling with land and river models is also attractive to
provide river flow forecasts, especially as the coupling inter-
face gets more complex, and include back-water effects into
rivers and coastal wetting and drying (Bianco et al., 2011).
Finally, coupling with biogeochemistry and sediment trans-
port models can provide interesting feedback on the ocean
colour, with a feedback loop between thermal stratification
and phytoplankton bloom, through the modulation of depth
penetration of the solar heat flux (Skákala et al., 2022). Other
feedbacks include chemistry and aerosols, where the atmo-
sphere can then provide deposition fluxes (e.g. iron, nitro-
gen) to the ocean, and the phytoplankton sends back chemi-
cals which can affect low-level cloud cover (Mulcahy et al.,
2023).

The potential benefits of using a coupled framework are
also reinforced by the move towards a multi-hazard approach
to predictions. Natural hazards from multiple sources may
combine or occur concurrently. Large waves, storm surges,
high wind speeds, and extreme precipitation are all hazards
that are likely to co-occur and influence each other through
coupled feedback and compound each other through, for ex-
ample, over-topping. Coupled systems that predict this feed-
back may enable an improvement in the range and con-
sistency of actionable information provided through hazard
warnings and guidance.
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3 How extended is the use of coupled modelling for
ocean prediction?

Many centres and research groups have developed monitor-
ing and prediction tools independently for individual Earth
components (e.g. atmosphere, ocean, land, waves). This is
natural based on the historical context of their development
and limitations on computing capabilities, but it has created
an infrastructure within and across institutions that adds com-
plexity to the task of unifying prediction systems. The ma-
jor prediction centres are making progress towards an inte-
grated approach by unifying software infrastructure for mod-
els and data assimilation capabilities and by providing op-
portunities to increase interactions among the development
teams of each system component. At the global scale, the
use of a coupled atmosphere–ocean–sea–ice model has in-
creased rapidly in the past few years, usually starting with
deterministic and then ensemble-coupled capability, and has
been used by the following authors: Allard et al. (2012) and
Komaromi et al. (2021) (Naval Research Laboratory), Mo-
gensen et al. (2017) (European Centre for Medium-Range
Weather Forecasts), Smith et al. (2018) and Peterson et
al. (2022) (Environment and Climate Change Canada), and
Guiavarc’h et al. (2019) (Met Office). In parallel, the per-
spective of seamless predictive capability (Ruti et al., 2020),
especially important during impactful extreme cyclonic or
convective events, means kilometre-scale regional coupled
systems are either operational (Durnford et al., 2018, for
the Great Lakes and Saint Lawrence river; Komaromi et al.,
2021, for tropical cyclone regions) or are actively being de-
veloped in several centres or research groups. Examples in-
clude western Europe (Sauvage et al., 2021), the southwest-
ern Indian Ocean (Corale et al., 2023), the northwest Euro-
pean shelf (Lewis et al., 2019a), the northern Indian Ocean
(Castillo et al., 2022), and the Red Sea (Sun et al., 2019,
2024). Finally, coupled river–ocean models, including two-
way coupling between rivers and oceans, are used for oper-
ational forecasting of compound flooding during hurricanes
in the Gulf of Mexico (Bao et al., 2024, using the COWAST
system; Warner et al., 2010).

The extent of the uptake of coupled modelling is still lim-
ited, however, by several barriers. Firstly, it places extreme
demands on computational resources: the cost of running an
extra model is often prohibitive for agencies with limited
forecasting remits (e.g. only ocean forecasting). However,
recognising the benefits acknowledged above, these agencies
are exploring alternatives, such as coupling with a single-
column mixed-layer model, either in the atmosphere or in
the ocean (Voldoire et al., 2017; Lemarié et al., 2021). For
the agencies with several remits (e.g. weather, marine, hy-
drology, air quality forecasting), coupled modelling is more
attractive and has the potential to reduce the complexity of
the modelling chains and to prevent large data transfers be-
tween platforms.

A second major barrier is data assimilation, which requires
the processing of environmental observations. It is itself a
technically challenging problem which is made harder if one
tries to harmonise it across all the Earth system components.
Data assimilation requires the calculation of an innovation
(difference between the modelled and observed value) and
then appropriately adjusting the model parameter space to
create a state estimate that is optimised to best reflect un-
derstanding of model and observation errors. In coupled sys-
tems, there are correlations between parameters in the dif-
ferent systems that need to be respected: for example, sea
surface and air surface temperature are closely correlated.
This creates an additional scientific and technical challenge
that needs to be addressed in coupled forecasting systems
(Penny and Hamill, 2017). The differing timescales inherent
in ocean forecasting and atmospheric NWP are also prob-
lematic, though Lea et al. (2022) suggest that using the
shorter NWP-based windows does allow the retention of the
longer oceanic timescales, as long as the memory inherited
with cycling the system in time remains intact. Neverthe-
less, strongly coupled data assimilation means an observa-
tion in one model can be beneficial for both models (Fu et
al., 2021; Phillipson et al., 2021) and allows coupled obser-
vation operators. Indeed, remote-sensed observations of the
ocean (remote-sensed SST, radiances, colour, ice freeboard)
require filtering out an atmospheric signal, a task which could
be dealt with by a coupled assimilation system instead of
externally, which potentially introduces contradictory biases
from other systems.

Weaker barriers include the need for different frequency of
running forecasts: ocean forecasts often run daily with a sin-
gle deterministic member, but the atmospheric and the wave
forecasts require sub-daily ensembles with several members.
In ensemble modelling, inflated spread schemes are often
employed (e.g. in the SST) to generate a much larger spread
than the ocean uncertainty and must be modified in coupled
systems (Lea et al., 2022). Nevertheless, the ocean and sea
ice uncertainty needs thorough quantification against inde-
pendent observational datasets for these schemes to be effec-
tive. Finally, simple bureaucratic barriers, such as the con-
straint of a common forcing model in international projects,
can also prevent the adoption of coupled modelling.

4 Conclusion

Coupling models of different Earth system components is a
technical task which requires scientific software engineering
expertise and high-performance computing resources. Whilst
common for seasonal and climate prediction, a handful of
operational centres have achieved this for NWP timescales,
most of them in the past 5 years. Coupling enables better
treatment of air–sea interactions, especially important in the
tropics, for intense events (tropical cyclones); for regions
of strong SST gradients, eddies, and tidal influence; or for
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complex coastlines. The cost is affordable for centres which
have the responsibility for forecasting across different Earth
system components. In these cases, in addition to the bene-
fits of coupled feedback, coupled forecasting allows forecast
consistency, essential for impact-based forecasting of multi-
hazard events. For other centres, cheaper solutions exist, such
as only treating the boundary layer of the other Earth system
component, which is the most important part for coupling at
short timescales.

Coupling models also increases knowledge exchange be-
tween researchers in different Earth system components,
which helps build our understanding of the Earth system as a
whole. Novel methods, such as machine learning and artifi-
cial intelligence, offer great hope in overcoming some of the
barriers faced by traditional NWP. At a time of greater cou-
pling between traditional numerical forecasting systems, the
use of machine learning and AI should cut across Earth sys-
tem components and avoid the pitfalls of parameterisations
designed with a single component in mind. This can only be
achieved by a strong and organised coupling research com-
munity.
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Abstract. Ensemble forecasting has emerged as an essential approach for addressing the uncertainties inherent
in ocean prediction, offering a probabilistic framework that enhances accuracy of both short-term and long-range
forecasts. By more effectively addressing the intrinsic chaotic nature of mesoscale and submesoscale variability,
ensemble methods offer critical insights into forecast errors and improve the reliability of predictions. This
paper reviews the ensemble methodologies currently used in ocean forecasting, including techniques borrowed
from weather prediction, such as virtual ensembles and Monte Carlo (MC) methods. It also explores the latest
advancements in ensemble data assimilation (DA), which have been successfully integrated into both ocean
general circulation models (OGCMs) and operational forecasting systems. These advancements enable more
accurate representation of forecast uncertainties (error of the day) by sampling perturbations conditioned on
available observations. Despite the progress made, challenges remain in fully realizing the potential of ensemble
forecasting, particularly in developing tools for analyzing results and incorporating them into decision-making
processes. This paper highlights the crucial role of ensemble forecasting in improving ocean predictions and
advocates for its wider adoption in operational systems.

1 Introduction to ensemble forecasting

Forecasts of the ocean state generated by numerical models
are inherently uncertain owing to the nonlinear chaotic na-
ture and imperfect internal physics of the ocean models and
to inevitable uncertainties in their inputs, such as initial and
boundary conditions, atmospheric forcing, and bathymetry
(e.g., Lorenz, 1996; Pinardi et al., 2008; Sandery et al.,
2014; Vandenbulcke and Barth, 2015; Kwon et al., 2016;
Sanikommu et al., 2020). Thus, the future ocean cannot be
completely described by a single forecast model run and
is better described by a set, or ensemble, of forecasts that
provides an indication of the range of possible future ocean
states and that represents the uncertainty in the forecasts, also

known as errors of the day (Houtekamer and Zhang, 2016;
Hoteit et al., 2018) (Fig. 1).

Ensemble forecasting has increasingly become a key as-
pect of weather and climate predictions – see Du et al. (2018)
for a review – as it provides a basis to communicate forecast
confidence to end users for better decision-making. Simi-
larly, it should become an integral part of ocean forecasts.
Ensemble forecasting was indeed proven to provide extended
ocean prediction skills compared to deterministic forecasts,
especially for extended timescale predictions (Mullen and
Buizza, 2002; Ryan et al., 2015). This ensemble probabilis-
tic framework is also needed for short-range forecasting to
better describe the intrinsic chaotic nature of the mesoscale
and submesoscale variability resolved by the new generation
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Figure 1. Schematic illustration of deterministic hindcast (black line at the forecast date 0), forecast (pink line after day 0), and ensemble
forecasts (black lines after day 0) of the ocean state. The ensemble forecasts were driven by various sources of uncertainties, including initial
conditions, atmospheric forcing, model physics, and bathymetry. The ensemble forecast mean and the unknown truth are represented by the
orange and green lines, respectively. Solid red dots denote observations.

of high-resolution ocean models (Thoppil et al., 2021). In-
formation about forecast uncertainty can be used in many
ways. For instance, the probabilistic information that en-
sembles provide is particularly valuable for early warnings
of hazardous conditions in the ocean and can be integrated
into the decision-making process based on economic values
(Richardson, 2000; Fundel et al., 2019). On short timescales,
the probabilistic information is useful for triggering the de-
ployment of environmental protection measures in the event
of an oil spill (Barker et al., 2020), for advising fishers about
the most probable regions of fishing zones, for helping coast-
guards find the probable areas to focus on for search and
rescue operations (Melsom et al., 2012), and for advising
on path planning for autonomous marine vehicles (e.g., Al-
barakati et al., 2021). On climate timescales, ensemble fore-
casting is useful for providing probabilistic information on
climate indices such as El Niño and the Indian Ocean Dipole
(Schiller et al., 2020).

2 Methods

Ensemble forecasts find their roots in weather forecasting
and can be generated (i) as virtual ensembles whose mem-
bers are selected from deterministic forecasts and/or his-
torical runs (e.g., Hoffman and Kalnay, 1983; Ebert, 2001;
Schwartz and Sobash, 2017) or (ii) by applying some form
of Monte Carlo (MC) analysis in which a set of forecasts is
produced by perturbing the model physics and/or inputs as a
way to account for their inherent uncertainties (e.g., Martin et
al., 2015; Houtekamer and Zhang, 2016; Hoteit et al., 2018).
Ensemble forecasts may also be generated following a multi-
model approach as the forecasts of different ocean models or
from their combination with MC forecasts (Fig. 2). Ideally,

the actual future oceanic state should fall within the predicted
ensemble range.

– Virtual ensemble forecasts. The lower-cost virtual en-
sembles can be used to quantitatively estimate forecast
uncertainties based on existing forecasts through var-
ious techniques, including (a) the time-lagged ensem-
ble, which automatically creates a forecast ensemble by
pulling multiple forecasts that have been initiated at dif-
ferent times; (b) the poor-man ensemble, which gath-
ers single-model forecasts from different sources and is
thus a multi-model ensemble from existing forecasts;
and (c) the analog ensemble, made of past forecasts
matching up with the current forecast. These methods
are straightforward but may result in restricted ensem-
bles due to the limited available sources of existing fore-
casts. They are also not designed to capture the flow-
dependent error of the day (Du et al., 2018).

– Monte Carlo (MC) ensemble forecasts. This kind can be
generated by perturbing the ocean model physics and/or
inputs (Du et al., 2018). Uncertainties in the ocean
model could be accounted for by perturbing its inter-
nal sources of uncertainties which could come from the
missing physics, parameterization schemes, and numer-
ical errors. Different approaches were suggested, such
as (a) the multi-physics approach, which uses a differ-
ent parameterization scheme for each ensemble member
(Sanikommu et al., 2020); (b) the perturbed parameters
approach of a selected parameterization scheme; and
(c) the stochastic parameterizations approach, which in-
jects stochastic perturbations into the physical param-
eterization schemes (Brankart et al., 2015; Storto and
Andriopoulos, 2021). Additionally, given that the short-
term predictability of the atmosphere and the ocean
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Figure 2. Schematic diagram illustrating the steps involved in various ensemble forecasting methods. Characteristics of each method are
also listed.

is dominated by their initial conditions (ICs), various
methods to perturb the initial model state have been
proposed to generate ensembles. These include (i) ran-
dom perturbations sampled from some available error
statistics; (ii) the singular vectors and their variants de-
signed to represent the perturbations with the fastest
error growth; and (iii) the vector breeding approach,
which computes the initial perturbations as the differ-
ences between a pair of past concurrent forecasts. Dif-
ferent approaches were also suggested to perturb the
bathymetry, open boundaries, and atmospheric and river
forcing (Lima et al., 2019; Storto and Yang, 2023;
Zedler et al., 2023), but ensembles of atmospheric and
oceanic forecasts are now available from the global op-
erational prediction centers and can be readily used to
generate ocean forecast ensembles.

– Data-assimilation-based ensemble forecasts. Ensemble
forecasts in data assimilation (DA) are typically gen-
erated by introducing multiple, slightly different esti-
mates of the current system state to capture uncertainties
in observations and model parameters while account-
ing for the error of the day. For example, in an en-
semble Kalman filter (EnKF), observations can be per-
turbed (or not) (Whitaker and Hamill, 2002; Hoteit et
al., 2015), and the model is then integrated from these

perturbed initial states, sampled according to the esti-
mated initial-state statistics derived from previous fore-
casts and the most recent observations, resulting in an
ensemble of forecasts. Additional perturbations may be
introduced to the model physics or inputs to represent
other sources of uncertainty, as demonstrated in Monte
Carlo (MC) ensemble forecast methods (Whitaker and
Hamill, 2012; Hoteit et al., 2018; Sanikommu et al.,
2020). This collection of forecasts provides a proba-
bilistic picture of future conditions, reflecting both ini-
tial conditions and model uncertainties.

Virtual ensemble forecasts were traditionally more common
for operational purposes, as they do not require major extra
computations, although their large ensemble spread was per-
ceived as a disadvantage. The multi-model approach involves
the tedious task of running and maintaining different ocean
general circulation models (OGCMs), but it can be facilitated
by combining the forecasts from different operational centers
(e.g., Ren et al., 2019). Ensemble forecasts generated by an
MC approach are increasingly adopted operationally. Despite
their demonstrated skill, the MC ensemble forecasts require
that the ensemble truly represents the probability distribution
of the underlying dynamical system (Leith, 1974). Designing
perturbation schemes that accurately capture all sources of
uncertainty (e.g., initial conditions, forcing, model physics)
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remains a significant challenge, as does determining how to
vary these perturbations in time.

Recent advances in ensemble data assimilation approaches
now provide robust frameworks to represent the error of the
day, for both initial conditions and inputs or parameters,
by sampling perturbations directly from (approximate) er-
ror distributions conditioned on observations (Hoteit et al.,
2018; Carrassi et al., 2022). Nevertheless, obstacles persist,
particularly in high-dimensional ocean forecasting systems,
where the ensemble size is often limited by computational
costs. Methods such as localization and inflation are com-
monly used to mitigate sampling errors and maintain ade-
quate ensemble spread (Brankart et al., 2015; Storto and An-
driopoulos, 2021). Hybrid ensemble–variational approaches
and other advanced techniques can further alleviate these is-
sues by blending flow-dependent ensemble covariances with
multi-year or climatological statistics (Song et al., 2013).
However, each solution carries its own computational de-
mands and assumptions, highlighting the ongoing need to
balance accuracy, efficiency, and complexity in operational
ocean forecasting systems (OOFSs).

3 Probabilistic assessment

Forecast ensembles are evaluated through their sample statis-
tics, mainly the ensemble mean and its spread (the standard
deviation with respect to the ensemble mean). The mean
can be directly compared with available observations, while
the spread indicates the confidence in the forecast: a smaller
spread implies lower uncertainty and vice versa. High-order
moments, such as skewness and kurtosis, help characterize
the shape of the ensemble distribution (Groeneveld and Mee-
den, 1984). In addition, probabilistic validation and verifi-
cation methods, including reliability, resolution, sharpness,
and rank histograms, are frequently employed (Johnson and
Bowler, 2009). An ensemble is deemed reliable if the pre-
dicted probability of an event aligns with the observed fre-
quency. Resolution assesses how far the forecast deviates
from the climatological event frequency; increasing this de-
viation enhances the reliability of the forecast. In the same
context, sharpness measures the ability of an ensemble fore-
cast to spread away from the climatological average. Ide-
ally, an ensemble forecast needs to be reliable, with as many
forecasts as possible away from the climatological average.
Rank histograms, which tally the position of the observa-
tion among sorted ensemble values, are used to test relia-
bility and diagnose errors in the ensemble mean or spread
(Hamill, 2001). Another commonly used metric is the contin-
uous ranked probability score (CRPS), which evaluates both
accuracy and reliability by comparing the forecast distribu-
tion with the observed value across all possible outcomes.
A lower CRPS indicates a closer match to reality and thus
better overall probabilistic forecasts (Leutbecher and Haiden,
2021).

4 Current status of ensemble forecasts in
operational ocean forecasting systems (OOFSs)

Despite the early establishment of ensemble methods for
ocean data assimilation and forecasting (Evensen, 1994), en-
semble forecasts, particularly the global systems, only re-
cently found their way to the operational centers. This is
mostly because the centers prioritized using the available
computational resources to increase the resolution of ocean
models. This was due to the need to resolve the mesoscale
to submesoscale processes to better describe the energy cas-
cade in the ocean and to meet user demands for higher-
resolution forecasts (e.g., D’Addezio et al., 2019; Davidson,
2021). Recent developments in ocean ensemble forecasting
followed the improved coverage in ocean observations that
provided increased information to accurately constrain the
initial ocean state for extended forecast horizons, the bet-
ter coordination between ocean forecasting groups, the ease
of access to atmospheric ensembles, and the ever-increasing
availability of computational power (Metzger et al., 2010;
Strohmaier et al., 2015; Bauer et al., 2021). Ocean ensemble
forecasts are now routinely generated at several operational
ocean centers on both global and regional scales to cater to
different needs, as summarized in Table 1.

5 Role of ensemble forecasts in next-generation
OOFSs

Recognizing the importance of representing uncertainties in
ocean forecasts to meet the need of future demands in proba-
bilistic predictions, ensemble forecasts are expected to be-
come a standard output of any operational ocean product.
Although high-resolution observations of some surface vari-
ables are now more accessible, the lack of dense, three-
dimensional coverage, especially at subsurface levels, still
leaves mesoscale and submesoscale processes poorly con-
strained by ocean analysis systems. Uncertainties from the
unconstrained scales might lead to larger forecast errors
due to growing dynamical instabilities (Sandery and Sakov,
2017), which limit the forecasting skills of high-resolution
ocean models (e.g., Thoppil et al., 2021). Ensemble fore-
casting has been proven efficient to extend ocean forecasting
horizons when model uncertainties in the initial conditions,
inputs, and physics are accounted for (Mullen and Buizza
2002; Ryan et al., 2015; Sanikommu et al., 2020). Ensemble
forecasts are also essential for providing the error statistics
required by ocean analysis systems, thereby enabling bet-
ter use of high-density observations from recently launched
and upcoming satellite missions, such as Surface Water and
Ocean Topography (SWOT) (Fu and Ubelmann, 2014). Long
delayed by the desire of the community to increase the reso-
lution of the ocean models to improve their realism, the ever-
increasing computing resources will provide more and more
power to integrate these within ensemble forecasting frame-
works.
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Table 1. Summary of selected operational ensemble forecasting systems worldwide.

Institution Forecasting
system

Domain
(resolution)

Ensemble perturbations
(size)

Type of forecast Reference

Met Office,
UK

FOAM Global (9 km) Observations + internal
physics + atmosphere (36)

Short-range ocean
state

Lea et al. (2022)

NRL, USA Navy-ESPC Global (9 km) Observations (16) Days to subseasonal
ocean state

Barton et al. (2021)

Bluelink,
Australia

OceanMAPS Global (10 km) Initial conditions +
time-lagged (48)

Short-range ocean
state

Brassington et al.
(2023)

ECMWF NEMO Global (25 km) Initial conditions + forcing
+ observations (5)

Near-real-time ocean
state

Zuo et al. (2019)

NERSC,
Norway

TOPAZ5 North Atlantic
and Arctic
(6 km)

Atmosphere (100) Short-range ocean
state

Nakanowatari et al.
(2022)

KAUST,
Saudi Arabia

MITgcm Red Sea (4 km) Atmosphere + internal
physics (50)

Short-range ocean
state

Sanikommu et al.
(2020)

INCOIS,
India

ROMS Indian Ocean
(8 km)

Atmosphere + internal
physics (80)

Short-range ocean
state

Francis et al. (2020)

Bureau of
Meteorology,
Australia

ACCESS-S Global (4 km) Internal physics +
time-lagged (30)

Multi-week to
seasonal El Niño/IOD

Wedd et al. (2022)

CMA, China CMMEv1 Global (100 km) Multi-model + initial
conditions (90)

Multi-week to
seasonal El Niño/IOD

Ren et al. (2019)

CMCC CMCC-SPS3.5 Global (25 km) Initial conditions + model
physics (50)

184 d Gualdi et al. (2020)

ECMWF SEAS5 Global (25 km) Initial conditions + model
physics + observations (51)

6 months Johnson et al. (2019)

Meteo-France Meteo-France
System 8

Global (25 km) Model dynamics (51) 7 months Pianezze et al.
(2022)

DWD GCFS 2.1 Global (25 km) Initial conditions + model
physics (50)

215 d Fröhlich et al. (2021)

ECMWF IFS Global (10 km) Internal physics (51) Short-range waves Browne et al. (2019)

NCEP GWES Global (25 km) Wind (30) Short-range waves Penny et al. (2015)

UK Metoffice Wavewatch-III Atlantic-UK
(3 km)

Wind (22) Short-range waves Bunney and Saulter
(2015)

MET-Norway Barotropic
version of ROMS

Norway (4 km) Atmosphere (51) Short-range storm
surge

Kristensen et al.
(2022)

Ocean forecasts have long been produced by data assimila-
tion (DA) systems and are now routinely used operationally.
Ensemble forecasts could be generated from deterministic
DA systems, which produce one single forecast, by simply
perturbing the observations (or other parameters of the as-
similation system) or during the forecasting step using an en-
semble forecasting method. Ensemble DA methods, on the
other hand, readily produce ensemble ocean perturbations
that (approximately) represent the error of the day and can

be directly used to generate ensemble forecasts. These could
also be combined with standard ensemble forecasting meth-
ods to further represent the missing information about the
error growth in the computationally restricted DA ensem-
bles. To fully exploit the benefits from ocean ensemble fore-
casts, new tools to analyze, visualize, and also integrate these
probabilistic products in decision-making and management
of ocean services need to be developed and made available
for the end users.
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Abstract. Artificial intelligence and machine learning are accelerating research in Earth system science, with
huge potential for impact and challenges in ocean prediction. Such algorithms are being deployed on differ-
ent aspects of the forecasting workflow with the aim of improving its speed and skill. They include pattern
classification and anomaly detection; regression and diagnostics; and state prediction from nowcasting to syn-
optic, sub-seasonal, and seasonal forecasting. This brief review emphasizes scientific machine learning methods
that have the capacity to embed domain knowledge; to ensure interpretability through causal explanation, to
be robust and reliable; to involve effectively high-dimensional statistical methods, supporting multi-scale and
multi-physics simulations aimed at improving parameterization; and to drive intelligent automation, as well as
decision support. An overview of recent numerical developments is discussed, highlighting the importance of
fully data-driven ocean models for future expansion of ocean forecasting capabilities.

1 Introduction

Research into applications of artificial intelligence (AI) and
machine learning (ML) in ocean, atmospheric, and climate
sciences has accelerated at a breathtaking pace over the last
5 years or so (e.g., Schneider et al., 2023; Eyring et al.,
2024). With essentially all of these applications concerned
with ML, we will drop the more broadly defined “AI” term
in most of the following, except when used by references
cited. We will also take the perspective of scientific machine
learning (SciML), defined in a 2019 U.S. Department of En-
ergy report on “Basic Research Needs for Scientific Machine
Learning” (Baker et al., 2019), which emphasizes six key el-
ements of SciML algorithms: (i) ML approaches that incor-
porate domain knowledge, such as physical principles, sym-

metries, constraints, expert feedback, computational simu-
lations, and formal uncertainties; (ii) ML approaches that
are interpretable, such that a user’s confidence in ML-based
model predictions may be bolstered by causal explanations
based on a user’s domain knowledge; (iii) ML approaches
that are robust and reliable as a prerequisite for making high-
stakes and high-regret decisions; (iv) ML approaches that
are data-intensive, i.e., that ingest high-dimensional, noisy,
and uncertain input data which contain complex structures
and which require statistical and probabilistic methods to
deal with ill-conditioning, non-uniqueness, and over-fitting;
(v) ML approaches that enhance modeling and simulation
to support, e.g., multi-scale and multi-physics simulations in
terms of improved model parameterization or model acceler-
ation; and (vi) ML approaches to support intelligent automa-
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tion and decision support, which can range from quality con-
trol to application-oriented post-processing workflows. Ar-
guably, all of these criteria are fundamental to the uses of
ML in ocean prediction.

Next, following the review by Reichstein et al. (2019), it is
useful to distinguish different categories of ML applications,
namely (A) classification and anomaly detection, which is
concerned with, e.g., finding extreme event patterns or the
classification of important structures or regimes; (B) regres-
sion, which is concerned with state reconstruction of impor-
tant state variables, parameters, or diagnostics (metrics) from
available data; and (C) state prediction, ranging from now-
casting to operational forecasting and sub-seasonal to sea-
sonal prediction. A comprehensive collection of review ar-
ticles on deep learning in Earth sciences is Camps-Valls et
al. (2021), covering algorithmic foundations and examples
of all three categories.

Because the subject of this document is ocean prediction,
we will focus the following on the third category, namely
state prediction or forecasting. To keep this review manage-
able, we will not review the interesting subjects of ML ap-
plications for state reconstruction, downscaling, or classifi-
cation.

2 State prediction

The workflow of operational ocean prediction largely fol-
lows that of numerical weather prediction (NWP). Its core
engine is a data assimilation (DA) framework, consisting of
a physical model (i.e., a complex algorithm for solving a
set of partial differential equations, PDEs), a workflow for
quality-controlling and ingesting diverse observational data
streams into the DA system (ideally in near-real time), and
an optimal estimation algorithm that combines models and
data in a formal manner that produces statistically optimal
forecasts (e.g., Park and Zupanski, 2022). As pointed out by
Stephen Penny in a 2022 U.S. National Academy of Sciences
workshop on Machine Learning and Artificial Intelligence
to Advance Earth System Science (NASEM, 2022), machine
learning (ML) approaches hold the prospect for accelerating
various elements of the DA workflow. We briefly summa-
rize ML approaches targeting the physical model and the DA
algorithm. Opportunities in the application of ML for par-
tial differential equation (PDE)-based models fall into two
main categories, where one is concerned with targeted inser-
tion of ML within a physical model, and the other is con-
cerned with the complete replacement of the physical model
by a surrogate model. In the former, certain elements or sub-
components of a physical model are replaced by a surrogate
model (e.g., a neural network), whereas in the latter, the en-
tire model is emulated. Chantry et al. (2021) have used the
terms “soft AI” versus “hard AI”. We avoid the somewhat
non-descriptive or ambiguous terminology to avoid giving a

false sense of which of these approaches is “harder” to real-
ize.

2.1 Hybrid physics–ML models: enhancing forecast
models and data assimilation with ML algorithms

A major source of model uncertainty is the parameterization
of subgrid-scale (SGS) processes in terms of structural errors
(formulation of functional representations of parameteriza-
tions) and parametric uncertainties (calibrating empirical pa-
rameters in the functional representations). Exciting efforts
are underway to apply machine learning to replace conven-
tional functional representation subgrid-scale (SGS) turbu-
lent oceanic processes with surrogate models that are based
on machine learning and that have been trained either offline
or online (Bolton and Zanna, 2019; Frezat et al., 2021, 2022;
Zhang et al., 2023; Sane et al., 2023; Perezhogin et al., 2023).
This follows on early ideas in the context of climate model
parameterization (e.g., Schneider et al., 2017; Rasp et al.,
2018). Similarly, equation discovery has proven successful
to infer the functional form of such SGS ocean parameteri-
zation schemes (Zanna and Bolton, 2020, 2021; Perezhogin
et al., 2024). A longer list of related efforts exists for numer-
ical weather prediction and has been reviewed by Dueben
et al. (2021) and Bouallègue et al. (2024). These surrogates,
mostly some form of neural networks, have been trained on
(i.e., fit to) what are considered simulations of much higher
fidelity and where these processes are resolved (e.g., large-
eddy simulations). Related efforts aim at learning improved
parameterizations from online bias correction or analysis in-
crements incurred in sequential data assimilation (e.g., Gre-
gory et al., 2023, 2024; Storto et al., 2024). Rapid progress
is expected on this front in the coming years.

A second important application of hybrid approaches is the
desire to replace specific numerical algorithms within PDE-
based models with surrogate models to accelerate the simu-
lation’s time to solution. Studies exist within the generic field
of computational fluid dynamics (Kochkov et al., 2021) and
atmospheric modeling (Arcomano et al., 2023; Kochkov et
al., 2024), and there are ocean-specific applications currently
underway. Most of these take advantage of the concept of
differentiable programming (Gelbrecht et al., 2023; Shen et
al., 2023; Zhang et al., 2023; Sapienza et al., 2024). The un-
derlying idea is to eventually be able to generate code for
the derivative of the physical model, in particular the adjoint
model that enables efficient “online” (or “full model”) learn-
ing of the model parameters (or neural network weights).

There is a strong conceptual correspondence between ma-
chine learning and data assimilation (e.g., Abarbanel et al.,
2018). This provides various opportunities for embedding
ML approaches within operational data assimilation work-
flows deployed in ocean prediction. Examples in ocean mod-
eling so far are largely restricted to “toy problems” (such
as the “Lorenz 96 model”) or reduced-order versions of
Earth system models that target eventual applications for
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ocean prediction (Bocquet et al., 2020; Brajard et al., 2021;
Penny et al., 2022; Irrgang et al., 2021). The use of hybrid
DA/ML approaches, whether in the context of ensemble DA
or adjoint-based methods (e.g., 4DVar), presents substantial
algorithmic hurdles (e.g., availability of a differentiable dy-
namical core in the context of adjoint-based DA), which ex-
plains the relative paucity of such studies to date compared
to purely data-driven methods.

2.2 Purely data-driven models: replacing numerical
simulations with surrogate models

Over the last decade, with the acceleration in AI-based so-
lutions in other fields, a number of approaches to model the
atmosphere and ocean using different purely data-driven ML
techniques have been developed. The overwhelming majority
of these cases have so far been realized in weather prediction
or computational fluid dynamics.

2.2.1 Deterministic applications in weather prediction

Arguably, the field of data-driven weather forecasting has
seen the strongest advances over the last 5 years or so
(Schneider et al., 2022). This is a strong incentive for pro-
viding a very brief review that is organized in terms of ap-
proaches as a function of underlying “blocks” of the ML ar-
chitectures employed. In a number of cases, these architec-
tural blocks are being combined. For example, the European
Centre for Medium-Range Weather Forecast’s AIFS system
(Lang et al., 2024) uses an overall “encode–process–decode”
architecture, with a graph-based encoder and decoder but a
sliding window transformer as the processor.

– Convolutional neural networks (CNNs). Perhaps among
the first serious endeavors using ML for emulating
weather forecast models have been the CNNs used
by Weyn et al. (2019, 2020, 2021) and Karlbauer et
al. (2024). CNNs use a mathematical operation called
convolution to compress information, learning features,
or patterns in the input. Most recently, CNNs have been
used by Cresswell-Clay et al. (2024) to create a cou-
pled atmosphere–ocean emulator which produces a sta-
ble climate for 1000-year periods and appears to be
competitive with many CMIP6 models.

– Graph neural networks. Among the leading emulators
for medium-range weather forecasts is the work by
Lam et al. (2023). Based on graph neural networks, the
GraphCast model was trained on atmospheric reanalysis
data to produce autoregressive forecasts for up to 10 d.

– Transformers. These have been revolutionary in other
ML/AI fields, such as natural language processing and
image recognition/generation. They serve as the back-
bone of some of the leading atmospheric emulators, in-
cluding Pangu-Weather (Bi et al., 2023), FuXi (L. Chen
et al., 2023), and FengWu (K. Chen et al., 2023).

– Fourier neural operators (FNOs). FNOs have been de-
signed to move toward mesh-independent operators us-
ing Fourier bases (Li et al., 2020). FourCastNet (Pathak
et al., 2022; Kurth et al., 2023) is based on a variant
called the Adaptive FNO (AFNO). Another variant, the
Spherical FNO (SFNO; Bonev et al., 2023; Watt-Meyer
et al., 2023) seeks to take advantage of the spherical
geometry (and underlying symmetries) in representing
operator kernels for global-scale applications. Very re-
cently, the use of SFNOs has been extended to coupled
atmosphere–ocean modeling targeting seasonal predic-
tion (C. Wang et al., 2024).

– Recurrent neural networks (including long short-term
memory, LSTM, and reservoir computing). Recurrent
neural networks (RNNs) are well suited for sequen-
tial data processing, such as time series. Among spe-
cial cases of RNNs, LSTM networks use a special type
of neuron that keeps track of previous inputs (short-
term memory) and are especially useful for predicting
time series with memory, such as the case for the at-
mosphere and ocean. Reservoir computing (RC), an-
other method based on RNNs with a pool of intercon-
nected neurons forming the “reservoir”, is particularly
well adapted to the emulation of time series (e.g., Arco-
mano et al., 2020; Penny et al., 2022; Platt et al., 2023;
Smith et al., 2023).

2.2.2 Probabilistic approaches – generative models

Most examples sketched in Sect. 2.2.1 describe emulators
that are trained to be deterministic forecast models. Re-
cent developments in ML have considered generative frame-
works, i.e., models that are designed to be probabilistic. Such
frameworks would include variational autoencoders, gener-
ative adversarial networks (GANs), and diffusion models.
However, we note that GANs can suffer from a lack of sam-
ple diversity (Bayat, 2023), and they are notoriously chal-
lenging to train, requiring a careful setup to avoid training
instabilities (e.g., Miyato et al., 2018). Moreover, in recent
years, diffusion models have started to outperform GANs in
image classification (Dhariwal and Nichol, 2021). For these
reasons, diffusion models have become popular in generative
modeling, despite their relatively high computational cost.
Recent examples of diffusion models include GenCast (Price
et al., 2024). Finally, we note a very recently developed tech-
nique, DYffusion (Cachay et al., 2023, 2024), which is a gen-
erative framework that aims to reduce the computational cost
of diffusion modeling by encoding the temporal evolution ex-
pected in physical systems into the generative process.

2.2.3 Physics-informed machine learning

The results of purely data-driven solutions may potentially
produce meaningless output as the training strategy of a neu-
ral network is to minimize a mathematical loss function, e.g.,
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the mean squared error (i.e., L2 norm) between the predic-
tion and the original target. Similar issues, e.g., producing
overly blurred output, may arise with other choices of the loss
function, such as an L1 norm. An evolution of this approach
is to include some physical constraints in the loss function
in order to force the ML algorithm to produce more con-
sistent outputs, such as the Navier–Stokes equation (Ma et
al., 2022; Daw et al., 2021). This class of methods is known
as physics-informed neural networks (PINNs). However, the
performance of PINNs for extrapolation remains subject to
debate (e.g., Du et al., 2023, for a cautionary example). Re-
cently, another approach, which tries to solve differential
equations using neural networks, is under development. Al-
though this method is mostly developed for other physics
fields, the methodology and knowledge can be applied to
ocean modeling (Zubov et al., 2021; Smets et al., 2023).

2.2.4 Applications in ocean surface state forecasting

With previous examples mostly limited to weather predic-
tion and computational fluid dynamics (in a few cases), we
turn our attention to applications in the context of predict-
ing ocean surface properties. They include the use of multi-
layer perceptrons (James et al., 2018; Gracia et al., 2021)
and LSTMs (Minuzzi and Farina, 2023; Lawal et al., 2024)
for surface wave prediction, surface wave–current interaction
forecasting, storm surge forecasting (Xie et al., 2023), and
sea surface temperature prediction via deep learning (Wolff
et al., 2020; Xu et al., 2023) and the use of neural networks
for accelerating resonant nonlinear wave–wave interaction
in an ocean surface wave model (Puscasu, 2014), regional
to coastal sea level prediction (Nieves et al., 2021), ocean
color mapping (Chen et al., 2019), and statistical downscal-
ing (Accarino et al., 2021). Other applications include es-
timating ocean surface circulation (Sinha and Abernathey,
2021; Subel and Zanna, 2024) and predicting dissolved oxy-
gen across scales (O’Donncha et al., 2022).

2.3 ML-based ocean circulation prediction

Among the challenges of fully realizing the opportunities of
ML approaches in ocean circulation prediction is the fact
that, in the absence of adequate and densely sampled ob-
servational data, most ML applications rely on the use of
data obtained from high-fidelity model simulations as train-
ing data sets. These data sets are very expensive to gen-
erate, limited in the temporal ranges that they can repre-
sent, remain subject to unquantified structural and paramet-
ric model uncertainty, require vast amounts of storage (on
the order of petabytes), and are thus challenging to query.
Cloud-based solutions are the most promising approach for
ubiquitous data access and analysis capabilities “close to the
data” (Abernathey et al., 2020).

Within the realm of machine learning (ML) applications
for ocean forecasting, progress has been somewhat limited.

Recent developments have marked a shift in this landscape,
particularly with the introduction of Fourier neural opera-
tors for modeling oceanic processes, as suggested by Bire et
al. (2023), Chattopadhyay et al. (2024), and Sun et al. (2024).
These studies present fully data-driven ocean models that
match the capabilities of traditional numerical ocean mod-
els in predicting high-resolution sea surface height (SSH)
fields. FNOs are attractive for their performance in learn-
ing complex and high-dimensional mappings and their abil-
ity to incorporate physical laws and constraints, which are
prominently observable in the spectral domain. A drawback
of FNOs applied to ocean (unlike atmospheric) modeling is
the existence of land-covered portions of the domain, which
renders the use of periodic basis functions challenging and
may create artifacts near land–ocean boundaries.

Concurrently, X. Wang et al. (2024) introduced a
transformer-based model tailored for oceanic applications,
demonstrating performance that rivals that of leading oper-
ational global ocean forecasting systems. Similar advances
are being made in the data-driven prediction of sea ice cover
in the polar oceans (Andersson et al., 2021; see also Bertino
et al., 2025, in this report). This body of work signifies the
emergence of a promising research avenue in fully data-
driven ocean modeling, despite it still lagging considerably
behind the advancements seen in weather forecasting. We
posit that the drive of fully data-driven solutions in NWP by
private sector companies is related to the prospect of high-
stakes and high-reward applications. Such applications for
ocean predictions should be better articulated to attract sim-
ilar research efforts. Careful evaluation of skill, such as that
now being discussed more comprehensively in NWP (e.g.,
Bonavita, 2023; Charlton-Perez et al., 2024), will also be re-
quired for operational ocean prediction.

Another challenge presents the extension of ML applica-
tions to seasonal, inter-annual, and multi-decadal – i.e., cli-
mate – timescales (see, e.g., the discussion in Gentine et
al., 2021; Beucler et al., 2024; Subel and Zanna, 2024).
Here, the increased need for models or invariant operators
(physics-based or surrogates) to conserve fundamental prop-
erties (mass, energy, momentum, and active tracers) puts se-
vere demands on ML approaches. Arguably, as these ap-
proaches increasingly incorporate physical knowledge, they
will converge to the realm of classical inverse methods (Will-
cox et al., 2021).

2.4 Benchmarking forecast models

Data-driven forecasting in meteorology – and to some ex-
tent in oceanography – is proceeding at a breathtaking pace.
The use of different approaches, different training data, and
different performance metrics complicates objective assess-
ment of the different works at the present time. Recognizing
the need for standardized evaluation has led to the proposi-
tion of common evaluation benchmarks that encompass both
data-driven and “traditional” forecasting in weather predic-
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tion (Dueben et al., 2022; Rasp et al., 2020, 2024), as well
as climate model emulation (Yu et al., 2023). These bench-
marks comprise common data sets, open-source evaluation
workflows, and common evaluation metrics. Similar bench-
marking efforts in ML-driven ocean circulation and surface
wave forecasting will be equally important to advance the
field and establish standardized evaluation metrics.

3 The role of surrogate models in digital twins

The concept of digital twins (DTs) is rapidly gaining trac-
tion within the ocean science community and Earth system
science more broadly (e.g., Bauer et al., 2021a, b). Because
of the differing view of what constitutes a DT in the recent
literature, we here adopt and emphasize the definition from
NASEM (2022) (see also Niederer et al., 2021; NASEM,
2023), which states that a DT is

a set of virtual information constructs that mim-
ics the structure, context and behavior of an indi-
vidual/unique physical asset, or a group of physi-
cal assets, is dynamically updated with data from
its physical twin throughout its life cycle and in-
forms decisions that realize value. A digital twin
is highly dynamical, mimicking the time evolution
of its physical asset (PA) via advanced simulation
and emulation capabilities; it is updated by ingest-
ing vast amounts of observational data of diverse
types; and it enables WHAT-IF queries and multi-
ple realizations to support prediction of responses
of the PA to hypothetical perturbations with quan-
tified uncertainties.

Virtually all aspects of ocean forecasting – and ML oppor-
tunities therein – may be viewed through the DT lens from
the need to generate high-fidelity simulations or digital rep-
resentations, ingesting, i.e., assimilating, large and heteroge-
neous data streams, and the development of fast surrogates or
emulators to either accelerate simulations or provide compre-
hensive uncertainty estimates, to the generation of diagnostic
data that create value for (possibly rapid) decision support.
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Abstract. Operational ocean forecasting systems (OOFSs) are complex engines that must execute ocean mod-
els with high performance to provide timely products and datasets. Significant computational resources are then
needed to run high-fidelity models, and, historically, the technological evolution of microprocessors has con-
strained data-parallel scientific computation. Today, graphics processing units (GPUs) offer a rapidly growing
and valuable source of computing power rivaling the traditional CPU-based machines: the exploitation of thou-
sands of threads can significantly accelerate the execution of many models, ranging from traditional HPC work-
loads of finite difference, finite volume, and finite element modelling through to the training of deep neural
networks used in machine learning (ML) and artificial intelligence. Despite the advantages, GPU usage in ocean
forecasting is still limited due to the legacy of CPU-based model implementations and the intrinsic complexity
of porting core models to GPU architectures. This review explores the potential use of GPU in ocean forecasting
and how the computational characteristics of ocean models can influence the suitability of GPU architectures for
the execution of the overall value chain: it discusses the current approaches to code (and performance) porta-
bility, from CPU to GPU, including tools that perform code transformation, easing the adaptation of Fortran
code for GPU execution (like PSyclone), the direct use of OpenACC directives (like ICON-O), the adoption of
specific frameworks that facilitate the management of parallel execution across different architectures, and the
use of new programming languages and paradigms.

1 Introduction

Operational ocean forecasting systems (OOFSs) are compu-
tationally demanding, and large computing resources are re-
quired in order to run models of useful fidelity. However, this
is a time of great upheaval in the development of computer
architectures. The ever-shrinking size of transistors means
that current leakage (and the resulting heat generated) now
presents a significant challenge to chip designers. This break-
down of Dennard scaling (transistor power consumption is
proportional to area as in Dennard et al., 1974) began in about
2006 and means that it is no longer straightforward to con-
tinually increase the clock frequency of processors. Histori-
cally, this has been the main source of performance improve-

ment from one generation of processor to the next (Fig. 1).
Although the number of transistors per device continues to
rise, they are increasingly being used to implement larger
numbers of execution cores. It is then the job of the applica-
tion to make use of these additional cores to achieve a perfor-
mance improvement. Graphics processing units (GPUs) are a
natural consequence of this evolution. Originally developed
to accelerate the rendering of computer-generated images (a
naturally data-parallel task thanks to the division of an image
into pixels), scientists were quick to seize on their potential
to accelerate data-parallel scientific computation. Therefore,
manufacturers today produce HPC-specific “GPUs” that are
purely intended for computation. The suitability of this hard-
ware for the training of deep neural networks used in ma-
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chine learning (ML) and artificial intelligence has stimulated
massive development and competition amongst GPU ven-
dors. Because of the exploding interest of AI applications in
virtually all sectors of industry, the commercial HPC market
is undergoing a seismic shift toward GPU-based hardware,
with serious implications for available HPC architectures in
the future, to which OOFS will have to adapt.

Unlike CPUs, which tend to have relatively few but pow-
erful (general purpose) processor cores, GPUs support hun-
dreds of simpler cores running thousands of threads which
can obtain data from memory very efficiently. The simplic-
ity of these cores makes them more energy-efficient; there-
fore GPUs tend to offer significantly greater performance
per watt. With the energy consumption of large computing
facilities now the key design criterion, GPUs are an impor-
tant part of the technology being used in the push towards
exascale performance and beyond (e.g. Draeger and Siegel,
2023). As an illustration, in the November 2024 incarnation
of the TOP500 list (Strohmaier et al., 2024), 9 of the ma-
chines in the top 10 are equipped with GPU accelerators from
NVIDIA, Intel, or AMD. Although CPUs are present in these
machines, their primary role is to host the GPUs which pro-
vide the bulk of the computing performance. GPUs are there-
fore a major feature of the current HPC landscape, and their
importance and pervasiveness are only set to increase.

2 Computational characteristics of ocean models

To understand why GPUs are well suited to running OOFSs,
it is important to consider their computational characteris-
tics. The equations describing ocean evolution form a sys-
tem of partial differential equations that are solved numeri-
cally by discretising the model domain and then using a finite
difference, finite volume, or finite element scheme. In these
forms, the bulk of the computational work takes the form of
stencil computations, where the update of a field at a given
grid location requires that many other field values be read
from neighbouring locations. This means that the limiting
factor in the rate at which these computations can be done
is how quickly all these values can be fetched from memory
(so-called “memory bandwidth”). Finite element schemes do
have the advantage of shifting the balance in favour of do-
ing more arithmetic operations, but memory bandwidth still
tends to dominate. These computations are, of course, re-
peated across the entire model grid, meaning that it is a sin-
gle instruction, multiple data (SIMD) problem. OOFSs are
therefore a very good fit for GPU architectures, which natu-
rally support massively data-parallel problems and typically
provide much higher memory bandwidth than CPUs.

For execution on distributed-memory computers, OOFSs
typically use a geographical domain decomposition where
each processor is assigned a part of the model domain. In
order to handle stencil updates at the boundaries of a proces-
sor’s sub-domain, it must exchange information with those

processors operating on neighbouring sub-domains. Obvi-
ously, there is a cost associated with performing these ex-
changes, which high-performance processor interconnects
can only do so much to mitigate. As more processors are
thrown at a problem in order to reduce the time to solu-
tion, the size of their sub-domains decreases and so does
the amount of computation that each must perform. Con-
sequently, the relative cost of inter-processor communica-
tion becomes more significant and, after a certain point (the
“strong-scaling limit”), will begin to dominate. At this point,
using further processors will bring only limited performance
improvements, if any.

Inter-processor communication on a GPU-based machine
can be more costly, as messages may have to go via the
CPUs hosting the GPUs, unless a machine has both hard-
ware and software support for direct GPU–GPU commu-
nication. Communication-avoiding/minimising strategies are
therefore more important on these architectures. These can
include algorithmic design (e.g. Silvestri et al., 2024) to al-
low the overlap of communication and computation or sim-
ply the use of wider halo regions to reduce the frequency of
halo exchanges.

3 The use of GPUs in ocean forecasting

Although GPUs are now a well-established HPC tech-
nology with potentially significant performance advan-
tages for OOFSs, they are not yet widely adopted in
the ocean-forecasting community. For example, in Europe,
NEMO (Madec et al., 2024) is the most important ocean-
modelling framework; it is used operationally by Merca-
tor Ocean International, the European Centre for Medium-
Range Weather Forecasts (ECMWF), the UK Met Office, the
Euro-Mediterranean Center on Climate Change, and other
institutes worldwide. NEMO is implemented in Fortran and
parallelised with MPI and, as such, is limited to running
on CPUs only. The German Weather Service (DWD) uses
ICON-O (Korn, 2017), which is also a Fortran model. Exper-
iments are in progress with the use of OpenACC directives to
extend this code to make use of GPUs, but this functionality
is not used operationally.

In the US, NOAA’s Real-Time Ocean Forecast System
(https://polar.ncep.noaa.gov/global/, last access: 14 April
2025) is based on the Hybrid Coordinate Ocean Model (HY-
COM; Chassignet et al., 2009). HYCOM is also a Fortran
code, parallelised using a combination of OpenMP and MPI.
Although not used operationally, the Energy Exascale Earth
System Model (E3SM) is also significant. It utilises the
ocean, sea ice, and land ice versions of the Model for Pre-
diction Across Scales (MPAS; Ringler et al., 2013), which
again is implemented in Fortran with MPI. Although a port of
this was attempted through the addition of OpenACC direc-
tives, it has been abandoned due to poor GPU performance
(Mark R. Petersen, personal communication, 2024). Instead,
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Figure 1. The breakdown of Dennard scaling, shown by 50 years of microprocessor (CPU) evolution (Rupp, 2022).

a new ocean model on unstructured meshes named Omega is
being developed in C++ from the ground up. Other widely
used ocean general circulation models include the MIT Gen-
eral Circulation Model (MITgcm; Marshall et al., 1997) and
the Modular Ocean Model, version 6 (MOM6; Adcroft et al.,
2019), both of which again are Fortran codes with support
for distributed- and shared-memory parallelism on CPU.

The Japanese Meteorological Agency runs operational
forecasts using the Meteorological Research Institute Com-
munity Ocean Model (MRI.COM) (Tsujino et al., 2010). As
with the previous models, this is also implemented in Fortran
with MPI and thus only runs on CPU.

For regional (as opposed to global) forecasts, the Rutgers
Regional Ocean Modeling System (ROMS) (Shchepetkin
and McWilliams, 2003) is used by centres worldwide, in-
cluding the Japan Fisheries Research and Education Agency,
the Australian Bureau of Meteorology, and the Irish Ma-
rine Institute. ROMS is also a Fortran code parallelised us-
ing either MPI or OpenMP (but not both combined) and is
thus restricted to CPU execution. Although various projects
have ported the code to different architectures (including the
Sunway architecture for China’s Tianhe machine; Liu et al.,
2019), these are all standalone pieces of work that have not
made it back into the main code base.

4 Discussion

From the preceding section, it is clear that OOFSs are cur-
rently largely implemented in Fortran with no or limited sup-
port for execution on GPU devices. The problem here is that
OOFSs comprise large and complex codes which typically

have a lifetime of decades and are constantly being updated
with new science by multiple developers. Maintainability, al-
lowing for the fact that the majority of developers will be
specialists in their scientific domain rather than in HPC, is
therefore of vital importance. Given that such codes are of-
ten shared between organisations, they must also run with
good performance on different types of architecture (i.e. be
“performance-portable”).

Previously, one generation of supercomputers looked
much like the last; therefore the evolution of these computer
models was not a significant problem. However, the prolif-
eration of computer hardware (and, crucially, the program-
ming models needed to target them) that has resulted from
the breakdown of Dennard scaling has changed this (Bal-
aji, 2021). With the average supercomputer having a lifetime
of just some 5 years, OOFSs are now facing the problem
of adapting to future supercomputer architectures, and this
is difficult because the aims of performance, performance
portability, and code maintainability often conflict with each
other (Lawrence et al., 2018).

Transformation of existing codes. To date there have been
various approaches to this problem. NEMO v.5.0 (Madec
et al., 2024) has adopted the PSyclone code transformation
tool (Adams et al., 2019), which enables an HPC expert
to transform Fortran source code such that it may be exe-
cuted on GPUs using whichever programming model (i.e.
OpenACC or OpenMP) is required. Previous, unpublished
work found that, for a low-resolution (1°) global mesh, a sin-
gle NVIDIA V100 GPU performed some 3.6 × better than
an HPC-class Intel socket. For a high-resolution (1/12th°)
global mesh, ∼ 90 A100 GPUs gave the same performance
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as ∼ 270 Intel sockets. In both cases, this is an ocean-
only configuration, with virtually all computing being per-
formed on the GPUs. This is important, since any compu-
tation happening on the CPU incurs substantial data trans-
fer costs as data are moved from the GPU to the CPU, up-
dated, and then transferred back to the GPU. The advent
of hardware support for unified CPU/GPU memory should
reduce the cost of this. As noted earlier, ICON-O is being
extended manually with OpenACC directives. There are ex-
amples of recent (i.e. experimental) models that have moved
away from Fortran in favour of higher-level programming ap-
proaches. Thetis (Kärnä et al., 2018) implements a discontin-
uous Galerkin method for solving the 3D hydrostatic equa-
tions using the Firedrake framework. This permits the sci-
entist to express their scheme in the Python implementation
of Unified Form Language (Alnæs et al., 2014). The neces-
sary code is then generated automatically. The Veros model
(Häfner et al., 2021) takes a slightly different approach: its
dynamical core is a direct Python translation of a Fortran
code and thus retains explicit MPI parallelisation. The JAX
system (http://github.com/google/jax, last access: 14 April
2025) for Python is then used to generate performant code
for both CPU and GPU. The authors report that the Python
version running on 16 A100 GPUs gives the same perfor-
mance as 2000 CPU cores for the Fortran version (although
this comparison is slightly unfair, as the CPUs used are sev-
eral generations older than the GPUs).

Performance portability tools. Another popular approach
to performance portability is to implement a model using a
framework that takes care of parallel execution on a target
platform. Frameworks such as Kokkos (Carter Edwards et al.,
2014), SYCL, and OpenMP are good examples, and the new
Omega ocean component of E3SM mentioned previously is
being developed to use Kokkos. In principle, this approach
retains single-source science code while enabling portability
to a variety of different hardware. However, it is hard to in-
sulate the oceanographer from the syntax of the framework
(which is often only available in C++), and, while the frame-
work may be portable, obtaining good performance often re-
quires that it be used in a different way from one platform
to another. In OpenMP, for instance, the directives needed to
parallelise a code for a multi-core CPU are not the same as
those needed to offload code to an accelerator.

New programming languages. The Climate Modeling Al-
liance (CliMA) has adopted a radically new approach by
rewriting ocean and atmospheric models from scratch us-
ing the programming language Julia (Perkel, 2019; Srid-
har et al., 2022). Designed to overcome the “two-language
problem” (Churavy et al., 2022), Julia is ideally suited to
harness emerging HPC architectures based on GPUs (Be-
sard et al., 2017; Bezanson et al., 2017). First results with
CliMA’s ocean model, Oceananigans.jl (Ramadhan et al.,
2020), run on 64 NVIDIA A100 GPUs exhibit 10 simulated
years per day (SYPD) at 8 km horizontal resolution (Silver-
stri et al., 2024). This performance is similar to current-

generation CPU-based ocean climate models run at much
coarser resolution (order of 25–50 km resolution). Similarly
promising benchmarks have been obtained with a barotropic
configuration of a prototype of MPAS-Ocean, rewritten in Ju-
lia (Bishnu et al., 2023). Such performance gains hold great
promise for accelerating operational ocean prediction at high
spatial resolution run on emerging HPC hardware.

Toward energy-efficient simulations. Increased resolution,
process representation, and data intensity in ocean and cli-
mate modelling is vastly expanding the need for compute
cycles (more cores and smaller time steps). As a result, the
ocean, atmosphere, and climate modelling community has
recognised the need for their simulations to become more
energy-efficient and to reduce their carbon footprint (Loft,
2020; Acosta et al., 2024; Voosen, 2024). Owing to their ar-
chitecture, GPUs can play a significant role in reducing en-
ergy requirements. A related research frontier being spear-
headed by the atmospheric modelling community is the use
of mixed or reduced precision to speed up simulations (Frey-
tag et al., 2022; Klöwer et al., 2022; Paxton et al., 2022),
with a potentially desirable side effect of natively capturing
stochastic parameterisations (Kimpson et al., 2023). GPUs
are ideally suited for such approaches, but successful imple-
mentation depends heavily on the model’s numerical algo-
rithms.

Data-driven operational ocean forecasting. Operational
weather and ocean forecasting are facing the potential of
a paradigm shift with the advent of powerful, purely data-
driven methods. The numerical weather prediction (NWP)
community has spearheaded the development of machine-
learning-based emulators that perform several orders of mag-
nitude faster than physics-based models (e.g. Bouallègue et
al., 2024; Rasp et al., 2024). Such emulators have the poten-
tial to revolutionise probabilistic forecasting and uncertainty
quantification, among others. The computational patterns un-
derlying the ML algorithms, such as parallel matrix multipli-
cation, are ideally suited for general-purpose GPU architec-
tures. While these methods have been driven to a large extent
by private sector entities and require access to increasingly
large GPU-based HPC systems for training, corresponding
efforts in operational ocean forecasting are only now begin-
ning to catch up. A review of the rapidly changing land-
scape of AI methods in the context of ocean forecasting is
attempted in Heimbach et al. (2025; in this report).
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Abstract. Cloud computing offers an opportunity to innovate traditional methods for provisioning of scalable
and measurable computed resources as needed by operational forecasting systems. It offers solutions for more
flexible and adaptable computing architecture, for developing and running models, and for managing and dis-
seminating data to finally deploy services and applications. The review discusses the key characteristic of cloud-
computing-related on-demand self-service, network access, resource pooling, elasticity, and measured services.
Additionally, it provides an overview of existing service models and deployments methods (e.g., private cloud,
public cloud, community cloud, and hybrid cloud). A series of examples from the weather and ocean community
are also briefly outlined, demonstrating how specific tasks can be mapped on specific cloud patterns and which
methods are needed to be implemented depending on the specific adopted service model.

1 Introduction

Cloud computing presents an opportunity to rethink tradi-
tional approaches used in operational oceanography (Vance
et al., 2016), since it can enable a more flexible and adaptable
computing architecture for observations and predictions, of-
fering new ways for scientists to observe and predict the state
of the ocean and, consequently, to build innovative down-
stream services for end users and policy makers. Operational
ocean forecasting systems (OOFSs) are sustained by a solid
backbone composed of satellite and marine observation net-
works for Earth observations (i.e., data) and state-of-the-art
numerical models (i.e., tools) that deliver products according
to agreed standards (i.e., ocean predictions, indicators, etc.):
the workflow is well represented by the ocean value chain,
as described in Bahurel et al. (2010) and Alvarez Fanjul et
al. (2022). OOFSs massively use high-performance comput-
ing (HPC) to process data and run tools, whose results are
shared and validated according to agreed data standards and
methodologies, which can result in a remarkable computa-
tional cost, not always affordable for research institutes and

organizations. Additionally, when building services, it is also
important to guarantee lower latency, cost efficiency, and
scalability, together with reliability and efficiency. In such
framework, cloud computing can represent an opportunity
for expanding the capabilities of forecasting centers in man-
aging, producing, processing, and sharing ocean data. It im-
plies adopting, evolving, and sustaining standards and best
practices to enhance management of the ocean value chain,
to optimize the OOFS processes, and to allow rationaliza-
tion of requirements and specifications to properly account
for operating a forecasting system (Pearlman et al., 2019).

Cloud technology has dramatically evolved in the last
decades: the private sector has extensively used cloud com-
puting for enabling scalability and security, leveraging it for
artificial intelligence (AI) and machine learning (ML) frame-
works, Internet of Things (IoT) integration, and HPC to op-
timize and innovate operations. It plays also a crucial role
in enhancing data interoperability and FAIR (findable, ac-
cessible, interoperable, and reusable; Wilkinson et al., 2016)
principles, through standardization of formats, APIs, and ac-
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cess protocols, ensuring that datasets can be easily shared,
accessed, and reused by researchers globally.

Considering OOFSs, the computational and programming
models offered by cloud computing can largely support real-
time data processing, scalable model runs, data sharing, and
elastic operations, facilitating the integration of AI/ML tech-
niques (Heimbach et al., 2025, in this report) and the de-
velopment of applications for the blue economy and society
(Veitch et al., 2025, in this report) in operational frameworks.
More in detail, cloud computing can provide a powerful
and collaborative platform for the development and running
of operational models, for management and dissemination
of data, for building and deploying services to downstream
business and applications, and finally for analyses and visu-
alization of oceanographic products, enabling researchers to
tackle larger and more complex problems without the burden
of building and maintaining computing and storage infras-
tructures. However, challenges such as data transfer latency,
security, and potential vendor lock-in must be addressed, in-
cluding the high costs for running complex modeling sys-
tems.

This paper explores today’s capabilities in cloud comput-
ing technology with an outlook on the benefit and challenges
in adopting this paradigm in OOFSs. The remainder of this
paper is organized as follows: Sect. 2 presents cloud com-
puting foundational key concepts, highlighting some exist-
ing initiatives from the private sector; Sect. 3 discusses op-
portunities and challenges for ocean prediction in adopting
cloud technologies, presenting existing international initia-
tives worldwide as examples; and Sect. 4 concludes this pa-
per.

2 Key concepts of cloud computing

2.1 A brief history of cloud computing

Cloud computing is a specialized form of distributed com-
puting that introduces utilization models for remotely pro-
visioning scalable and measured computing resources (e.g.,
networks, servers, storage, applications, and services) (Mah-
mood et al., 2013), offering organizations different benefits
for their business services and applications: scalability, cost
savings, flexibility and agility, reliability and availability, col-
laboration and accessibility, innovation and experimentation,
and sustainability.

The term “cloud computing” originated as a metaphor for
the Internet, which is, in essence, a network of networks pro-
viding remote access to a set of decentralized IT resources.
In the early 1960s, John McCarthy introduced the concept of
computing as a utility:

If computers of the kind I have advocated become
the computers of the future, then computing may
someday be organized as a public utility just as the
telephone system is a public utility. . . . The com-

puter utility could become the basis of a new and
important industry.

This idea opened the concept of having services on the
Internet so users could benefit of them for their applica-
tions. In the same period, Joseph Carl Robnett Licklider en-
visioned a world where interconnected systems of computers
could communicate and interoperate: that was the milestone
of the modern cloud computing. In the late 1990s, Ramnath
Chellappa introduced for the first time the term “cloud com-
puting” as a new computing paradigm (Chellappa, 1997),
“where the boundaries of computing will be determined by
economic rationale rather than technical limits alone”, deal-
ing with concepts such as expandable and allocatable re-
sources that can ensure cost efficiency, scalability, and busi-
ness value. In the same period, Compaq Computer Corpo-
ration adopted the concept of the “cloud” in its business
plan as a term for evolving the technological capacity of the
company itself in offering new scalable and expandable ser-
vices to customers over the Internet. The last 2 decades have
been characterized by a rapid expansion of cloud comput-
ing: while the general public has been leveraging forms of
Internet-based computer utilities since the mid-1990s as form
of search engines, e-mail services, social media platforms,
etc., it was not until 2006 that the term “cloud computing”
emerged, when Amazon launched its Simple Storage Ser-
vice (Amazon S3) followed by the Elastic Compute Cloud
(Amazon EC2) service, enabling organizations to lease com-
puting capacity and storage to run their business applications.
In 2008, Google launched the Google App Engine, a cloud
computing platform used as a service for developing and
hosting web applications; then, in 2010 Microsoft launched
Azure as a cloud computing platform and service provider
that provides scalable, on-demand resources to customers to
build applications globally; in 2012, Google launched the
Google Compute Engine which enables users to launch vir-
tual machines (VMs) on demand.

To understand the framework over which cloud computing
is built, it is fundamental to refer to the standards and best
practices provided by the North American National Insti-
tute of Standard and Technology (NIST) (Mell and Grance,
2011):

cloud computing is a model for enabling ubiqui-
tous, convenient, on-demand network access to a
shared pool of configurable computing resources
that can be rapidly provisioned and released with
minimal management effort or service provider in-
teraction.

NIST further elaborates on cloud computing providing a
cloud computing reference architecture based on five essen-
tial characteristics, three service models, and four deploy-
ment models.
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2.2 An outlook to NIST definitions

Cloud computing essential characteristics defined by NIST
can be considered reference guidelines for both providers and
clients to ensure scalable, cost-effective, and accessible re-
sources to fit specific needs. Table 1 shows a summary of the
essential characteristics’ definitions as provided in Mell and
Grance (2011), offering the client and provider’s perspectives
with some examples that show how cloud solutions ensure
scalability, flexibility, and efficiency.

NIST specifies three possible cloud services models: In-
frastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). They define the founda-
tional cloud services’ characteristic client needs to ensure ad-
equate levels of management, flexibility, and control. Table 2
presents service models’ definitions as provided in Mell and
Grance (2011), discussing examples where they are used.

Besides the NIST definitions, similar to PaaS another
service model is the serverless model (or Function as a
Service – FaaS), which is the capability provided to the
user to abstract infrastructure concerns away from appli-
cations, where developers can implement application func-
tionality as invocable functions/services whilst providers
automatically provision, deploy, and scale these services
based on a range of criteria, including efficiency, cost,
and load balancing. Examples of serverless/FaaS services
are AWS Lambda (https://aws.amazon.com/lambda, last ac-
cess: 29 April 2025) and Fargate (https://aws.amazon.com/
fargate, last access: 29 April 2025), Microsoft Azure Func-
tions (https://azure.microsoft.com/en-us/products/functions,
last access: 29 April 2025), Google Cloud Functions (https:
//cloud.google.com/functions, last access: 29 April 2025),
and Scaleway Serverless Functions (https://www.scaleway.
com/en/serverless-functions, last access: 29 April 2025).

Cloud computing deployment models can be based on dif-
ferent approaches, offering organizations options for work-
load placement, application development, and resource allo-
cation to optimize their cloud strategy based on their needs,
cost considerations, performance requirements, compliance
regulations, and desired level of control. The four cloud com-
puting deployment models identified by NIST are reported in
Table 3 with a description and some examples.

Besides the cloud deployment models identified by NIST,
there are few other approaches that are worth mentioning that
provide further capabilities to the organizations that decide to
embrace cloud technology.

Multi-cloud computing refers to the strategy of using mul-
tiple cloud service providers, allowing organizations leverag-
ing the services of two or more public/private cloud providers
or a of combination public–private cloud providers, com-
bining their offerings to build and manage their applica-
tions and infrastructure. This approach allows businesses
to take advantage of the strengths and capabilities of dif-
ferent cloud providers, such as cost effectiveness, perfor-
mance, geographic coverage, or specialized services. It also

offers increased flexibility and redundancy, and it mitigates
the risk of vendor lock-in (Hong et al., 2019). Multi-cloud
solutions, which can be based on open-source technologies
such as Kubernetes, offer the possibility to ease migration of
applications, improving portability since they support con-
tainerization and microservices. Major challenges include
the complexity in the management of the infrastructure, is-
sues with integration and interoperability, and security. The
edge-computing paradigm enables data analyzing, storage,
and offloading computations near the edge devices (such as
Internet of Things – IoT – devices, sensors, and mobile de-
vices) to improve response time and save bandwidth (Pushpa
and Kalyani, 2020). This approach aims at minimizing the
data volume to process in the cloud, reducing network costs
and bandwidth utilization, and increasing reliability and scal-
ability. Major challenges include the complexity in the man-
agement of the edge devices, security potentially affected by
devices’ vulnerability, and synchronization of communica-
tions between edge devices and cloud infrastructure.

Distributed cloud-edge computing, one of the main inno-
vation streams for cloud computing, combines elements of
cloud computing with edge computing, extending the capa-
bilities of the traditional centralized cloud infrastructure by
distributing cloud services closer to the edge of the network,
where data are generated and consumed, rather than rely-
ing solely on centralized data centers. By moving cloud ser-
vices closer to where data are generated, latency (defined as
the delay in network communication) is reduced, allowing
fast response times, and real-time or time-sensitive applica-
tions (e.g., collection of observations from automated sen-
sors and systems for guaranteeing efficiency in operations;
early warning systems for disaster management and safety)
can benefit from faster response times and improved perfor-
mance. This is especially crucial for applications requiring
immediate data processing and low latency. Recently, pub-
lic cloud providers started to offer pre-configured appliances
(e.g., AWS Outpost, Azure Stack) that bring the power of the
public cloud to the private and edge cloud and have defined
collaborations with telcos (e.g., AWS and Vodafone, Google
and AT&T) to create 5G edge services. Furthermore, the
main open-source cloud management platforms provide ex-
tensions (OpenNebula ONEedge, OpenStack StarlingX, Ku-
bernetes KubeEdge) for enhancing private clouds with ca-
pabilities for automated provisioning of computing, storage,
and networking resources and/or orchestrate virtualized and
containerized application on the edge. Major challenges in-
clude ensuring data security across the distributed locations,
for a safe communication between cloud and edge, and re-
source management and network reliability.

Based on NIST’s definitions as discussed before, Ta-
ble 4 summarizes how the five essential characteristics apply
across the four deployment models (public, private, hybrid,
and community cloud) to support the selection of the right
cloud model with respect to efficiency in costs and perfor-
mances, security, and management.
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Table 1. NIST cloud computing essential characteristics: client/provider perspectives and examples.

Characteristics Primary focus Client perspective Cloud provider
perspective

Example

On-demand
self-service

Users can provision
computing resources
(e.g., storage, VMs)
automatically, without
requiring human
interaction with the
service provider.

Users can request and
configure resources like
virtual machines, storage,
or applications when
needed, directly from a
web interface or API.

Automatically provide
resources in response
to user requests without
manual intervention.

A developer launches a
virtual machine on a cloud
platform using a dashboard
or API in minutes, without
needing to contact support.

Broad network
access

Cloud resources are
available over a network
and accessible through
standard mechanisms
from various devices.

Users can access cloud
services from a range of
devices (e.g., mobiles and
PCs) through standard
protocols like
HTTP/HTTPS and APIs.

Ensure cloud services
can be accessed
consistently and
securely from different
client devices.

A user edits a document
stored in the cloud from a
laptop at home and then
continues editing from a
smartphone while
commuting.

Resource
pooling

Cloud providers pool
resources to serve
multiple users (tenants)
dynamically, with no
fixed assignment to any
one user.

Users do not know the
exact physical location of
the resources they are
using, but they get what
they need as required.

Dynamically allocate
physical and virtual
resources across many
customers to maximize
efficiency and
utilization.

Multiple customers use the
same set of servers and
storage, but their
workloads are isolated
through virtualization
technologies for security.

Rapid elasticity Cloud resources can be
quickly scaled up or
down to meet demand,
often appearing limitless
to the user.

Users can automatically
scale their resources up or
down based on their needs,
without delays.

Automatically add or
remove resources in
response to changing
demand, ensuring that
the user has sufficient
capacity.

An e-commerce website
automatically scales up its
computing resources
during a flash sale and then
scales down when the
traffic subsides.

Measured
service

Cloud systems
automatically control
and optimize resource
usage by tracking it and
charging based on actual
consumption.

Users only pay for the
amount of resources (e.g.,
storage, CPU, bandwidth)
they actually use, with
detailed reporting.

Track resource
consumption at various
levels (e.g., storage,
CPU usage) and
optimize based on
real-time monitoring.

A company receives a
monthly bill detailing how
much computing power
and storage they used,
ensuring that they are
billed accurately based on
consumption.

Cloud-native applications – which are built, run, and main-
tained using tools, techniques, and technologies for cloud
computing – provide abstraction from underlying infras-
tructure and enhanced scalability, flexibility, and reliabil-
ity, which are strongest in public and hybrid cloud mod-
els. Cloud-native application development is driven by new
software models, such as microservices and serverless, and
is made possible through technologies such as containers
(i.e., Docker, https://www.docker.com/, last access: 29 April
2025) and container orchestration tools (i.e., Kubernetes),
which are becoming the de facto leading standards for pack-
aging, deployment, scaling, and management of enterprise
and business applications on cloud computing infrastruc-
tures.

Following the rise of containerization in enterprise envi-
ronments, the adoption of container technologies has gained
momentum in technical and scientific computing, including

high-performance computing (HPC). Containers can address
many HPC problems (Mancini and Aloisio, 2015): however,
security and performance overhead represent some current
limits in using containerization in HPC environment (Chung
et al., 2016; Abraham et al., 2020). Several container plat-
forms have been created to address the needs of the HPC
community, such as Shifter (Jacobsen and Canon, 2015), Sin-
gularity (Kurtzer et al., 2017) (now Apptainer), Charliecloud
(Priedhorsky and Randles, 2017), and Sarus (Benedicic et
al., 2019). Recently, Podman (https://podman.io/, last access:
29 April 2025) has been analyzed to investigate its suitability
in the context of HPC (Gantikow et al., 2020), showing some
promise in bringing a standard-based, multi-architecture en-
abled container engine to HPC.
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Table 2. NIST cloud computing service models.

Service model Primary focus (from Mell
and Grance, 2011)

Client perspective Provider perspective Use cases

Infrastructure
as a Service
(IaaS)

The capability provided to
the consumer is to
provision processing,
storage, networks, and
other fundamental
computing resources where
the consumer can deploy
and run arbitrary software.

Renting and
managing computing
resources in a
virtualized
infrastructure.

Provisioning of
computing resources
in a virtualized
infrastructure.

Suitable for organizations that
want full control over their
infrastructure resources (virtual
machines, networks, storage)
and want their flexibility in
customizing software stack and
applications, including data
processing and backup.
Examples: Amazon EC2 and
Microsoft Azure.

Platform as a
Service (PaaS)

The capability provided to
the consumer is to deploy
onto the cloud
infrastructure
consumer-created or
acquired applications
created using programming
languages, libraries,
services, and tools
supported by the provider.

Easing application
deployment without
taking care of the
infrastructure and
middleware.
Dependency on
provider’s platform.

Provisioning and
management of the
platform.

Suitable for developers and
organizations that want to
develop, deploy and maintain
applications without the burden
of managing the underlying
infrastructure (virtual machines,
network and storage), which is
provisioned and deployed by the
providers. Examples: Google
App Engine and Microsoft
Azure App Service.

Software as a
Service (SaaS)

The capability provided to
the consumer is to use the
provider’s applications
running on a cloud
infrastructure.

Using software
applications directly
via the Internet (e.g.,
web browser or using
a client), decreasing
costs related to
licenses.

Provisioning and
management of the
software applications,
including customer
support.

It enables organizations to focus
on their core business activities
while relying on the expertise
and infrastructure provided by
the SaaS provider. Examples:
Google Drive, Dropbox, and
Microsoft 365.

3 Cloud technology landscape in oceanography

Technological advancements in cloud computing and its
foundational characteristics, services, and models can pro-
vide enormous advantages for operational oceanography
across the ocean architectures.

Vance et al. (2019) explored uses of the cloud for manag-
ing and analyzing observational data and models workflows:
for instance, they show how cloud platforms can be support-
ive during the collection and the quality control of obser-
vations, reducing the risk of power outages, network con-
nectivity, or other issues related to weather conditions at sea
that can compromise transmissions from sensors to the base
station. Large-scale datasets related to forecast and observa-
tional oceanographic products can be stored in cloud-native
storages (e.g., S3 Object Storage) and accessed from any
location with public connectivity, enabling data-proximate
computations (Ramamurthy, 2018). This approach facilitates
data-proximate computations (Ramamurthy, 2018), allowing
analysis to be performed near the data source using remote

resources rather than requiring extensive local downloads
and infrastructure (Zhao et al., 2015).

Nowadays, the Digital Twin of the Ocean (DTO) frame-
work is revolutionizing ocean services, acting as a bridge
between the current digitalization of processes and the fu-
ture intelligence. DTO is empowering the use of advanced
technologies, such as artificial intelligence (AI) and cloud
computing, for industrializing and informatizing the marine
sector while supporting operations from data pooling to data
processing, with a final direct benefit for applications (Chen
et al., 2023). It is then of paramount importance to under-
stand how modern computing technologies can support sci-
entific investigation, enhance ocean forecasting services, and
contribute to the evolution of such systems.

To achieve this goal, analysis patterns theorized by
Fowler (1997) and described for e-science by Butler and
Merati (2016) can be applied, in a simplified way, to the
ocean value chain (Alvarez Fanjul et al., 2022) explaining
the added value of adopting cloud-based solutions to improve
operational forecasting workflows.
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Table 3. NIST cloud computing deployment models.

Deployment
model

Description Examples

Private cloud Deployment of cloud infrastructure and services
exclusively for a single organization or entity. In a
private cloud, the computing resources, such as servers,
storage, networking, and virtualization technologies, are
dedicated to and managed by the organization itself. The
infrastructure can be hosted on premises within the
organization’s own data centers or in a dedicated off-site
facility.

Open-source software solutions such as CloudStacka,
OpenNebulab, and OpenStackc allow organizations to
build their own private cloud computing solutions.

Public cloud Use of cloud services provided by third-party vendors
over the Internet. The infrastructure and resources in the
public cloud are shared among multiple customers, and
the cloud service provider is responsible for managing
and maintaining the underlying hardware, software, and
infrastructure. Users can access and utilize the services
on a pay-as-you-go basis, typically through a
subscription or usage-based pricing model.

Examples of public cloud providers are Alibabad,
Amazon Web Servicese, Google Cloud Platformf,
Hetznerg, Microsoft Azureh, and Scalewayi.

Community
cloud

Cloud infrastructure and resources are shared among
organizations with common interests, such as
industry-specific regulations, security requirements, or
collaborative projects. In a community cloud, the
infrastructure is designed and managed for the specific
needs of the community members, and it allows
organizations within the community to share costs,
resources, and expertise while maintaining a higher level
of control and customization compared to public cloud
services.

EGIj is a federation of different European data centers
providing a cloud infrastructure for research
communities. The European Open Science Cloud
(EOSCk) is an environment for hosting and processing
research data to support EU science, built on top of
EGI cloud infrastructure. The European Weather
Cloudl will deliver data access and cloud-based
processing capabilities for the European
Meteorological Infrastructure (EMI) and their users.
The D4Sciencem e-infrastructure (Assante et al., 2019)
is the core of the Blue-Cloudn virtual research
environments (VREs): it implements proven solutions
for connecting to external services and orchestrates
distributed services, which will be instrumental for
smart connections to other e-infrastructures in
Blue-Cloud, including EUDAT and DIAS (WEkEO).

Hybrid cloud It combines both public and private cloud environments
to create a unified computing infrastructure, allowing
organizations to host some applications or data in a
private cloud (i.e., greater control, security, and
compliance), while utilizing public cloud services for
other applications or workloads (i.e., scalability, cost
effectiveness, and flexibility for workload
burst/on-demand peaks). The hybrid approach provides
the ability to address specific requirements, such as
regulatory compliance or data sovereignty, by keeping
sensitive data within a private infrastructure while
utilizing the public cloud for less sensitive workloads.

Netflixo uses a hybrid cloud storage solution in order
to store and move assets across Amazon AWS S3 and
multiple on-premises storage systems.

a https://cloudstack.apache.org (last access: 29 April 2025). b https://opennebula.io (last access: 29 April 2025). c https://www.openstack.org (last access: 29 April 2025).
d https://www.alibabacloud.com (last access: 29 April 2025). e https://aws.amazon.com (last access: 29 April 2025). f https://cloud.google.com (last access: 29 April 2025).
g https://www.hetzner.com/cloud (last access: 29 April 2025). h https://azure.microsoft.com (last access: 29 April 2025). i https://www.scaleway.com/en (last access: 29 April
2025). j https://www.egi.eu (last access: 29 April 2025). k https://eosc.eu (last access: 29 April 2025). l https://www.europeanweather.cloud (last access: 29 April 2025).
m https://www.d4science.org/ (last access: 29 April 2025). n https://www.blue-cloud.org/e-infrastructures/d4science (last access: 29 April 2025).
o https://aws.amazon.com/solutions/case-studies/netflix-storage-reinvent22 (last access: 29 April 2025).
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Table 4. Mapping essential characteristics on the type of cloud deployment models.

Essential Deployment model

characteristic Private cloud Public cloud Community cloud Hybrid cloud

On-demand
self-service

Managed internally,
self-service for internal
teams

Users provision services
via public provider’s API
or portal

Self-service for
community members,
often through secure
portals

Self-service across both
public and private clouds,
with potential for complex
management

Broad network
access

Limited to internal
users or authorized
external users (VPN,
private network)

Accessible over the public
Internet via standard
protocols (e.g., HTTP)

Restricted to
community members
with specific access

Accessible over both public
and private networks, often
with encrypted or
dedicated connections

Resource
pooling

Resources are pooled
internally for
organizational needs

Resources are pooled and
shared across multiple
tenants

Resources are pooled
among members of a
specific community

Resources are pooled
across private and public
clouds, with dynamic
allocation based on
workload

Rapid elasticity Elasticity may be
constrained by internal
resources

High elasticity with
near-unlimited scalability
based on demand

Elasticity exists but is
constrained by the
community’s shared
resources

Public cloud provides high
elasticity, with private
cloud handling more stable,
predictable workloads

Measured
service

Internal measurement
and chargeback to
departments

Public provider measures
and bills based on usage
(e.g., compute hours,
storage)

Resource usage is
tracked across
community members
for cost sharing

Both private and public
clouds measure usage, with
different billing models
(internal and public)

The term “analysis pattern” focuses on organizational as-
pects of a system since they are crucial for requirement anal-
ysis. Geyer-Schulz and Hahsler (2001) designed a specific
template for analysis patterns: starting from that and the ex-
amples proposed by Butler and Merati (2016) for e-science,
we propose an initial analysis of cloud patterns (CPs) for the
cloud-based OOFS processes, taking the ocean value chain
components as a reference framework.

The following are some initial identified cloud patterns,
which are mapped in Fig. 1.

– CP1: cloud-based management of ocean data for
OOFSs. This is devoted to the integration into forecast-
ing services of the cloud-based approach, facilitating the
access to large volumes of diverse, current, and author-
itative data. It addresses challenges related to locating
and using large amounts of scientific data. It is particu-
larly useful for data managers that needs to provide up-
stream data to forecasters for running one or more mod-
els, or for performing validation of the numerical re-
sults. It can be implemented on the hybrid/public cloud,
and the design can be based on PaaS or SaaS (data ac-
cess as a service). It enables seamless integration of up-
stream data from multiple sources (including observa-
tions and forcings data used in model applications).

– CP2: cloud-based computing infrastructure for OOFSs.
It explores cloud-based platforms and tools for run-
ning computationally intensive numerical models and
procedures used for forecasting services. It benefits
numerical modelers and forecasters that require high-
performance computing (HPC) to run a model applica-
tion that can include AI/ML pre-/post-processing. It can
be implemented on a private cloud, adopting IaaS ser-
vice models. It enhances the execution of the Marine
Core Service by optimizing computing resources such
as CPU/GPU, networking, and storage.

– CP3: cloud-based management of ocean data produced
by OOFSs. Designed for storing and managing geospa-
tial ocean data in the cloud, this component addresses
the challenge of the growing data volume with limited
budgets dedicated to data management. It is valuable for
data managers that need to store forecast products, in-
cluding model results in native format, for further anal-
ysis and processing. Data can be stored in dedicated file
systems or databases and accessible through APIs (in-
cluding GIS-based ones). It can be implemented on a
private cloud, using the PaaS service model. It ensures
efficient storage and accessibility of data produced by
the Marine Core Service, made available for dissemina-
tion to users.
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Figure 1. The ocean value chain and associated cloud patterns (adapted from Alvarez Fanjul et al., 2022).

– CP4: cloud-based computing infrastructure for OOFS
disaster recovery in the cloud. Focused on leverag-
ing cloud computing in the ocean forecast production
pipeline to enhance robustness and meet the growing
demand for scalable computational resources. It can be
used by forecasters that need OOFSs on demand under
unexpected situations (e.g., working as backup in case
the nominal unit is down). A private/hybrid cloud can
be used, and the design can be based on PaaS or IaaS.
This approach enhances the Marine Core Service by en-
suring operational continuity and timely dissemination
of forecast products.

– CP5: analysis of OOFS products in the cloud. Focused
on performing analysis and processing of ocean data
in the cloud, facilitating multi-model intercomparisons
and quality assessment, even in case of larger datasets
and/or datasets from multiple sources. It is beneficial
for product quality experts and data analysts in charge
of quality control or for providing a private-cloud-based
service for pre-qualification of ocean products. It can
be implemented through a hybrid/private cloud, and the
design can be based on SaaS. It supports the Marine
Core Service quality assurance and downstream ser-
vices through tailored user-oriented metrics or indica-
tors for downstream applications.

– CP6: visualization of OOFS in the cloud. Devoted to
integration of cloud-based visualization capabilities to
process and publish ocean products via the (cloud) ser-
vice. It also addresses the need for visualizing larger
amounts of data. It can be useful for data engineers and
forecasters that need to create user-friendly visualiza-
tions for end users and policy makers. It can be imple-

mented using a private/public cloud, and the design can
be based on SaaS. It supports downstream services by
providing an interactive visualization service and tai-
lored user-oriented visual bulletins for end users.

– CP7: product dissemination and outreach in the cloud.
Devoted to the use cloud-based platforms and tools for
dissemination of OOFS products to different audiences
– scientific and non-scientific. This is useful for commu-
nication experts that need to use a cloud-based reposi-
tory for sharing insights and digital material produced
using OOFS products. It uses hybrid/private cloud solu-
tions, and the design can be based on SaaS. It enhances
multiple downstream services by providing customized
and accessible end-user information for policy-making,
business, society.

Most of the challenges generically introduced in Sect. 2 can
be still pertinent when adopting cloud computing solutions
for OOFS.

– Data security. Processing oceanographic data might
generate sensible information that requires proper man-
agement. In addition, downstream services might re-
quire the use of data from governmental or research
institutes that need to be preserved and possibly not
shared.

– Costs. While cloud computing can reduce upfront in-
frastructure costs, it can become expensive for continu-
ous, long-term use or for HPC tasks that require signifi-
cant computational power.

– Latency and bandwidth limitations. Ingesting or assess-
ing a large volume of ocean data on centralized cloud
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data centers might affect OOFSs’ performances due to
poor network connection.

– Dependence on cloud providers (vendor lock-in). De-
ployment of OOFS on specific cloud providers might
lead to vendor lock-in, complicating migration to an-
other cloud provider due to proprietary technologies,
APIs, or data format.

– Regulatory and compliance issues. Cloud providers
must comply with various regulatory frameworks, and
using a public cloud for OOFS might complicate com-
pliance with data protection laws or environmental reg-
ulations or even with licenses.

– Limited control over hardware. Cloud users do not have
direct control over the underlying hardware, which may
be a disadvantage when HPC resources need fine-tuned
optimization to run OOFS.

– Impact on code refactoring. Adapting OOFS to a cloud
environment may require significant code refactoring to
optimize for distributed computing, cloud-native archi-
tectures, and specific provider APIs, potentially increas-
ing development effort and complexity.

In the following, some US and EU programs, initiatives, and
projects are reported as examples on how cloud computing
technologies and patterns have been used to provide services
to the oceanographic and scientific community in general.

3.1 NOAA Open Data Dissemination and Big Data
Program

NOAA’s Open Data Dissemination (NODD, https://www.
noaa.gov/nodd, last access: 29 April 2025) Program is de-
signed to facilitate public use of key environmental datasets
by providing copies of NOAA’s information in the cloud, al-
lowing users to do analyses of data and extract information
without having to transfer and store these massive datasets
themselves. NODD started out as the Big Data Project in
April 2015 (and then later became the Big Data Program);
NODD currently works with three IaaS providers (Amazon
Web Services (AWS), Google Cloud Platform, and Microsoft
Azure) to broaden access to NOAA’s data resources. These
partnerships are designed to not only facilitate full and open
data access at no net cost to the taxpayer but also foster in-
novation by bringing together the tools necessary to make
NOAA’s data more readily accessible. There are over 220
NOAA datasets on the cloud service provider (CSP) plat-
forms. The datasets are organized by the NOAA organiza-
tion that generated the original dataset (https://www.noaa.
gov/nodd/datasets, last access: 29 April 2025).

3.2 Copernicus Service and Data and Information
Access Services

Copernicus (https://www.copernicus.eu, last access: 29 April
2025) is the Earth observation component of the EU Space
Programme, looking at the Earth and its environment to
benefit all European citizens. Copernicus generates on a
yearly basis petabytes of data and information that draw
from satellite Earth observation and in situ (non-space) data.
The up-to-date information provided by the core services
(atmosphere, https://atmosphere.copernicus.eu/, last access:
29 April 2025; climate change, https://climate.copernicus.
eu/, last access: 29 April 2025; marine, https://marine.
copernicus.eu/, last access: 29 April 2025; land, https://land.
copernicus.eu/en, last access: 29 April 2025; security, https://
www.copernicus.eu/en/copernicus-services/security, last ac-
cess: 29 April 2025; and emergency, https://emergency.
copernicus.eu/, last access: 29 April 2025) is free and openly
accessible to users. As the data archives grow, it becomes
more convenient and efficient not to download the data any-
more but to analyze them where they are originally stored.

To facilitate and standardize access to data, the Euro-
pean Commission has funded the deployment of five cloud-
based platforms (CREODIAS, https://creodias.eu/, last ac-
cess: 29 April 2025; Mundi, https://mundiwebservices.com/,
last access: 29 April 2025; Onda, https://www.onda-dias.
eu/cms/, last access: 29 April 2025; Sobloo, https://engage.
certo-project.org/sobloo-overview/, last access: 29 April
2025; and WEkEO, https://www.wekeo.eu/, last access:
29 April 2025), known as Data and Information Access
Services (DIAS; https://www.copernicus.eu/en/access-data/
dias, last access: 29 April 2025) that provide centralized
access to Copernicus data and information, as well as to
processing tools. The DIAS platforms provide users with
a large choice of options to benefit from the data gener-
ated by Copernicus: to search, visualize, and further process
the Copernicus data and information through a fully main-
tained software environment while still having the possibility
to download the data to their own computing infrastructure.
All DIAS platforms provide access to Copernicus Sentinel
data, as well as to the information products from the six op-
erational services of Copernicus, together with cloud-based
tools (open source and/or on a pay-per-use basis). Thanks to
a single access point for all the Copernicus data and infor-
mation, DIAS platforms allow the users to develop and host
their own applications in the cloud, while removing the need
to download bulky files from several access points and pro-
cess them locally.

3.3 Blue-Cloud

The European Open Science Cloud (EOSC) provides a
virtual environment with open and seamless access to
services for storage, management, analysis, and reuse
of research data, across borders and disciplines. Blue-
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Cloud aims at developing a marine thematic EOSC to
explore and demonstrate the potential of cloud-based
open science for better understanding and managing the
many aspects of ocean sustainability (https://blue-cloud.org/
news/blue-clouds-position-paper-eosc, last access: 29 April
2025). The Blue-Cloud platform, federating European
blue data management infrastructures (SeaDataNet, https:
//www.seadatanet.org/, last access: 29 April 2025; Eu-
rOBIS, https://www.eurobis.org/, last access: 29 April
2025; Euro-Argo ERIC, https://www.euro-argo.eu/, last
access: 29 April 2025; Argo GDAC (Wong et al.,
2020); EMODnet, https://emodnet.ec.europa.eu/en, last ac-
cess: 29 April 2025; ELIXIR-ENA, https://elixir-europe.
org/services/biodiversity, last access: 29 April 2025; Euro-
BioImaging, https://www.eurobioimaging.eu/, last access:
29 April 2025; Copernicus Marine; Copernicus Cli-
mate Change; and ICOS-Marine, https://www.icos-cp.eu/
observations/ocean/otc, last access: 29 April 2025) and hori-
zontal e-infrastructures (EUDAT, https://www.eudat.eu/, last
access: 29 April 2025; DIAS; D4Science), provides FAIR ac-
cess to multidisciplinary data, analytical tools, and comput-
ing and storage facilities that support research. Blue-Cloud
provides services through pilot demonstrators for oceans,
seas, and freshwater bodies for ecosystems research, conser-
vation, forecasting, and innovation in the blue economy, and
it accelerates cross-discipline science, making innovative use
of seamless access to multidisciplinary data, algorithms, and
computing resources.

4 Conclusions

Cloud computing has been demonstrated to be a key driver
in the digital evolution of the private sector, offering a base-
line for expanding and scaling applications and services by
enhancing scalability, cost efficiency, and data processing.
Service models offer different layers for pushing techno-
logical evolution, where infrastructure/platform/software can
be assimilated to services that can be deployed in different
cloud models, depending on the specific needs of the users
in keeping resources public or private or hybrid. By lever-
aging on-demand computing power, big data analytics, and
global data accessibility and sharing, cloud computing im-
proves business efficiency, scientific research, and innova-
tion, benefiting society and business. Taking these concepts
as granted, cloud computing can be seen as an opportunity
for operational oceanography, for enhancing ocean predic-
tion and monitoring by exploiting its collaborative frame-
work to support blue economy, sustainable ocean manage-
ment, and climate change mitigation actions. The simplified
pattern analysis has revealed how OOFS architecture com-
ponents can be implemented in a cloud environment with-
out the burden of maintaining complex infrastructure: com-
mon tasks like processing and analyzing large datasets can
be optimized in cloud-native storages, using software that

can be integrated by AI/ML techniques for anomaly detec-
tion, or by means of specific APIs for data searching and re-
trieving. Cloud-based visualization and data delivery can en-
sure security especially for critical information that can im-
pact decision-making, driving better-informed policies and
responses in marine and coastal management.

Despite these advantages, several challenges remain, some
of them partially solved with the implementation of existing
deployments models (hybrid cloud, for instance): interoper-
ability, which is one of the pillars for cloud-based environ-
ments, requires the definition of data standards and adoption
of best practices. Security in data access/sharing as well as
costs associated with running forecasting systems can raise
constraints for vendor lock-in and long-term sustainability.

Promoting a collaborative framework among existing and
new centers could be seen as one promising approach for
fostering innovation, collaboration, and more efficient ocean
prediction and monitoring: by leveraging shared cloud-based
resources, forecasting centers can combine their expertise
and share data and tools, supporting the creation of a “dig-
ital twin” of the ocean to use for a wide range of applications
for managing and protecting our ocean.
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Abstract. The direct benefits of developing ocean forecasting systems and of improving the accuracy of the
predictions are practically demonstrated through downstream applications. These systems are considered pillars
of the blue economy, offering potential for economy, environmental sustainability, the creation of new job op-
portunities, and actively supporting decision-making. In this paper, the authors outline the main sectors currently
benefiting from ocean model products, reviewing the state of the art and potential use for societal activities,
management, and planning.

1 Introduction

The blue economy is an increasing sector which includes,
amongst other socio-economic sectors, marine living re-
sources, marine non-living resources, marine renewable en-
ergy, port activities, shipbuilding and repair, maritime trans-
port, naval activities, search and rescue operations, and
coastal tourism. (Fig. 1). The associated economic activ-
ities have directly employed close to 4.45 million peo-
ple and generated around EUR 667.2 billion in turnover
and EUR 183.9 billion in gross value added (Rayner et al.,
2019b). These sectors offer significant potential for eco-
nomic growth, sustainability transition, and employment
creation, and they ask for innovative, sound, and prompt
decision-making support tools. A decision-making workflow
needs to understand past and present ocean conditions and
forecast future ocean conditions. Accurate predictive capa-
bilities permit the implementation of services for real-time
decision-making, multi-hazard warning systems, and antic-
ipatory marine spatial planning. Once the ocean forecast
model data are generated, they can be used in a variety of
ways. For example, shipping companies can use the data to
optimize their routes and avoid areas with dangerous weather
or ocean conditions. Fisheries managers can use the data to

predict fish populations and optimize their harvests. Environ-
mental agencies can use the data to monitor water quality and
detect the spread of pollution, etc. Notably, the Horizon Eu-
rope program (2021–2027) has a budget of EUR 95.5 billion
(including EUR 5.4 billion from the NextGenerationEU re-
covery fund), of which at least 35 % will be devoted to sup-
port climate-related actions, such as supporting the transition
of maritime industries to climate neutrality. Maritime spatial
planning (MSP) is a policy framework for mediating between
human uses of the ocean and managing their impact on the
marine environment. It is considered a key pillar of the sus-
tainable blue economy. Europe’s coastal seas, particularly the
North Sea and the Baltic Sea, host a highly competitive group
of users, such as commercial and private shipping, oil and gas
exploitation, pipelines, cables, sand extraction and disposal,
wind farms, recreational activities, and fishing, as well as na-
ture reserves and other marine and coastal protected areas
(Buck et al., 2004).

The following paragraphs present some examples of how
the blue economy is using model data and what its overall
impact is.
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Figure 1. Blue growth, adapted from the EC infographics on blue growth (https://ec.europa.eu/assets/mare/infographics/, © European Union
2014, last access: 31 January 2025).

2 Model data applications in the blue economy

A good collection of examples of the application of ocean
forecasting data in the blue economy can be found in
the Expert Team on Operational Ocean Forecast Sys-
tems (ETOOFS) guide (https://www.mercator-ocean.eu/en/
guide-etoofs/, last access: 24 April 2024). The following sub-
sections briefly describe some of these application fields.

2.1 Operational Services for Ports and Cities (OSPAC)

Port and coastal cities need ocean forecasting data for sev-
eral reasons. A good example of this kind of application can
be found on the Operational Services for Ports and Cities
(OSPAC) software system, consisting of an integrated set of
tools and measuring instruments that provide an operational
service to the city and the adjacent port in order to minimize
risks and improve environmental management. In these sys-
tems, there are two main service layers: the first one includes

forecast models of local sea conditions, and, based on these
models, a second layer provides real-time alerts on extreme
values of coastal variables, such as water quality, currents,
and sea state, that are used for a variety of applications (Re-
boa et al., 2024; Gaughan et al., 2019; NOAA, 2021; OECD,
2016, 2022; Rayner et al., 2019a). The study on the trends
and outlook of marine pollution (Regional Marine Pollu-
tion Emergency Response Centre for the Mediterranean Sea,
2021) reports that most ship-based environmental hazards,
such as oil spills or slicks, occur close to city ports. While
the situation has significantly improved over the years, the
average number of spills per year in 1970 was approximately
79, which has now been reduced by over 90 % to as low as
6 per year (ITOPF, 2020). However, even a single spill can
cause severe environmental damage. The extent of damage
caused by an oil spill depends on several factors: the quan-
tity of oil spilled, its behavior in the marine environment,
the chemicals involved, the sensitivity of the affected marine

State Planet, 5-opsr, 25, 2025 https://doi.org/10.5194/sp-5-opsr-25-2025



CHAPTER9.1

A. Novellino et al.: End-user applications for ocean forecasting: present status description 3

area, and the wind and weather conditions at the time of the
incident. For example, the clean-up and removal efforts fol-
lowing the break-up and sinking of the Bahamas-registered
tanker Prestige, which spilled 63 200 t of oil on 13 Novem-
ber 2002, lasted more than 2 years. The pollution caused
an estimated EUR 884.98 million in damages, with an ad-
ditional EUR 554.10 million attributed to environmental and
moral damages (Regional Marine Pollution Emergency Re-
sponse Centre for the Mediterranean Sea, 2021) – amounting
to an environmental cost of roughly EUR 2 million per day.
Having OSPAC systems to plan and manage fast and effec-
tive responses is key to saving billions of euros in environ-
mental and economic costs.

2.2 Marine transport, surveillance, naval operations,
and marine search and rescue (SAR)

Maritime transport plays a key role in the EU economy and
trade, estimated to represent between 75 % and 90 % (de-
pending on the sources; EMSA, https://www.emsa.europa.
eu/eumaritimeprofile.html, last access: 25 January 2025) of
the EU’s external trade and one-third of the intra-EU trade.
EU passenger ships can carry up to 1.3 million passengers,
representing 40 % of the world’s passenger transport capac-
ity. Marine surveillance and naval operations are critical to
ensuring the security of marine operations. The sector con-
sumes forecasting data on weather and ocean conditions to,
for example, determine the optimal route and time of depar-
ture for a vessel, optimize the mission route, and minimize
risks to personnel and equipment (Novellino et al., 2021; Ży-
czkowski et al., 2019; Bitner-Gregersen et al., 2014; Schnurr
and Walker, 2019). These models can help improve the safety
and efficiency of marine transport while minimizing fuel
consumption and environmental impacts (Wan et al., 2018).
Related to naval operations, the search and rescue (SAR) op-
erations use evidence-based methods to plan, execute, and
evaluate SAR operations (Futch and Allen, 2019). SAR re-
quires the gathering and processing of relevant data and in-
formation, such as weather and ocean forecasts, topography
and geography of the area, and the real-time information of
the nature of the incident and its evolution (Révelard et al.,
2021; Coppini et al., 2016). This information is used, for ex-
ample, to minimize the search areas.

2.3 Offshore operations

Offshore operations provide access to sources of energy and
raw materials necessary for the economy. Ocean forecasting
services are crucial for offshore operations: for oil and gas
activities, they support oil spill trajectory modeling, data-
driven approaches to forecasting production, maintenance
support, and many other uses (Keramea et al., 2021); for off-
shore renewable energy production, they enable the accurate
prediction of energy and operational yield efficiency (Uihlein
and Magagna, 2016).

2.4 Aquaculture and fish stock management

The EU has highlighted the need for a new strategy for aqua-
culture to become sustainable and to enable future growth in
this sector (COM/2021/236) and the new approach for a sus-
tainable blue economy (COM/2021/240). Currently, the need
for blue sector food products in the EU is mostly met through
imports, around 60 %, (“The EU Fish Market” 2020 edition,
EUMOFA), while EU aquaculture accounts for only 20 % of
fish and shellfish supply. The rising population demands rad-
ical solutions towards food security, which cannot be solely
met through land-based agriculture. Seaweed (macroalgae)
aquaculture has the potential to supplement food supplies,
enhance the maritime economy, and enable ecosystem ser-
vices (Maar et al., 2023).

In this framework, forecasting services play an important
role by providing valuable information to help improve pro-
duction efficiency; reduce risks; and ensure sustainable prac-
tices, such as production planning. The services help to deter-
mine optimal production plans, e.g., size and timing of har-
vests, based on factors like water temperature, nutrient lev-
els, and fish growth rates. These services also support the
impact prediction of environmental factors, such as ocean
extremes and pollution levels (Sangiuliano, 2018). Another
component of the sustainable blue economy is balancing the
need for productive fisheries with the preservation of marine
biodiversity, i.e., the fish stock management and maintain-
ing sustainable marine protected areas. By predicting envi-
ronmental factors like water temperature, salinity, and ocean
currents, models also help anticipate shifts in fish behavior
and distribution and optimize daily operations. In addition to
operational benefits, forecasting models support regulatory
compliance by aiding fisheries in adhering to quotas, sea-
sonal closures, and protected area guidelines set by organi-
zations such as the International Council for the Exploration
of the Sea (ICES) and regional fishery management bodies.

2.5 Coastal tourism

Coastal tourism plays an important role in many EU mem-
ber state economies, with a wide-ranging impact on eco-
nomic growth, employment, and social development. Coastal
tourism is the largest blue economy sector, representing 44 %
of the gross value added (GVA) and 63 % of the employ-
ment of the total EU blue economy. The value of models for
coastal tourism extends from short-term weather forecasts
to long-term forecasts, including climate change, sea level
rise, and tourism demand; forecasting tourism demand using
machine learning algorithms; and predicting coastal tourism
vulnerability, from dangerous weather and ocean conditions
(extreme events), including sea level (storm surge) events
and their relevance in inundation and coastal destruction pro-
cesses (Le Traon et al., 2015), to climate change and sea level
rise (da Costa et al., 2024).
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2.6 Education

Education and ocean literacy are integral to fostering a sus-
tainable blue economy. By combining formal education with
efforts to increase public understanding of the ocean’s vi-
tal role in supporting life and economies, stakeholders can
build a knowledgeable and engaged society. Academic in-
stitutions, vocational training centers, and research organi-
zations are developing interdisciplinary programs that in-
tegrate technical expertise with environmental stewardship,
preparing a workforce adept in ocean sciences, renewable
energy, aquaculture, and maritime logistics (Novellino et
al., 2022). Ocean literacy initiatives further complement
these efforts by raising awareness about marine ecosys-
tems; their resources; and the challenges they face, such
as pollution and climate change (see, e.g., https://eurogoos.
eu/ocean-literacy-resources/, last access: 25 January 2025).
Public campaigns, community engagement projects, and ed-
ucational outreach help individuals and communities under-
stand the importance of sustainable practices.

3 Perspectives

The future of the blue economy is deeply intertwined with
the ability to harness advanced scientific tools, such as ocean
forecasting models, to address emerging challenges and
seize new opportunities. The European Digital Twin of the
Ocean, a cutting-edge initiative combining high-resolution
ocean data with advanced simulation capabilities, represents
a transformative leap in understanding and managing marine
environments. This digital twin enables real-time modeling
and prediction of ocean conditions, offering unprecedented
opportunities for sectors such as maritime transport, renew-
able energy, fisheries, and coastal management to make data-
driven decisions while aligning the needs and offerings of
both the public and private sectors. The integration of on-
demand access to computing resources and services further
amplifies the potential of the digital twin by enabling scal-
ability, real-time access, and computational efficiency. On-
demand high-performance computing platforms make it fea-
sible to process vast amounts of data, perform complex simu-
lations, and deliver actionable insights to stakeholders across
industries and regions. These technologies facilitate the de-
mocratization of ocean data, ensuring that even small-scale
operators can leverage state-of-the-art tools to optimize their
activities and align with sustainability goals. A key perspec-
tive is the integration of these advancements into a holistic
framework that supports sustainable development, equitable
resource distribution, and robust regulatory compliance. The
transition to ocean-based renewable energy sources, the ad-
vancements in sustainable aquaculture, and the growing role
of marine spatial planning highlight the need for interdis-
ciplinary approaches that combine ecological stewardship
with economic growth. Moreover, scaling solutions through
the high-performance computing resources enables seamless

collaboration across international borders, fostering knowl-
edge exchange and ensuring that technological progress ben-
efits all nations, particularly those heavily reliant on marine
resources. Ultimately, the blue economy offers a pathway to
achieving global sustainability goals, providing food secu-
rity, clean energy, and economic resilience while preserving
marine ecosystems.
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Abstract. Capacity development in ocean prediction refers to the process of strengthening the abilities of in-
dividuals, institutions, and systems to generate, access, understand, and apply ocean prediction tools and in-
formation. This encompasses building human capital, enhancing technical skills, improving physical and digital
infrastructure, reinforcing governance, fostering collaborative partnerships and networks, ensuring inclusive par-
ticipation, and providing sustained support – both financial and human – to ensure that ocean prediction services
are effective, inclusive, and sustainable, especially in developing and vulnerable regions. The first section of this
paper provides an overview of key global frameworks for capacity development in ocean science, with a partic-
ular focus on ocean prediction. It also identifies existing gaps in current efforts. In the second part of the paper,
we present the capacity development plans of the OceanPrediction Decade Collaborative Centre (DCC), devel-
oped within the context of the existing global framework. These plans are informed by the results of a dedicated
survey (summarised in this paper) and are further supported by the regional project Ocean Prediction Enhance-
ment in Regions of Africa (OPERA). This section emphasises the importance of integrating both technical and
non-technical training, fostering community building, engaging stakeholders, and undertaking complementary
actions to create an enabling environment for capacity development. It also highlights the value of a co-design
approach and the need for continuous evaluation of the effectiveness and long-term impact of these initiatives.
Finally, the discussion section offers recommendations for the future, drawing on the work carried out under the
OPERA project and aligned with capacity development guidelines from the Intergovernmental Oceanographic
Commission of UNESCO and the United Nations Decade of Ocean Science for Sustainable Development.

1 Introduction

Capacity development is defined by the Intergovernmental
Oceanographic Commission of UNESCO (IOC-UNESCO)
as “the process by which individuals and organisations ob-
tain, strengthen, and maintain the capabilities to set and
achieve their development objectives over time” (UNESCO-
IOC, 2021a). The IOC Group of Experts on Capacity De-
velopment describes the goals of capacity development as
“achieving evenly distributed capacity across the globe,
across generations, and genders, thus reversing asymme-
try in knowledge, skills, and access to technology” (IOC-
UNESCO, 2020a). Capacity development is thus a poly-
semic notion, which shows its uncharted extent when con-
sidering that “components of capacity include knowledge,
skills, systems, structures, processes, values, resources and

powers that, taken together, confer a range of political, man-
agerial and technical capabilities” (Shackeroff Theisen et al.,
2016). In the context of ocean science, capacity development
is described as a “multifaceted process aimed at building the
human, institutional, technical, and financial abilities needed
to conduct, understand, and apply ocean science for sustain-
able development” (Harden-Davies et al., 2022). Capacity
development thus extends beyond knowledge dissemination
and training and encompasses the strengthening of physical
and digital infrastructure, advancement of technology, im-
provement of data accessibility, establishment of sustainable
funding mechanisms, and fostering of collaborative networks
and participatory decision-making. These priorities are un-
derscored in the United Nations Decade of Ocean Science
for Sustainable Development (Ocean Decade) White Paper
Challenge 9: Skills, knowledge, technology and participa-
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tory decision-making for all (Arbic et al., 2024). Such a com-
prehensive approach is essential to empower all stakeholders
to contribute meaningfully to ocean science and governance,
crucial to achieve Ocean Decade Challenge 9 and underpin-
ning progress across all other Ocean Decade challenges.

The Ocean Decade has made capacity development one
of its main priorities, a key for delivering “the ocean we
want” (IOC-UNESCO, 2020b). Strengthening countries’ ca-
pacities in building and sustaining ocean observing systems
is decisive to inform and guide policymaking and to de-
velop and implement international agreements for a sustain-
able ocean (Miloslavich et al., 2018). Ocean Decade Chal-
lenge 9 thus seeks to “ensure comprehensive capacity devel-
opment and equitable access to data, information, knowledge
and technology across all aspects of ocean science and for
all stakeholders” (UNESCO-IOC, 2021b). The equity prin-
ciple is crucial, as the Global Ocean Science Report demon-
strated over the years the extent to which inequalities per-
sist in ocean science, whether in geographical, gender, or
generational representations (IOC-UNESCO, 2017, 2020b).
Indeed, studies tend to demonstrate that capacities are con-
tinuously larger in developed regions than in developing re-
gions, as illustrated in Fig. 1 analysing the number of ocean
science publications per country. Also, scientific coopera-
tion across regions, despite intensifying, remains too limited
within developed countries from Europe, North America, and
Asia (IOC-UNESCO, 2020b). Strengthening the capacities
of these groups while pursuing, to a larger extent, develop-
ing ocean science skills and knowledge of all is the twofold
aim of capacity development in the Ocean Decade. When
it comes to gender and generational imbalances, the Global
Ocean Science Report demonstrated that women and young
ocean scientists continue to be underrepresented in ocean sci-
ence (Black, 2020; IOC-UNESCO, 2020b).

Given this situation, capacity development for ocean fore-
casting is more relevant than ever. This paper explores the
actual status and the plans outlined in the framework of the
OceanPrediction Decade Collaborative Centre (DCC). The
first section provides an overview of the current capacity de-
velopment landscape, including a review of global frame-
works and platforms in ocean science that are relevant to
ocean prediction. The second section summarises the find-
ings of a survey conducted by the OceanPrediction DCC,
which gathered insights into current practices and needs in
the field. The analysis of these results informed the design of
capacity development activities within the newly launched
project Ocean Prediction Enhancement in Regions of Africa.
This project is being implemented under the guidance of the
OceanPrediction DCC’s African regional team. The next sec-
tion outlines a three-step approach to understanding capacity
development, as framed by the OceanPrediction DCC. The
discussion section presents recommendations based on the
OPERA project’s capacity development strategy and imple-
mentation plan. These are aligned with the guidelines of the
IOC-UNESCO and Ocean Decade.

It should be noted that, while ocean literacy is an essential
component of capacity development, it is beyond the scope
of this paper and is therefore not addressed in this review.

2 Present status: main capacity development efforts
in ocean science

2.1 IOC-UNESCO activities

In early 2023, IOC-UNESCO launched the Ocean CD-Hub
(https://oceancd.org/, last access: 14 May 2025) to openly
share worldwide ocean-related capacity development oppor-
tunities, posted by any stakeholder willing to contribute. The
platform classifies the opportunities into different types, re-
sponding to the diversity of activities mentioned above. The
Ocean CD-Hub also allows sorting the opportunities through
regions and stakeholders. Out of 422 referenced opportu-
nities currently, more than two-thirds are proposed by aca-
demic and research stakeholders or by international and in-
tergovernmental agencies. The remaining activities are pro-
posed by governmental parties, private sector stakeholders,
and non-profit and philanthropic organisations. These results
may evolve as the platform continues to develop, yet it still
provides a clear indicator of the main actors involved in
ocean science capacity development.

IOC-UNESCO is further advancing its capacity develop-
ment objectives through the Ocean Teacher Global Academy
(OTGA), a flagship initiative aimed at delivering high-quality
training and education in ocean science and services, imple-
mented by the International Oceanographic Data and Infor-
mation Exchange (IODE) programme and through the IOC
sub-commissions and regional committees (Claudet et al.,
2020; Miloslavich et al., 2018). OTGA courses have a spe-
cific focus on IOC member states’ training needs, with spe-
cial attention to developing countries (but not only) and en-
suring, during the applications’ selection, a gender-balanced
representation in its courses, as per UNESCO’s gender poli-
cies. An endorsed project of the Ocean Decade, OTGA has
developed a strong international network of local universi-
ties and research institutes, acting as regional training cen-
tres (Fig. 2). These centres develop courses addressing re-
gional training needs, aligned with the IOC’s policies and
guidelines. Additionally, it enables training in the regionally
relevant languages and resorting to in-field experts. OTGA,
together with the European Copernicus Marine Service and
EUMETSAT, also organises regular online courses to train
future teachers (Supporting Marine Earth Observations Edu-
cators) and therefore multiply its impact over time.

The Ocean Decade Network (https://forum.oceandecade.
org/, last access: 14 May 2025) is another global platform
sharing numerous capacity development opportunities, as
it references all Ocean Decade actions, contributions, pro-
grammes, and projects; for example, the above-mentioned
OTGA initiative is an endorsed action under the Ocean
Decade. The platform enables the sorting of activities by
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Figure 1. Distorted world map showing each country scaled in proportion to the number of ocean science publications. Different colours
indicate different numbers of publications. Source: IOC-UNESCO (2017).

Figure 2. OTGA regional training centres and specialised training centres in 2020. Source: IOC-UNESCO (2020b).

Ocean Decade challenges, with the most relevant being Chal-
lenge 9 “Skills, knowledge and technology for all” and Chal-
lenge 7 “Expand the Global Ocean Observing System” work-
ing to “ensure a sustainable ocean observing system across
all ocean basins that delivers accessible, timely, and action-

able data and information to all users.” The platform is fur-
ther organised in thematic groups, including one on capacity
development, to enable discussion and information exchange
among peers.
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The Global Ocean Observing System (GOOS) pro-
gramme, which is coordinated by IOC-UNESCO, the World
Meteorological Organisation (WMO), the UN Environment
Programme (UNEP), and the International Science Council
(ISC), comprises 15 regional alliances that play a key role
in advancing ocean observing systems at the regional level.
These alliances also lead and support targeted regional ca-
pacity development activities. Furthermore, the GOOS 2030
Strategy highlights capacity development as a top priority for
strengthening in all countries, particularly those with limited
resources, in order to achieve a truly integrated and inclusive
global ocean observing system by 2030 (Fisher et al., 2019).
In 2022, GOOS and its Expert Team on Operational Ocean
Forecasting Systems (ETOOFS), with support from IOC-
UNESCO, the WMO, and Mercator Ocean International,
published the ETOOFS guide on “Implementing Operational
Ocean Monitoring and Forecasting Systems”. This reference
guide aims to promote the global development, enhancement,
and long-term sustainability of operational ocean monitoring
and forecasting systems worldwide and delivers international
standards and best practices (Alvarez Fanjul et al., 2022).
WMO also supports capacity development in marine mete-
orology and ocean services through regional marine centres
and dedicated training programmes.

2.2 Other capacity development initiatives

Numerous other actors are proposing activities at the global
level. This section highlights key initiatives in capacity de-
velopment, though it is not an exhaustive list. The initiatives
primarily focus on enhancing skills and knowledge through
training and education. However, as previously noted, capac-
ity development encompasses a broader range of actions be-
yond these areas; it extends to addressing challenges such as
inadequate infrastructure, funding limitations, restricted data
accessibility, and inequitable participation:

– The European Copernicus Marine Service (https://
marine.copernicus.eu/, last access: 14 May 2025) reg-
ularly organises online training workshops on how to
access and use its data. Training workshops are ded-
icated to a specific region – or the European sea
basins or the other continents – and provide use cases
on local applications. Training is also tailored to dif-
ferent themes, known as the Copernicus blue mar-
kets, demonstrating how ocean data can inform and
support decision-making across political/governance,
socio-economic, or environmental fields. Each train-
ing workshop is evaluated and improved through feed-
back surveys. Copernicus Marine Service also actively
contributes to external training initiatives, collaborating
with partners such as EUMETSAT, EMODnet, GMES
and Africa, and the Early Career Ocean Professional
(ECOP) Ocean Decade programme. Through these part-
nerships, Copernicus Marine Service brings valuable

expertise and resources related to ocean monitoring and
forecasting, helping to build capacity in the effective
use of marine data and services. As part of its efforts to
support capacity development within the private sector,
Copernicus Marine Service has organised and taken part
in several ocean-data-related hackathon events designed
to foster innovation, entrepreneurship, and the practical
use of marine data. Lastly, Copernicus Marine Service
also proposes on-demand mentoring initiatives, tailored
to specific audiences, from a week-long course in 2023
for a master of science in “ocean, atmosphere, and cli-
mate sciences” (“oceanography and applications” track)
in Cotonou, Benin, to on-demand mentoring.

– The Early Career Ocean Professional (ECOP) pro-
gramme of the Ocean Decade aims to support young
professionals by providing them with a global net-
work and ensuring knowledge transfer, opportunities for
sharing, and collective participation in the international
ocean dialogue. In 2020, the programme launched a
survey to which 1400 ECOPs replied, stating that net-
work and information and training and mentoring were
among their top needs and expectations. Organised in
regional and national nodes and task teams, the ECOP
programme intends to directly develop but also promote
relevant training events and mentoring opportunities for
ECOPs worldwide.

– The International Ocean Institute (IOI) has been active
in ocean capacity development, and particularly ocean
governance, since its creation in the 1970s; e.g. it organ-
ises (online) training courses, master programmes, sum-
mer schools, and tailored workshops and offers schol-
arships and sponsorships. The training mostly targets
developing countries and focusses on regional perspec-
tives; it is conducted at the national level through na-
tional training centres and partners in the respective
country’s main language.

– The Partnership for Observation of the Global Ocean
(POGO) and the Scientific Committee on Oceanic Re-
search (SCOR) are two international non-profit organ-
isations with capacity development activities regard-
ing ocean observation, particularly towards developing
countries. Founded in 1999, POGO implements various
training programmes for early career scientists from de-
veloping countries, especially the 10-month operational
oceanography programme of the Nippon Foundation–
POGO Centre of Excellence, dedicated each year to 10
postgraduate students, or the visiting fellowship pro-
gramme – in partnership with the SCOR. The latter was
founded in 1957 by the International Science Coun-
cil (ISC) to foster interdisciplinary research related to
the ocean. Among its capacity development activities, it
particularly organises the visiting scholars programme,
supporting ocean scientists to teach and provide men-
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toring in developing countries’ ocean science institu-
tions. Such a partnership programme (also organised by
POGO some years ago) revealed several long-term ben-
efits, among which avoiding a “brain-drain” from early
career scientists, enabling the visiting scientists to gain
a better understanding of the existing gaps in the host-
ing countries and likely increasing their willingness to
pursue their involvement (Urban and Seeyave, 2021).

– GEO Blue Planet, the ocean and coastal arm of the
Group on Earth Observations (GEO), has capacity de-
velopment as one of its core action areas with the aim to
strengthen and transfer capabilities to ensure stakehold-
ers can effectively use ocean and coastal observational
data. The initiative organises training workshops around
topics covered by its working groups, including ocean
monitoring and prediction to support fisheries, coastal
hazards, and Sargassum inundations. It also collaborates
with stakeholders to co-design and co-develop adapted
tools and services to meet specific information needs,
such as the Sargassum Information Hub providing in-
formation on Sargassum monitoring and forecasting at
the global, regional, and national levels.

– Universities and academic institutions are not addressed
in this study since countless of them around the world
organise some capacity development activities as part
of their higher-education programmes; but they are, ev-
idently, key players in training future professionals of
ocean science or ocean governance (Miloslavich et al.,
2018). Also, numerous capacity development activities
exist at the local and regional levels, and it takes a strong
knowledge of the regional organisation and its main
stakeholders to thoroughly identify these structures and
initiatives, similar to the analysis of marine studies pro-
grammes in the Pacific Islands conducted by Veitayaki
and South (2001).

3 OceanPrediction DCC global survey on capacity
development

The OceanPrediction DCC has established capacity devel-
opment as one of the main tasks since its inception. To de-
sign a strategy for this objective, the OceanPrediction DCC
launched a survey focusing on capacity development for
ocean prediction. The survey served to assess awareness and
knowledge of existing capacity development opportunities;
to better understand needs, gaps, and interests; and to iden-
tify capacity development efforts around the globe.

The survey was completed by over 100 respondents, with
44 % representing governmental agencies, 40 % academic
sector, 20 % the private sector, 11 % non-governmental or-
ganisations, and 3 % intergovernmental organisations. It is
important to note that most responses came from techno-
logically advanced countries in Europe and North America,

which may bias the results toward more mature capacity de-
velopment needs. Key findings from the survey analysis in-
clude the following.

– Limited awareness of existing resources. Overall,
knowledge of current capacity development tools is low.
Only 35 % of respondents were aware of the ETOOFS
guide, and similarly low awareness was reported for
other initiatives such as OTGA (52 %) and the Ocean
CD platform (30 %). The most recognised initiative was
the Ocean Decade Network (68 %). These results un-
derscore the urgent need to raise awareness of existing
tools and learning platforms.

– Learning about downstream applications. The most
preferred approach is learning through success stories
(59 %), followed by guidance on accessing relevant data
(53 %) and hands-on training focused on specific appli-
cations and software (50 %), such as oil spill modelling
or water quality forecasting.

– Learning about building operational forecasting ser-
vices. The most in-demand topics (61 %) involve ad-
vanced techniques, including dynamic coupling, en-
semble forecasting, and artificial intelligence. This is
closely followed by interest in developing and operat-
ing full ocean forecasting service chains (60 %).

– Expectations from capacity development activities. The
highest priority for participants (66 %) is networking
(such as meeting experts, panellists, and fellow partic-
ipants), followed by direct interaction with domain ex-
perts.

– Preferred duration and format of educational activi-
ties. Respondents showed a strong preference for short
events (1 to 5 d, not necessarily consecutive). In terms
of delivery format, 49 % preferred hybrid events, 33 %
favoured online-only sessions, and 18 % preferred in-
person formats.

Based on these findings, the following recommendations for
future OceanPrediction DCC capacity development activities
can be drawn:

– Activities should align with the foundational objectives
of the OceanPrediction DCC, using the ETOOFS guide
and system architecture as a central framework.

– Collaboration with Ocean Decade programmes will be
essential for success.

– In the short-term, raising awareness of existing re-
sources – particularly the ETOOFS guide and the best
practices it offers – is a critical priority.

– Strategic partnerships with established platforms such
as IOC’s Ocean Teacher Global Academy and Ocean
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Best Practices System (OBPS) are recommended, lever-
aging complementary strengths to amplify the impact
of capacity development initiatives. Support from uni-
versities is also advised to provide academic grounding
for new specialised courses and graduate programmes
aimed at training a new generation of professional ocean
forecasters.

Building on this survey, the OceanPrediction DCC is cur-
rently launching a new set of surveys to gather insights from
experts and stakeholders on the current state, challenges,
and prospects of ocean forecasting services specific to dif-
ferent regions. The pilot regional survey was launched in
April 2024, focusing on the African marine community. A
total of 134 responses were collected, with 60 % coming
from experts and users affiliated with African institutions
(OceanPrediction Decade Collaborative Centre, 2024). Al-
though the survey did not solely focus on capacity devel-
opment, it emerged as one of the key priorities for enhanc-
ing ocean forecasting and its application in Africa – along-
side (and instrumental to) community building, development
of new forecasting services, and applications and efforts to
strengthen user uptake and societal engagement for long-
term and meaningful impact. In the section on cross-cutting
and additional needs, capacity development is the highest pri-
ority, even more so than dedicated funding for ocean fore-
casting and high-resolution services. In the elaboration of re-
sponses, this is linked to the need for a sustainable knowledge
base and preparing a new generation of experts and scientists
in ocean forecasting to provide African solutions for African
problems. When analysed by region (north (coastal countries
from Morocco to Egypt), west (Senegal to the Republic of
the Congo), south (Angola to Mozambique), east (Tanzania
to Eritrea)), the importance of capacity development is com-
paratively lower in the southern region than in other regions;
nevertheless, it remains the top priority, as indicated in Fig. 3
extracted from the survey.

In the elaboration of responses, strong emphasis was
placed on engaging students and young scientists through
scholarships, training to build human capital in ocean fore-
casting. There is a need to focus training specifically on
operational oceanography, from modelling to data assimila-
tion and visualisations, which should also include “training
of the trainers”. Respondents highlighted the importance of
democratising ocean science by actively including underrep-
resented groups (such as women, youth, and persons with
disabilities) in capacity development efforts. Additionally,
the need for improved technological infrastructure and ro-
bust data management practices was recognised as a critical
component of sustainable capacity development. The results
from the survey helped shape the project OPERA (Ocean
Prediction Enhancement for Regions in Africa), which will
be presented in the next section.

Figure 3. Additional needs related to ocean forecasting by region
(north, west, south, east) and including the total for Africa (only
replies coming from African institutions are considered). Source:
summary results from the OceanPrediction Decade Collaborative
Centre (2024).

4 Implementing capacity development activities in
the OceanPrediction DCC: the OPERA project

In January 2025, a new project was launched, called OPERA
(Ocean Prediction Enhancement in Regions of Africa),
within the framework of the OceanPrediction DCC and
its African regional team. Funded by the European Union,
through its ArcX programme (Support to African Regional
Centres of Excellence for the Green Transition), OPERA is
implemented by Mercator Ocean International through its
role as coordinator of the Ocean Prediction DCC and leverag-
ing its expertise and leadership in Copernicus Marine Service
and the European Digital Twin Ocean. At its core, OPERA
will strengthen ocean prediction capabilities and coopera-
tion in Africa by supporting the development of regional
centres of excellence and digital ocean centres, organised in
three consortia, each consisting of up to five African institu-
tional partners. These centres will design, develop, deliver,
and use fit-for-purpose ocean forecasting systems across a
range of essential ocean variables and build innovative ocean
knowledge-based solutions to serve the needs of decision
makers, coastal communities, blue economy actors, and other
beneficiaries.

Following recommendations from the IOC-UNESCO
framework on capacity development, the Ocean Decade
Africa Roadmap, the OceanPrediction DCC ocean forecast-
ing surveys on capacity development and African ocean fore-
casting survey, and consultations with various stakeholders,
the OPERA capacity development strategy was co-designed
to be cross-cutting in the project. It encompasses commu-
nity building, facilitates knowledge exchange, technological
transfer to co-design innovative digital solutions, and tar-
geted training for the consortia partners, as well as broader
opportunities open to the wider African marine community.
In addition, the project will support the acquisition of essen-
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tial hardware for the consortia partners to strengthen their
operational capabilities. This strategy will ensure not only
engagement from the start but also the sustainability of the
action and its long-lasting impact.

The OPERA capacity development strategy is twofold.
The first component focuses on capacity development activ-
ities specifically tailored to the African partners in the three
consortia involved in OPERA, while the second targets the
broader African marine community, with opportunities open
to all interested participants. This second component aims to
grow the ocean forecasting community beyond the OPERA
project, essential for scaling engagement and ensuring long-
term impact. A blended approach will be carried out that
combines in-person and remote training, ensuring accessibil-
ity and flexibility. Together, these activities respond to Ocean
Decade Challenge 9 to ensure “comprehensive capacity de-
velopment and equitable access to data, information, knowl-
edge, technology, and participatory decision-making across
all aspects of ocean science and for all stakeholders” (Arbic
et al., 2024).

4.1 Capacity development targeting the African marine
community at large and beyond

These capacity development activities will follow the Ocean-
Prediction DCC’s virtuous loop of ocean forecasting systems
and will be implemented through OPERA (Fig. 4). These ac-
tivities will be available online to ensure broad participation
in Africa and on a global scale:

– In the first step of the loop is the Expert Team on Opera-
tional Ocean Forecast Systems (ETOOFS) guide, which
will serve as a backbone to implement activities to pro-
vide a strong theoretical foundation on ocean forecast-
ing and its applications (Alvarez-Fanjul et al., 2022).

– The second step focuses on the Ocean Forecasting Ar-
chitecture Guide and develops activities on how to build
an ocean forecasting system, describing the required
tools and data standards and all the required “wiring”
between the different components to ensure interoper-
ability (Alvarez-Fanjul et al., 2024a).

– Third, the operational readiness level and its associated
best practices serve to develop activities to train partici-
pants to operate, evaluate, and improve ocean forecast-
ing services (Alvarez Fanjul et al., 2024b).

– Last, demonstrations via use cases and other approaches
will be used to develop activities to train participants
to apply ocean forecasting in real-world scenarios and
integrate data into interoperable systems, with a focus
on digital twins, particularly the European Digital Twin
of the Ocean.

The activities target three audiences: (i) basic level – gen-
eral public; (ii) intermediate level – technical audience with

Figure 4. OceanPrediction DCC virtuous loop for ocean forecast-
ing (Alvarez-Fanjul et al., 2024a).

an interest in ocean forecasting; and (iii) advanced level – ex-
perts and practitioners developing and operating ocean fore-
casting systems, adapted for multi-stakeholder participation.
The intermediate and advanced levels will have associated
mentoring activities, providing participants opportunities for
questions and exchange. There will also be an online dedi-
cated OPERA forum on the OceanPrediction website to fa-
cilitate discussion and knowledge exchange among project
participants which is also open to the African and global
community at large.

The capacity development activities derived from this
loop, and oriented to the described levels, are summarised
as follows:

– Ocean literacy is activities targeting non-experts to raise
awareness and provide a general understanding on the
importance of ocean forecasting and its applications in
the context of the OPERA project and the OceanPredic-
tion DCC.

– Four massive online open courses (MOOCs) via the
OTGA, accompanied when required by additional on-
line lectures and introductory-level data analysis work-
shops, focus on each part of the aforementioned Ocean-
Prediction DCC’s ocean forecasting virtuous loop, with
increasing levels of difficulty. These courses will be
available in French and English and adapted for the
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African context with relevant use cases. There will be
a certification on completion of each MOOC.

– The development of an advanced interactive learning
tool – SEA-FORWARD (Simple Educational Access
for Forecast and Warning Developers) – is designed
to provide hands-on experience in setting up a basic
ocean forecasting service. The software will serve as an
educational tool, enabling users to explore forecasting
methodologies, data integration, and operational work-
flows in a simplified yet realistic environment. There
will be a certification on completion of the training.

4.2 Capacity development specifically for OPERA
project participants

OPERA will establish three consortia of African centres led
by African institutions through competitive and open calls
open to coastal countries in sub-Saharan Africa. The first
consortium will develop regional and coastal ocean fore-
casting systems. The other two consortia, which will be se-
lected with attention to geographical balance, will concen-
trate on developing tailored applications and tools based on
African priorities and regional needs. Through open calls,
OPERA will establish technical expert teams to provide tar-
geted assistance to the consortia, collaborating with them
to co-design and co-develop software and digital solutions
based on specific needs. The members of the technical expert
team will provide tailored capacity development to the mem-
bers of the consortia, so they will be able to understand, op-
erate, and provide evolution to the ocean forecasting services
and the applications developed at OPERA and implemented
in Africa. The project will also organise two in-person tech-
nical training courses for consortium participants, along with
annual workshops to bring together consortium members,
with decision-makers, users of ocean forecasting systems,
and other relevant stakeholders focused on raising awareness
of the project, collecting feedback, and promoting the uptake
of its results.

5 Discussion

During OPERA and after the project’s implementation, it
will be critical to evaluate the impact of capacity develop-
ment activities – an essential cross-cutting component of the
project – to assess whether they have effectively enhanced
skills, knowledge, infrastructure, ocean governance, data ac-
cessibility, and participatory decision-making at institutional,
national, regional, and pan-African levels. This will be car-
ried out through impact surveys with project participants and
stakeholders involved in the project:

– Concerning the ocean literacy activities, materials will
first be piloted through selected user/stakeholder groups
to test comprehension and engagement levels, making
necessary adjustments based on feedback. At the end of

each year, assessment tools, such as surveys and inter-
active quizzes, will be developed to evaluate the impact
and effectiveness of the ocean literacy materials.

– Regarding the MOOCs and advanced training using the
SEA-FORWARD education tool, all the interactive ac-
tivities will be tested before launching with a subset of
target users to refine the content, troubleshoot technical
issues, and ensure the activities align with the intended
skill development objectives. The project team will de-
velop assessment methods tailored to interactive learn-
ing, such as project-based evaluations, live demonstra-
tions, and peer-reviewed assignments.

However, the impact assessment will be time-bound, as sup-
port will not extend beyond the project’s conclusion in De-
cember 2028, limiting opportunities for long-term feedback
and evaluation of the effectiveness of capacity development
activities.

The strategy and implementation plan for capacity de-
velopment activities in the OPERA project serve as a pilot
project that aims to be improved and adapted for other re-
gions under the umbrella of the OceanPrediction DCC.

Based on guidelines from the existing literature, including
the Ocean Decade White Paper Challenge 9, several initial
recommendations can be made to strengthen capacity devel-
opment efforts within and beyond the OPERA project.

– Establish mechanisms for long-term impact assessment.
Ensure that project outcomes are measured beyond the
project’s duration to allow for a stronger assessment of
impacts. This could include evaluating socio-economic
impacts at the community level, particularly in areas
such as disaster risk reduction, sustainable ocean-based
economic activities, and efforts towards marine ecosys-
tem health conservation.

– Develop post-project capacity support structures. De-
sign and implement mechanisms to sustain capacity
development after OPERA concludes. These may in-
clude mentoring schemes between consortium partners
and technical assistance teams, long-term maintenance
plans for hardware and software, and efforts to secure
continued or additional funding.

– Integrate “training of trainers”. Embed a “train-the-
trainer” approach within capacity development activi-
ties to enhance scalability and sustainability. This helps
ensure knowledge transfer and skills development can
continue independently within local contexts.

– Integrating a maturity model for ocean practices. Com-
plement and strengthen the MOOC on the operational
readiness level of ocean forecasting systems and its as-
sociated best practices with a module on measuring the
maturity of practice descriptions and implementations,
such as the model proposed by Mantovani et al. (2024).
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– Leverage regional networks and collaborations. Engage
with existing regional initiatives, institutions, and net-
works to develop more effective, locally relevant, and
context-specific capacity development strategies. Col-
laborative approaches can help align efforts with re-
gional priorities and amplify impact.

– Foster interdisciplinary engagement. Provide structured
platforms that facilitate interdisciplinary collaboration.
This supports the co-creation of solutions that address
complex ocean challenges through integrated perspec-
tives across natural and social sciences, technology, and
policy.

6 Conclusion

This paper provides insights into capacity development
for ocean science in the context of the Ocean Decade
and more specifically the OceanPrediction DCC. Using the
OPERA project as a concrete example, the paper explores
the project’s proposal design, which places capacity devel-
opment at its core. It highlights important elements such as
co-design, early stakeholder engagement, the implementa-
tion of diverse activities targeting and adapted for multiple
stakeholder groups, and continuous evaluation of these ac-
tivities’ effectiveness – key prerequisites for generating long-
term, meaningful impact.

However, the scope and depth of capacity development
activities proposed by the OPERA project are constrained
by limitations in funding and time. The paper thus puts
forward recommendations grounded in existing literature to
strengthen the capacity development approach in the context
of OPERA for future projects in the OceanPrediction DCC.

A future version of this paper could be broadened to in-
clude global initiatives on ocean literacy related to ocean
prediction, incorporating a mapping of existing activities,
identification of gaps, and documentation of good practices.
The mapping of the global capacity development efforts can
be expanded beyond training and knowledge dissemination
to encompass other important elements, such as data acces-
sibility, infrastructure, funding, and equitable participation,
which are integral to comprehensive capacity development.
Specifically for the African continent, the paper could be ex-
panded to include a mapping of capacity development, in-
cluding education and training opportunities, in ocean fore-
casting and operational oceanography at both regional and
national levels. An overview of current programmes and net-
works aimed at enhancing prediction capabilities in Africa
would also add value. Furthermore, a more diverse group of
co-authors will be invited to future works, particularly from
countries with limited ocean forecasting capacity, to bring in
their valuable perspective. To enhance the discussion on mea-
suring impacts, the paper could include specific examples of
capacity development activities in the ocean prediction field
that have been effective in achieving intended outcomes, con-

trasted with those that have been less successful. This com-
parative approach could help identify factors that contribute
to or hinder the effectiveness of capacity development activ-
ities.

Data availability. The data used in this study are produced from
surveys launched by the OceanPrediction DCC and are not publicly
available due to the General Data Protection Regulation.

Author contributions. LD redesigned the study and wrote the
manuscript, originally initiated by RZ and CTC. AH contributed
to final editing. EAF contributed to the writing and validation. All
authors reviewed and edited final manuscript.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of State of the Planet. The peer-review
process was guided by an independent editor, and the authors also
have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Claudia Delgado (Ghent Univer-
sity), Anthony B. Ndah and Chris P. Nwachukwu (ECOP Africa
network), and Stefania Ciliberti (Nologin) for their suggestions and
ideas during the writing of the manuscript.

Review statement. This paper was edited by Jay Pearlman and
reviewed by Alexis Valauri-Orton and two anonymous referees.

References

Alvarez Fanjul, E., Ciliberti, S., and Bahurel, P.: Implement-
ing Operational Ocean Monitoring and Forecasting Systems,
IOC-UNESCO, GOOS-275, https://doi.org/10.48670/ETOOFS,
2022.

Alvarez-Fanjul, E., Ciliberti, S., Pearlman, J., Wilmer-Becker, K.,
Ardhuin, F., Arnaud, A., Azizzadenesheli, K., Bahurel, P., Bell,
M., Bertino, L., Calewaert, J. B., Capet, A., Chassignet, E.,
Ciavatta, S., Cirano, M., Clementi, E., Cornacchia, L., Cos-
sarini, G. Coro, G., Corney, S., Davidson, F., Drevillon, M.,
Drillet, Y., Dussurget, R., El Serafy, G., Fennel, K., Heimbach,
P., Hernandez, F., Hogan, P., Hoteit, I., Joseph, S., Le Traon,
P.-Y., Libralato, S., Mancini, M., Martin, M., Matte, P., Melet,
A., Miyazawa, Y., Moore, A. M., Novellino, A., O’Donncha,
F., Porter, A., Qiao, F., Regan, H., Schiller, A., Siddorn, J.,
Sotillo, M. G., Staneva, J., Thomas-Courcoux, C., Thupaki, P.,

https://doi.org/10.5194/sp-5-opsr-26-2025 State Planet, 5-opsr, 26, 2025



CHAPTER9.2

10 L. Diarra et al.: Capacity development for the future of ocean prediction

Tonani, M., Garcia Valdecasas, J. M., Veitch, J., von Schuck-
mann, K., Wan, L., Wilkin, J., and Zufic, R.: The OceanPredic-
tion DCC Architecture for Ocean Forecasting, Mercator Ocean,
https://doi.org/10.48670/oofsarchitecture, 2024a.

Alvarez Fanjul, E., Ciliberti, S., Pearlman, J., Wilmer-Becker, K.,
Bahurel, P., Ardhuin, F., Arnaud, A., Azizzadenesheli, K., Az-
nar, R., Bell, M., Bertino, L., Behera, S., Brassington, G., Cale-
waert, J. B., Capet, A., Chassignet, E., Ciavatta, S., Cirano, M.,
Clementi, E., Cornacchia, L., Cossarini, G., Coro, G., Corney, S.,
Davidson, F., Drevillon, M., Drillet, Y., Dussurget, R., El Serafy,
G., Fearon, G., Fennel, K., Ford, D., Le Galloudec, O., Huang,
X., Lellouche, J. M., Heimbach, P., Hernandez, F., Hogan, P.,
Hoteit, I., Joseph, S., Josey, S., Le Traon, P.-Y., Libralato, S.,
Mancini, M., Martin, M., Matte, P., McConnell, T., Melet, A.,
Miyazawa, Y., Moore, A. M., Novellino, A., O’Donncha, F.,
Porter, A., Qiao, F., Regan, H., Robert-Jones, J., Sanikommu,
S., Schiller, A., Siddorn, J., Sotillo, M. G., Staneva, J., Thomas-
Courcoux, C., Thupaki, P., Tonani, M., Garcia Valdecasas, J.
M., Veitch, J., von Schuckmann, K., Wan, L., Wilkin, J., Zhong,
A., and Zufic, R.: Promoting best practices in ocean forecasting
through an Operational Readiness Level, Front. Mar. Sci., 11,
1443284, https://doi.org/10.3389/fmars.2024.1443284, 2024b.

Arbic, B. K., Mahu, E., Alexander, K., Buchan, P. M., Hermes,
J., Kidwai, S., Kostianaia, E., Li, L., Lin, X., Mahadeo, S.,
Maúre, E. D. R., Munga, C., M-Muslim, A., Sant, G., Seeyave,
S., and Sun, Z.: Ocean Decade Vision 2030 White Papers
– Challenge 9: Skills, Knowledge, Technology, and Participa-
tory Decision-Making for All, The Ocean Decade Series, 51.9,
UNESCO-IOC, Paris, https://doi.org/10.25607/k5pt-fp54, 2024.

Black, C.: Gender equity in ocean science: amplifying
voices, increasing impact, Fisheries and Oceans Canada,
https://publications.gc.ca/collections/collection_2021/mpo-dfo/
Fs23-631-2020-eng.pdf (last access: 14 May 2025), 2020.

Claudet, J., Bopp, L., Cheung, W. L., Devillers, R., Escobar-
Briones, E., Haugan, P., Heymans J., Masson-Delmotte, V.,
Matz-Lück, N., Miloslavich, P., Mullineaux, L., Visbeck, M.,
Watson, R., Milena Zivian, A., Ansorge, I., Araujo, M., Aricò,
S., Bailly, D., Barbière, J., Barnerias, C., Bowler, C., Brun, V.,
Cazenave, A., Diver, C., Euzen, A., Thierno Gaye, A. Hilmi,
N., Ménard, F., Moulin, C., Muñoz, .N.P., Parmentier, R., Pe-
bayle, A., Pörtner, H.-O., Osvaldina, S., Ricard, P., Serrão San-
tos, R., Sicre, M.-A., Thiébault, S., Thiele, T., Troublé, R.,
Turra, A., Uku, J., and Gaill, F.: A Roadmap for Using the
UN Decade of Ocean Science for Sustainable Development in
Support of Science, Policy, and Action, One Earth, 2, 34–42,
https://doi.org/10.1016/j.oneear.2019.10.012, 2020.

Fisher, A., Gunn, J., Heslop, E., and Tanhua, T.: IOC-UNESCO:
Global Ocean Observing System: 2030 Strategy, GOOS report,
239 (IOC/BRO/2019/5 rev.2), https://goosocean.org/document/
24590 (last access: 14 May 2025), 2019.

Harden-Davies, H., Amon, D. J., Vierros, M., Bax, N. J., Hanich,
Q., Hills, J. M., Guilhon, M., McQuaid, K. A., Mohammed,
E., Pouponneau, A., Seto, K. L., Sink, K., Talma, S., and
Woodall. L.: Capacity development in the Ocean Decade and
beyond: Key questions about meanings, motivations, pathways,
and measurements, Earth System Governance, 12, 100138,
https://doi.org/10.1016/j.esg.2022.100138, 2022.

IOC-UNESCO: Global Ocean Science Report – The current status
of ocean science around the world, edited by: Valdés, L., Isensee,

K., Cembella, A., Santamaria, A. C., Crago, M., Horn, L., In-
aba, K., Jolly, C., Lee, Y.-H., Mees, J., Roberts, S., and Schaaper,
M., UNESCO Publishing, Paris, https://unesdoc.unesco.org/ark:
/48223/pf0000250428 (last access: 14 May 2025), 2017.

IOC-UNESCO: IOC Group of Experts on Capacity Develop-
ment (GE-CD), Second session, Online, 26 October 2020, UN-
ESCO, Paris, Reports of Meetings of Experts and Equiva-
lent Bodies, 266, 38 pp., https://unesdoc.unesco.org/ark:/48223/
pf0000374859 (last access: 14 May 2025), 2020a.

IOC-UNESCO: Global Ocean Science Report 2020 – Charting
Capacity for Ocean Sustainability, edited by: Isensee, K., UN-
ESCO Publishing, Paris, https://unesdoc.unesco.org/ark:/48223/
pf0000375147 (last access: 14 May 2025), 2020b.

Mantovani, C., Pearlman, J., Rubio, A., Przeslawski, R., Bush-
nell, M., Simpson, P., Corgnati, L., Alvarez, E., Cosoli,
S., and Roarty, H.: An ocean practices maturity model:
from good to best practices, Front. Mar. Sci., 11, 1415374,
https://doi.org/10.3389/fmars.2024.1415374, 2024.

Miloslavich, P., Seeyave, S., Muller-Karger, F., Bax, N., Ali, E.,
Delgado, C., Evers-King, H., Loveday, B., Lutz, V., Newton, J.,
Nolan, G., Peralta Brichtova, A. C., Traeger-Chatterjee, C., and
Urban, E.: Challenges for global ocean observation: the need for
increased human capacity, J. Oper. Oceanogr., 12, S137–S156,
https://doi.org/10.1080/1755876X.2018.1526463, 2018.

OceanPrediction Decade Collaborative Centre: Ocean Prediction
actual status and future needs for Africa: Summary Results
from the OceanPrediction DCC Survey, OceanPrediction
Decade Collaborative Centre, https://www.unoceanprediction.
org/sites/default/files/paragraph/file/2024-10/OceanPrediction%
20DCC%20Africa%20Survey_Summary_0.pdf (last access:
14 May 2025), 2024.

Shackeroff Theisen, J. M., Atkinson, S. R., Awad, A., Beau-
doin, Y., Canals, P., Durussel, C., Edwards, P. E. T., Gom-
bos, M., Hornidge, A.-K., Lameier, M., Nakamura, T., Phili-
botte, J., Porsché, I., Pratt, C., Robertson, L. F., Schwab, P.,
Unger, S., and Winter, A.: Capacity Development for Oceans,
Coasts, and the 2030 Agenda, IASS Policy Brief, 3, p. 4,
https://doi.org/10.2312/iass.2016.017, 2016.

UNESCO-IOC: The United Nations Decade of Ocean Sci-
ence for Sustainable Development (2021–2030) Implementa-
tion Plan, IOC Ocean Decade Series, 20, UNESCO, Paris,
https://unesdoc.unesco.org/ark:/48223/pf0000377082 (last ac-
cess: 14 May 2025), 2021a.

UNESCO-IOC: Ocean Literacy Framework for the UN Decade
of Ocean Science for Sustainable development 2021–2030,
IOC Ocean Decade Series, 22, UNESCO, Paris, https:
//unesdoc.unesco.org/ark:/48223/pf0000377708.locale=en (last
access: 14 May 2025), 2021b.

Urban, E. and Seeyave, S.: Visiting scientists provide capacity de-
velopment: Lessons learned by POGO and SCOR, Oceanogra-
phy, 34, 44–52, https://doi.org/10.5670/oceanog.2021.306, 2021.

Veitayaki, J. and South, G.: Capacity building in the marine sec-
tor in the Pacific Islands: the role of the University of the South
Pacific’s Marine Studies Programme, Mar. Policy, 25, 437–444,
https://doi.org/10.1016/S0308-597X(01)00028-8, 2001.

State Planet, 5-opsr, 26, 2025 https://doi.org/10.5194/sp-5-opsr-26-2025






