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Abstract. Global products of phytoplankton functional types (PFTs) derived from multi-sensor ocean color
(OC) data provide important long-term biogeochemical quantifications indexed by chlorophyll a concentration
(Chl a) of PFTs, including diatoms, haptophytes, prokaryotic phytoplankton, dinoflagellates, and green algae.
Due to the distinctive lifespans and radiometric characteristics of ocean color sensors, the consistency of the
PFT products derived from different sensors needs to be assured to establish a complete and systematic frame
for long-term monitoring of multiple PFTs on a global scale. This study introduces a machine-learning-based
(ML-based) correction scheme to eliminate the discrepancies between different sensors’ PFT products. The
correction scheme is applied to the Sentinel 3A/B Ocean and Land Colour Instrument (OLCI)-derived PFT data
to match them with the PFT data derived from GlobColour-merged ocean color products using the overlapped
period. This correction has generated consistent PFT data across the sensors, enabling the analyses of multi-
year PFT observations by describing their variability and 2-decade trends. Analysis of PFT time series has
revealed an increasing trend in diatoms and dinoflagellates and a decreasing trend in haptophytes and prokaryotic
phytoplankton on a global scale. The overall trend in green algae remains relatively stable, although with some
spatial variations. These PFT trends are more significant in high latitudes and coastal regions (and also in the
equatorial region for prokaryotic phytoplankton). The anomaly of PFTs in 2023 shows significant increases in
Chl a of diatoms and dinoflagellates (+24 % and +9.4 %, respectively) but only weak changes in Chl a for
prokaryotic phytoplankton (−2.1 %) and haptophytes (∼ 1.6 %). These consistent time series data will act as an
important ocean indicator to infer possible changes in the marine environment.

1 Introduction

Climate-induced changes stress the ocean’s contemporary
biogeochemical cycles and ecosystems, impacting the base
of the marine food web: phytoplankton communities (Gru-
ber et al., 2021). In the past decades, various observations of
ocean color (OC) information, especially the chlorophyll a

concentration (Chl a) as a proxy of phytoplankton biomass,
have been able to revolutionize our understanding of the ma-
rine biogeochemical processes and provide insights on the
changes in phytoplankton (e.g., Antoine et al., 2005; Gregg

and Rousseaux, 2014; Behrenfeld et al., 2016). However,
phytoplankton biomass cannot comprehensively describe the
complex nature of the phytoplankton community, concern-
ing their composition and function. Phytoplankton commu-
nity composition varies in ocean biomes, and phytoplankton
groups drive the marine ecosystem and biogeochemical pro-
cesses differently (Bracher et al., 2017). Therefore, continu-
ous long-term monitoring of phytoplankton functional types
(PFTs) with interannual variation and trend analysis will help
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Table 1. Products used.

Product
ref. no

Product ID and type Data access Documentation

1 OCEANCOLOUR_GLO_BGC_L3_MY_009_103;
satellite observations

EU Copernicus Marine
Service Product (2024)

Quality Information Document
(QUID): Garnesson et al. (2024);
Product User Manual: Colella et
al. (2024)

2 Self-processed PFT data based on merged OC products
for the period of May 2016–April 2017 overlapped
with the OLCI-based PFT data available on the
Copernicus Marine Service; satellite observations

Our own archive Xi et al. (2021, 2023a)

3 In situ PFT data; in situ observations Our own archive PANGAEA (Xi et al., 2025)

us better understand the biogeochemical processes and ben-
efit the assessment of ocean health (Xi et al., 2023a).

Previously, we developed and further improved an ap-
proach, referred to as EOF-PFT, consisting of a set of
empirical-orthogonal-function-based algorithms for the re-
trieval of PFTs on a global scale (Xi et al., 2020, 2021). Two
algorithms within the EOF-PFT approach were built for two
sets of OC satellite products, namely the GlobColour-merged
products with sensors of SeaWiFS, MODIS-Aqua, MERIS,
and VIIRS-SNPP included and the products from the Ocean
and Land Color Instrument (OLCI) sensors on board Sen-
tinel 3A and 3B. Using multi-spectral remote sensing re-
flectance data (Rrs) from these OC products and sea sur-
face temperature (SST) data, the EOF-PFT approach enables
satellite retrievals of Chl a for five PFTs with pixel-by-pixel
uncertainty, which include diatoms, dinoflagellates, hapto-
phytes, green algae, and prokaryotic phytoplankton (prokary-
otes hereafter for brevity). These PFT Chl a products, cov-
ering the period from 2002 until today, are available on the
Copernicus Marine Service and updated regularly upon re-
processing with refined algorithms.

The PFT products enable the analysis of multi-year PFT
observations by describing their variability and trends. How-
ever, prior to the time series analysis, the consistency of the
PFT datasets derived from the GlobColour-merged OC prod-
ucts and from OLCI data needs to be assured. In the frame of
the Copernicus Marine Evolution Project GLOPHYTS, we
aim to merge the aforementioned two PFT datasets into one
long-term consistent satellite PFT product. A first attempt
was carried out by Xi et al. (2023a) with a correction scheme
based on linear regressions with PFT uncertainty considered,
which was applied to PFT data from Sentinel 3A/B OLCI
sensors to generate PFT time series in the Atlantic Ocean.
Though such a straightforward correction scheme provides
an overall consistent time series, the spatial variation cannot
be adequately corrected, and large biases between sensors
can still exist at regional scales. Therefore, we intend to en-
hance the correction procedure by incorporating spatial vari-
ability. In this study, we propose a new correction scheme

based on a random forest machine learning method for deliv-
ering 2-decade quality-assured global PFT datasets, which
are cross-validated within model training and further vali-
dated with in situ data. The harmonized PFT time series with
high spatiotemporal consistency are analyzed on both global
and regional scales to investigate the trend and anomaly for
different PFTs. Considering that ocean color missions are
planned to be continued into the next decade and beyond,
such PFT time series will further act as an important ocean
indicator to help sustain the ocean health by providing in-
terannual variation and trend analyses of the surface phyto-
plankton community composition, especially for the key re-
gions that have been defined as vital marine environments by
the Copernicus Marine Service.

2 Data and methodology

2.1 PFT products from the Copernicus Marine Service

The PFT datasets with per-pixel uncertainty (product ref.
no. 1 in Table 1) are produced with a modified version of
the EOF-PFT approach proposed by Xi et al. (2021). The
modified algorithms within EOF-PFT were developed us-
ing the latest global in situ pigment matchup dataset and
trained separately for the merged OC products (including
SeaWiFS, MODIS, MERIS, and VIIRS) from 2002 with 8
bands and for Sentinel 3A/B OLCI data (from May 2016)
with 10 bands from the GlobColour archive. The official
PFT data (product ref. no. 1 in Table 1) are generated from
the merged OC products for the period of July 2002–April
2016 and from OLCI products from May 2016 onwards
(hereafter referred to as merged-sensor-derived PFTs and
OLCI-derived PFTs, respectively). However, we extended
the merged-sensor-derived PFT products to April 2017 in this
study (product ref. no. 2 in Table 1), in order to have the
1-year overlapping period with the OLCI-derived PFT data
for consistency analysis. The merged-sensor-derived PFT
products were processed only until 2017 because VIIRS-
SNPP data from the NASA release R2018 reprocessed ver-
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sion were identified with significant trends (possibly due to
degradation) after 2017 that are not identified in other sensors
(NASA Ocean Color, 2025).

Updated EOF-PFT algorithms were also assessed with an
independent validation dataset with satisfactory performance
(details in the corresponding QUID). The corresponding pro-
totypes were prepared and implemented into the Coperni-
cus Marine Service to generate reprocessed PFT products
with per-pixel uncertainty through EiS (Enter into Service)
by November 2024. With these updates, we obtained PFT re-
trievals from the aforementioned two sensor sets; however,
consistency between the PFT data across the two sets must
be assured to generate long-term time series data and prepare
for the next-generation reprocessing.

2.2 Machine-learning-based ensemble (MLBE) for
inter-sensor correction of PFT data

The merged-sensor-derived PFT products have a longer time
span (∼ 15 years) than the OLCI (Sentinel-3A/B)-derived
PFTs (∼ 7 years) and are generated based on the algorithms
trained with a larger global matchup dataset (∼ 1500 data
points compared to ∼ 300 for OLCI due to its shorter run-
ning time and limited in situ data from 2016). The merged-
sensor-derived products also carry relatively lower uncer-
tainty compared to the OLCI-derived PFT data (Xi et al.,
2021, 2023a). Therefore, we set up the modification scheme
for the OLCI-derived PFTs to match the merged-sensor-
derived PFTs. A similar inter-sensor correction has been
done for the OC-CCI-merged OC data (Mélin and Franz,
2014; Sathyendranath et al., 2019). We tested a few machine
learning methods (random forest, 1D convolutional neural
network, self-organizing map) to upgrade the consistency
of OLCI-derived products with the merged-sensor-derived
products on a pixel basis. At last, we used the random-forest-
based ensemble “TreeBagger” with regression decision trees
embedded in MATLAB (R2023b), which selects a subset of
predictors for each decision split by the random forest al-
gorithm to establish the correction model (Breiman, 2001).
The ensemble is powerful in extracting spatial features from
the predictors and establishing connections with the response
variables through an optimal number of regression trees. Fig-
ure 1a shows a simplified flowchart of this machine learning
ensemble, which is referred to as the machine-learning-based
ensemble (MLBE) hereafter. A brief description of the en-
semble establishment is as follows:

1. Input data are the monthly PFT products with 25 km res-
olution derived from both merged-sensor and OLCI data
(May 2016 to April 2017, product ref. no. 2 in Table 1),
from which the latitude, longitude, and OLCI-derived
PFT products during the 12 months are the predictor
variables and the merged-sensor-derived PFTs are re-
sponse data. Only pixels with available data from both
products were taken into account. The input dataset was

randomly divided into a training dataset (70 %,∼ 3 mil-
lion pixels) and a testing dataset (30 %, ∼ 1.26 mil-
lion pixels). Before the training was performed, the PFT
datasets were log-transformed due to their nature of log-
normal distribution (Xi et al., 2021). The geographic in-
formation (latitude and longitude) was simply normal-
ized to the range [−1,1] by scaling the original ranges
of [−89.875,89.875] and [−179.875,179.875] (with
0.25° pixel size).

2. The MLBE was trained separately for each PFT. Af-
ter testing different numbers of regression trees for the
training, we chose 30 regression trees to obtain the opti-
mal training performance with relatively low computa-
tion cost (Fig. 1b). Trained models applied to the test
datasets have shown equivalent performance with the
training sets, indicating that the ensembles are robust.

3. The ensembles trained for the five PFTs (diatoms, hap-
tophytes, dinoflagellates, prokaryotes, and green algae)
were applied to all monthly PFT products derived from
OLCI from May 2016 to December 2023 to generate the
corrected OLCI PFT data.

Following the same steps above, a similar MLBE model
based on the PFT products with 4 km spatial resolution was
also established to enable the validation with in situ data,
as described below in Sect. 2.3, as the corrected OLCI PFT
generated from the 25 km MLBE model is too coarse for a
valid comparison with the field measurements. PFT time se-
ries analysis is, however, still based on the monthly 25 km
product to alleviate the computation.

2.3 Validation data

We compiled two in situ PFT datasets to validate the MLBE-
corrected OLCI-derived PFT products (product ref. no. 3
in Table 1). The in situ data were derived from quality-
controlled in situ HPLC pigment concentrations using the
diagnostic pigment analysis (DPA) with updated pigment-
specific weighting coefficients following Xi et al. (2023a, b),
consistent with the calculation of the in situ PFT data used
for the updated EOF-PFT algorithms described in Sect. 2.1.
Dataset 1 is the test dataset (99 matchups) extracted from
the global in situ PFT matchup data, which takes up 30 %
of the whole matchup dataset, while the other 70 % was
used for the retuning of the PFT algorithm for OLCI sen-
sors. Dataset 1 spans 2016 to 2021 and spreads widely
in the global ocean. Dataset 2 containing 134 matchups
is a newly compiled dataset that composites in situ PFT
data collected from four recent mostly polar expeditions
with the research vessel Polarstern (Alfred-Wegener-Institut
Helmholtz-Zentrum für Polar- und Meeresforschung, 2017):
PS126 (May–June 2021), PS131/1 (June–August 2022), and
PS136 (May–June 2023) in the North Atlantic Ocean to
the Arctic Ocean; PS133 (October–November 2022) in the
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Figure 1. (a) Flowchart of the MLBE. (b) Ensemble error with number of growing trees. Scatterplots of (c) diatom Chl a from OLCI
non-corrected against that from merged-sensor products and (d) MLBE-corrected OLCI diatom Chl a against that from merged-sensor
products. (e) RD between OLCI-based and merged-sensor-derived diatom Chl a and (f) RD between MLBE-corrected OLCI-based and
merged-sensor-derived diatom Chl a.

Southern Ocean. Geographical distribution maps of the two
datasets are included in Fig. 3 together with the validation
plots. These matchup data are made available on PANGAEA:
https://doi.org/10.1594/PANGAEA.982433 (Xi et al., 2025).

2.4 Trend and anomaly analysis

We focus on explorations of the consistent PFT products to
reveal and understand the trends and variations in the global
PFTs in the last 2 decades. We prepared time series on a
global scale and on four regional scales, including the North
Atlantic Ocean, the Mediterranean Sea, the Arctic Ocean,
and the Southern Ocean. The other two regions of interest

to the Copernicus Marine Service, the Baltic Sea and the
Black Sea, were not included, as the PFT algorithms were
developed for open-ocean waters (bathymetry > 200 m) and
the quality of the PFT data generated in these regions could
not be assured (Xi et al., 2021). PFT time series of different
spatial scales were calculated by applying the weighted aver-
age (taking cosine of the latitude as weights) to the monthly
PFT data over the defined regions, to take into account the
proportional contribution of each pixel to the global sur-
face ocean due to area distortion in the gridded dataset. The
latitude-weighted averaging was applied to the logarithmi-
cally transformed PFT Chl a to obtain the log-based mean,
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which was then converted to natural values. A deseasonaliza-
tion, referring to the process of removing the signal caused
by seasonality from the time series, was first applied to the
PFT time series. The deseasonalized time series were then
prepared by decomposing the monthly data of each vari-
able into a trend: seasonal and residual components with
Seasonal-Trend decomposition using LOESS (STL; Cleve-
land et al., 1990). A non-parametric Mann–Kendall test was
used to identify statistically significant trends over time with
a p value < 0.05 (Mann, 1945; Kendall, 1975; Gilbert, 1987),
and then the slope of the linear trend was estimated with the
non-parametric Sen’s slope (Sen, 1968). The standard devi-
ation of the trend slope has been also calculated by consid-
ering PFT uncertainty assessed by the EOF-PFT retrieval al-
gorithms. Time series analysis has been done both per pixel
and for the whole global ocean and selected regions. We de-
tected trends reflected by the satellite observations and de-
rived anomalies to observe the interannual changes. Anoma-
lies of 2023 (the last year of the considered period) were also
obtained following Xi et al. (2023a) by comparing the PFT
situation of 2023 to the mean of the last 2 decades.

2.5 Statistical metrics

To evaluate the correction ensemble performance, relative
difference (RD), median absolute difference (MAD), and
median absolute relative difference (MARD) were calculated
based on the Chl a data of each PFT, which are defined as be-
low.

RDi =

(
Chl aOLCI

i −Chl a
Merged
i

)
/Chl a

Merged
i ,

where i is the ith PFT.

RDPFT =

(
Chl aPFTOLCI −Chl aPFTmerged

)
Chl aPFTmerged

× 100% (1)

MADPFT =median of
∣∣Chl aPFTOLCI −Chl aPFTmerged

∣∣ (2)

MARDPFT =median of

∣∣Chl aPFTOLCI −Chl aPFTmerged

∣∣
Chl aPFTmerged

× 100 % (3)

To validate the corrected PFT Chl a data with in situ data,
statistical metrics, including regression slope and intercept,
determination coefficient (R2), root-mean-square difference
(RMSD; mg m−3), and median percent difference (MDPD;
%), were used. For the definition equations of these terms,
please refer to Xi et al. (2020). Note that only the slope and
R2 are calculated on the base 10 logarithmic scale.

3 Results

3.1 Correction of the OLCI-derived PFT data using the
MLBE scheme

To reduce cross-sensor data shift and generate consistent
PFTs, we firstly applied a correction method while using the
type II regression relationships with uncertainties included
between the merged-sensor-derived PFTs and OLCI-derived
PFTs in the overlapped period, to correct the latter to the for-
mer. The methodology was described in Xi et al. (2023a).
However, even though the final PFT time series over the
global ocean shows good consistency, the difference between
the two PFT products is still prominent in different regions.
Taking the diatom product as a showcase, we calculated
the relative difference (RD in %) between the OLCI-derived
and merged-sensor-derived diatom Chl a using Eq. (1). The
median absolute relative difference (MARD in %) over the
globe, calculated using Eq. (3), was reduced significantly af-
ter the linear correction (from 45 % to 26 %); nevertheless,
the RD can still reach as high as 80 %–100 % in different re-
gions (figure not shown). High RD variations have also been
found for other PFTs with the previously proposed correction
scheme based on type II linear regression.

The scatterplot and statistics in Fig. 1d with the MLBE-
corrected OLCI diatom Chl a show significant improvement
in consistency with the merged-sensor-derived diatom re-
trievals compared to the non-corrected OLCI-derived diatom
data (Fig. 1c). Figure 1f highlights the reduced RD variation
over the global ocean compared to the RD between the non-
corrected OLCI- and merged-sensor-derived PFTs shown in
Fig. 1e. The slope of the regression when using the corrected
dataset is close to 1, the median absolute difference (MAD;
defined in Eq. 2) reduced from 0.13 to 0.02 mg m−3, and
the MARD reduced from 45 % to 5.7 %. The trained ensem-
bles applied to the other four PFT products (haptophytes, di-
noflagellates, prokaryotes, and green algae; see Fig. 2 for the
global distribution of the RD for each) have also shown sig-
nificant improvements in MAD of 0.002, 0.002, 0.003, and
0.006 mg m−3 and improvements in MARD of 5.2 %, 4.2 %,
4.8 %, and 7.2 %, respectively. The median of RD over the
globe for all five PFTs is within±1.5 % and shows no signif-
icant over-/underestimation.

The low RD observed for the overlapping year sug-
gests that the MLBE correction scheme effectively aligns
the OLCI-derived PFT data with the merged-sensor-derived
PFTs, ensuring a strong spatial correspondence between the
two datasets.

3.2 Validation of the MLBE-corrected OLCI-derived PFT
data

Validation of the corrected OLCI-derived PFTs was carried
out by applying the 4 km MLBE to the OLCI-derived PFT
data that are collocated with the two independent in situ
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Figure 2. Global distribution of the RD between MLBE-corrected OLCI- and merged-sensor-derived PFT Chl a over the 1-year overlapped
period (May 2016–April 2017).

datasets, as described in Sect. 2.3. Scatterplots and statis-
tics of the validation using dataset 1 displayed in Fig. 3a
show good agreements between the corrected OLCI PFT data
and the in situ data, R2 > 0.51 and MDPD < 56 %, with di-
atoms showing the best slope (0.78) and correlation coeffi-
cient (0.80) and with prokaryotes showing the lowest MDPD
(33.5 %). We also provided a similar validation analysis for
the OLCI data before the correction (Fig. S1 in the Sup-
plement) to have a direct comparison. The overall valida-
tion shows that the MLBE correction on the OLCI-derived
PFT data preserves the distribution features from the original
OLCI-derived PFT dataset; however, overall, slightly down-
graded statistics have been observed for nearly all PFTs,
except for the MLBE-corrected haptophytes and prokary-
otes, which showed slightly better MDPD against the in situ
data compared to the validation of the original OLCI-derived
data. The validation using dataset 1 indicates that the MLBE
correction does not significantly change the PFT variability,
showing its feasibility to generate consistent time series data.
On the other hand, validation using dataset 2, which contains
recently obtained in situ data at high latitudes only, exhibited
larger discrepancies than that from dataset 1 (Fig. 3b). All
PFTs showed low correlation between the MLBE-corrected
and in situ data, with the highest R2 only 0.21 for diatoms
and the lowest R2 for green algae. Though the MDPD values
are all below 60 %, the low R2 indicates weak agreements
between the corrected and in situ data. Prokaryotes show un-
derestimations in the corrected OLCI data compared to the in
situ data, mostly for the Arctic data. A similar validation for
the original OLCI-derived PFTs using dataset 2 has also been
provided in Fig. S2 in the Supplement, showing overall al-
most equivalent statistics with the validation of the corrected
data, with a slightly higher R2 of 0.24 for diatoms and the

lowest R2 for green algae (0.09). This confirms that PFT data
at high latitudes bear large uncertainties, which is in line with
the per-pixel uncertainty estimated by considering errors in-
duced by the input satellite data and the EOF-PFT algorithm
parameters (Xi et al., 2021). The satellite PFTs were not im-
proved even with the MLBE correction, suggesting that the
inherent high uncertainties in high latitudes are mostly at-
tributed to the retrieval models that are not efficient enough
in these regions. Therefore, PFT observations in the high lat-
itudes need more attention in terms of improved estimation
methods and higher data quality.

3.3 PFT time series analysis

We applied the MLBE correction scheme on a global scale
to the OLCI monthly products and generated time series for
the five PFTs from July 2002 to December 2023. With the
corrections applied to OLCI data, all five PFTs show very
consistent time series (Fig. 4a). The MLBE-corrected OLCI-
derived PFT data and the merged-sensor-derived PFT data
showed almost identical values during the overlapped period
(May 2016–April 2017). Only for green algae is the correc-
tion slightly less satisfactory than the others, which should
be due to the weaker correlation (R2 < 0.7; figure not shown)
between the original OLCI- and merged-sensor-derived PFT
data, whereas the other four PFTs all show R2 above 0.9.
This weaker correlation for green algae has subsequently
led to reduced performance in the MLBE correction. The
PFT time series have been analyzed at the global scale and
at four regional scales, including the North Atlantic Ocean,
the Mediterranean Sea, the Arctic Ocean, and the Southern
Ocean. Figure 4b shows the time series with slopes indicat-
ing the PFT trends per decade and the corresponding slope
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Figure 3. (a) MLBE-corrected PFT Chl a from OLCI sensors in comparison with in situ PFT dataset 1. (b) Same as the validation in
panel (a) but using in situ PFT dataset 2. A map of the data distribution for datasets 1 and 2 (product ref. no. 3 in Table 1) is shown in each
panel, respectively.
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errors for all the PFTs at different scales. Figure 5 shows the
significant PFT trends (p value < 0.05) on a pixel basis over
the globe for a better understanding of the spatial distribution
of the trends.

Diatoms show a significant increasing trend for the global
ocean and selected regions, especially in the Atlantic sec-
tion of the polar regions (Fig. 5a). Furthermore, a distinct
increase was found in more recent years since autumn 2017
and is still prominent in 2023. The global trend in diatom
Chl a is increasing by 0.0011± 0.0001 mg m−3 per decade
and with a dramatic increase in the polar regions (0.03 and
0.034 mg m−3 per decade for the Southern Ocean and the
Arctic Ocean, respectively). This overall increasing trend is
mainly driven by the significant elevation in diatom biomass
observed since 2018, especially due to the higher minimum
diatom Chl a in spring and late autumn, which are the begin-
ning and ending times of the available OC satellite observa-
tions in the polar areas. This might suggest a longer growth
period for diatoms in latest years.

Haptophyte Chl a exhibits a very slight decrease in general
on the global scale (−0.0002± 0.0001 mg m−3 per decade)
and in all other selected regional zones, but the decrease is
not significant in the North Atlantic Ocean. There is a slight
oscillation pattern in the global time series, which shows the
haptophyte biomass was the highest in late summer 2011 and
remained at a stably lower biomass in the following years un-
til 2018/2019, when it started to elevate again. This feature
is not clearly reflected in the four selected regions; therefore
it should be attributed to other regions that are not included
here. The global per-pixel trend (Fig. 5b) shows a more sig-
nificant decrease in coastal areas and in the sub-Arctic and
Arctic regions, along with high variability in the Southern
Ocean with an overall decrease.

Dinoflagellates show a similar pattern with diatoms, i.e.,
an increasing trend (0.0002± 0.0000 mg m−3 per decade) in
the last 2 decades mainly driven by the increase in dinoflag-
ellate Chl a since mid-2017, but their biomass is still low
compared to other PFTs, as they are usually undominant
in the phytoplankton community composition. No signifi-
cant trends have been found for dinoflagellate biomass in the
Mediterranean Sea and Arctic Ocean.

Green algae show no significant trend on the global scale.
The time series show a less obvious seasonal pattern than
the other PFTs, possibly due to the fact that they are barely
the dominant group in the global ocean and mostly co-exist
with the other PFTs which show clear dominance in certain
regions at specific times, depending on their ecological func-
tions. The biomass reached its peak in October 2011, fol-
lowed by a few years of decrease, but started to increase in
2018. On the regional scale, a decrease in the Mediterranean
Sea and Arctic Ocean and a slight increase in the Southern
Ocean have been observed, which are also clearly shown in
the per-pixel trend (Fig. 5d). The decreasing trend is seen in
coastal regions, such as the northern European coastlines, the

west coasts of America and Africa, and the north coast of the
Arabian Sea.

Prokaryote Chl a displays an overall significant decreas-
ing trend on the global scale (−0.0012± 0.0001 mg m−3 per
decade) and in the selected regional zones, except for the
Southern Ocean. The global per-pixel trend (Fig. 5e) shows
the Northern Hemisphere with significant decrease near the
Equator within 15° S–25° N (Indian Ocean, western Africa,
low latitudes in the Pacific Ocean), but a slight increase is
shown in the belt of 15–35° S. Very mild changes have been
found at high latitudes, where the prokaryotic phytoplankton
abundance is in general very low (� 0.01 mg m−3 on area
average).

3.4 PFT anomaly of 2023

Figure 6 shows the relative anomalies (%) of the five PFTs
in 2023 compared to the average PFT state over the 20 years.
The diatom anomaly presents higher Chl a for most of the
global ocean, with a dramatic increase in latitudes > 40°.
This can already be expected from the time series in Fig. 4a,
where diatoms show elevated Chl a from autumn 2017 and
keep a similarly high biomass in 2023. The global mean of
the diatom in 2023 is about 24 % higher than the 2-decade
average, and the anomaly varies from −30 % to 110 %, with
extremely high values in the Arctic Ocean and the coastal re-
gions in the southern part of South America. Dinoflagellates
show a similar anomaly, with diatoms in a much milder pat-
tern, which has a global mean of about 9.4 %. The haptophyte
anomaly presents changes without a clear pattern, showing
slight increases in Chl a in the Pacific gyres, the eastern In-
dian Ocean, and the Southern Ocean but slight decreases in
the temperate latitudes. The overall global mean anomaly of
haptophyte Chl a is only very slightly higher compared to
the 2-decade average (1.6 %). Green algae show a similar
distribution in biomass change to haptophytes but a slightly
more prominent increase in most of the global oceans (global
mean of 6.5 %). Prokaryotes generally show decreased Chl a

in 2023 (global mean of −2.1 %), with only slight increases
observed in the South Pacific Ocean and part of the Southern
Ocean.

4 Discussion, conclusions and outlook

4.1 The need for harmonization

Generating long-term consistent PFT data from a single sen-
sor/set of sensors is challenging due to discontinuous satel-
lite missions and different sensor specifications. PFT data de-
rived using models established based on different sensor sets
bear different levels of uncertainty. OLCI, being the newest
sensor, has more spectral bands, which should be benefi-
cial for PFT retrievals; however, due to limited in situ pig-
ment datasets available for the model training, it does not
show superior performance to the merged OC products. Har-
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Figure 4. (a) Updated (corrected) time series of the five PFT Chl a based on the global mean from 2002 to 2023. Merged-sensor-derived PFT
products cover the period of July 2002–April 2017 (indicated with dots), and OLCI-derived PFT products are for May 2016–December 2023
(indicated with crosses). Note that the OLCI-derived products are corrected to merged products based on MLBE. (b) Trends in the Chl a of
diatoms, haptophytes, dinoflagellates, green algae, and prokaryotes on the global scale and on four regional scales (the North Atlantic Ocean,
the Mediterranean Sea, the Arctic Ocean, and the Southern Ocean). Trend slopes per decade with uncertainties are indicated, with significant
trends marked with an asterisk (*).
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Figure 5. Per-pixel trends for Chl a of (a) diatoms, (b) haptophytes, (c) dinoflagellates, (d) green algae, and (e) prokaryotes (only where
p < 0.05 is shown; slope unit: mg m−3 per decade).

monization is so far necessary for the current derived PFT
products of the Copernicus Marine Service, as it is not yet
possible to produce consistent long-term PFT products us-
ing harmonized radiometric data from historic and current
sensors using the proposed approach, which requires more
bands. Attempts have been carried out for consistent PFT
products derived from large data-driven deep learning en-
sembles by incorporating Rrs at only 5–6 merged bands, to-
gether with other ocean color and physical/biogeochemical
variables (e.g., Zhang et al., 2024), and this shows potential
for upgrading the operational datasets; however, the applica-

bility of the implementation of such an approach for opera-
tional products has yet to be proven.

4.2 MLBE correction scheme

This study aims to demonstrate consistent PFT time series
data on the global scale and for the polar regions and Euro-
pean seas, which were developed based on a robust machine
learning correction scheme. The proposed MLBE correction
scheme outperforms the previously proposed method that
was based on type II linear regression with considerations
of PFT uncertainties (Xi et al., 2023a). For the overlapping
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Figure 6. Relative anomaly of 2023 for Chl a of (a) diatoms, (b) haptophytes, (c) dinoflagellates, (d) green algae, and (e) prokaryotes.

period, the MLBE scheme demonstrates high consistency
between the corrected OLCI-derived PFTs and the merged-
sensor-derived PFTs, both in space and time, increasing our
confidence in employing the data for further time series stud-
ies.

However, the MLBE model training was based on 12-
month satellite data spanning only 1 year (the overlapping
period of the two sensor sets), in an attempt to identify the
spatial variation of the PFT data from the two sensor sets, so
that it could fit one pattern to the other on the whole global
scale. It has been reported that random splitting between
training and test sets may produce data leakages (Meyer et
al., 2018; Stock et al., 2023), potentially leading to overop-
timistic test performance that does not generalize well in ac-
tual application to other datasets. To avoid data leakage, tem-
poral partitioning was suggested to ensure that the training
and test datasets are independent. However, a random split
was applied in the study, as temporal partitioning was im-

practical due to the limited duration of the dataset in our
case. The MLBE model is basically a correction scheme
trained based on all pixel data (over 50 million available data
points) from 12 monthly PFT products. The purpose was to
cover as completely as possible the global region to ensure
that the training learns the pattern globally. By applying the
suggested temporal partitioning, we would lose data, e.g., at
high latitudes, if we excluded a certain month in the train-
ing. This can cause biases in the learning process, ensuring
that the trained model would very likely not be applicable
to either the test set or the other datasets that contain the
missing periods. The straightforward random splitting in our
study ensured the homogeneous splitting between the train-
ing and test datasets over space and time, thanks to the large
number of data points, so that the trained model learned the
most knowledge from the available data within the limited
time period. Though such random partitioning has widely
been used (e.g., Li et al., 2023; Zoffoli et al., 2025), one
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should keep in mind that having data for only a single year
is challenging because the year may present conditions that
are specific to that year only, which may cause unrealistic
predictions for other years. It is therefore noteworthy that
target-oriented data splitting and cross-validation, such as
considering spatial and temporal blocks, should be applied
in machine-learning-based studies when the dataset allows it
(e.g., Zhang et al., 2024).

For the next cycle of the implementation to the Coperni-
cus Marine Service, updates will be necessary for the PFT re-
trievals and the MLBE scheme. It is expected that the VIIRS-
SNPP drifting after 2017 is better calibrated with the new re-
processing, so our data used for the training in the correction
scheme can be extended to more recent years to achieve an
even better consistency between the merged-sensor-derived
and OLCI-derived PFT products.

4.3 Consistent PFT time series and validation

The time series generated based on the consistent PFT data
on the global scale from 2002 to 2023 has shown a clear in-
creasing trend for diatoms and dinoflagellates and a slight
decreasing trend for haptophytes and prokaryotes, while the
green algae exhibit no significant trend but with higher inter-
annual variability. To date, the longest time series for ocean
color products still covers less than 3 decades (starting in
1997 with the launch of SeaWiFS). Though this may still not
be long enough for a robust trend analysis due to a decadal
variability that is too strong (Henson et al., 2010, 2016), these
time series can help to catch distinct changes on different
scales by comparing them to the climatological state. Indeed,
the findings, such as the significant increase in diatoms, par-
ticularly after 2017, are of interest to in-depth investigations
linking climate drivers to such prominent changes. For in-
stance, potential responses of phytoplankton biomass to in-
creasingly frequent marine heat waves in the past years can
be a suitable starting point.

Changes in phytoplankton biomass have been described
by the Chl a derived from ocean color satellites covering
the last decades. Trends in the Chl a at different scales can
be generated using current operational chlorophyll products,
such as OC-CCI and GlobColour. For instance, Chl a as an
Ocean Monitoring Indicator (OMI) has been included by the
Copernicus Marine Service where the climate trends in var-
ious OMIs are provided to indicate the state of the ocean
health. The current published time series of Chl a shows a
general increase during 1997–2022 on the global scale and
also for the North Atlantic and Arctic regions. The published
per-pixel Chl a trend map shows a more prominent increas-
ing trend at high latitudes but a slight decrease at mid- to low
latitudes (e.g., EU Copernicus Marine Service Information,
2022). These trends are in good agreement with our PFT time
series, which shows an overall increasing trend in the total
biomass mainly due to the increased diatom biomass. Simi-
lar findings on both global and regional scales were reported

by van Oostende et al. (2023), where the OC-CCI dataset
was used but with careful consideration of the spatiotempo-
ral coverage of the different sensor datasets by applying a
temporal gap detection method. Other techniques, such as
gap filling and statistical temporal decomposition, are also
in demand for more robust PFT data analysis to increase the
accuracy in separating the long-term signal from the seasonal
component of the time series. Nevertheless, studies have
shown that the OC-satellite-derived surface Chl a presents
contrasted trends between available products that are gen-
erated based on different retrieval algorithms and merging
methods, e.g., the OC-CCI and GlobColour products (Yu
et al., 2023), suggesting the need for careful interpretation
of the trends for multi-OC-sensor-derived products. Incon-
sistencies between missions remain a significant challenge
to overcome in order to provide climate-quality time series,
which requires efforts from both spatial agencies and scien-
tific communities to correct the inconsistencies in radiomet-
ric data with long-term time series and apply proper harmo-
nization to the merged products (Pauthenet et al., 2024).

So far, there are limited studies investigating or report-
ing the PFT interannual variability covering recent years.
There are also quite limited long-term in situ PFT data avail-
able over large scales. However, our recent investigation at
a smaller scale in the Fram Strait (Xi et al., 2024) indicated
that the surface diatom from the in situ data collected in the
LTER Hausgarten area (75 to 80° N, 5° W to 10° E) from
2009 onwards has shown a unanimous pattern with the satel-
lite PFT time series; i.e., diatoms have shown an overall in-
crease in this region in more recent years (satellite from 2018
but in situ from 2019 due to lack of data in 2018). The other
PFTs show rather an oscillational feature but not as dramatic
as seen in diatoms. It should also be noted that the in situ
data were collected mostly in the spring to summer months
(which vary from May to September) and cannot fully repre-
sent the phytoplankton development during the whole season
or the interannual variabilities. However, these Fram Strait in
situ data support our satellite time series with the diatom in-
crease in the years 2018 to 2023 in the Arctic region. More
field observations on phytoplankton community composition
are constantly collected for further evaluations and hypothe-
sis verifications.

Validation has been performed at different levels, from the
model development stage (details not shown in this study)
to the corrected OLCI-derived PFT data, in order to under-
stand the reliability of the datasets well. Using validation data
covering different times and regions, we observed that the
satellite PFT data have larger discrepancies compared to the
in situ data at high latitudes, especially in the Arctic Ocean,
which was also reflected in the per-pixel uncertainty assess-
ment for the EOF-PFT algorithm (Xi et al., 2021). Compared
to the original OLCI-derived PFT data, the MLBE-corrected
data showed comparable but unimproved validation statis-
tics against the in situ datasets, and this can be explained
by the following aspects: (1) limited temporal coverage of
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the training data used in the MLBE might transfer further
errors to the corrected data. (2) Dataset 1 served as the test
set randomly extracted from the global in situ dataset from
which the other 70 % was used to train EOF-PFT model for
the OLCI sensors; therefore dataset 1 possessed similar fea-
tures to the training set and exhibited the best agreements
with the OLCI-derived PFTs before correction, very possibly
due to the aforementioned data leakage effect. (3) The MLBE
scheme bears lower correction efficiency at high latitudes
due to larger inherent uncertainties in the satellite-derived
PFT products. However, our validation for diatoms and di-
noflagellates in the Arctic Ocean using dataset 2, collected
during 2021–2023, shows no overestimation of the satellite
retrievals compared to the in situ data despite the weak corre-
lation and higher discrepancies (Fig. 3b), indicating that our
satellite retrievals correctly presented the increased biomass
for the two PFTs. Since the ecosystem in the Arctic Ocean
undergoes fast changes as a consequence of the arctic warm-
ing and sea ice retreat, there are still a lot of unknowns on
how the phytoplankton community adapts and responds to
these changes (Oziel et al., 2020; Meredith et al., 2019). It
is potentially essential for the Copernicus Marine Service to
provide not only for the white ocean (sea ice) but also for the
green ocean (biogeochemical parameters), a wide range of
biological/biogeochemical variables to better understand the
state and possible tendencies of the ecosystems in the Arctic
Ocean.

4.4 Conclusion and outlook

The correction scheme proposed in this study is specifi-
cally designed to address inter-sensor data inconsistencies in
the current Copernicus Marine Service PFT products. The
present trained model can only be used to correct the OLCI-
derived PFT product to match the merged-sensor-derived
product. However, the underlying technical framework is
adaptable to other common ocean color products, such as
optical properties derived from multiple sensors, thereby en-
hancing the overall continuity and consistency of ocean color
data. As a rapidly emerging and powerful technique, ma-
chine learning can be further leveraged in ocean color data
services, supporting agencies and data platforms in deliver-
ing high-quality, consistent operational products. This work
is at the cutting edge of research attempting to demonstrate
the most up-to-date long-term phytoplankton community in
several functional groups derived from ocean color products.
Providing interannual variation and trend analyses of the sur-
face phytoplankton community structure, the PFT products
will complement the chlorophyll products of the Copernicus
Marine Service as an essential ocean variable and help in the
assessment of the ocean health in the biogeochemical aspect.

Data availability. Data and products used in this study and their
availabilities and supporting documentation are listed in Table 1,

from which the in situ HPLC pigment concentrations and the corre-
sponding derived in situ PFT Chl a data used for validation are pub-
lished on PANGAEA (https://doi.org/10.1594/PANGAEA.982433;
Xi et al., 2025).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/sp-6-osr9-7-2025-supplement.

Author contributions. HX, AB, MB, and AM conceptualized
the study. HX designed and carried out the experiments. MB and
JD provided support with satellite products and matchup data ex-
traction. EM contributed to the machine learning algorithms. HX
drafted and revised the article with contributions from all co-
authors.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the two Copernicus Ma-
rine – Innovation Service Evolution R&D Projects, GLOPHYTS
(2022-2024) and ML-PhyTAO (2024-2026), for funding. Coperni-
cus Marine Service is implemented by Mercator Ocean Interna-
tional in the framework of a delegation agreement with the Eu-
ropean Union. This work was also partly supported by the Ger-
man Research Foundation (DFG) “Transregional Collaborative Re-
search Center ArctiC Amplification: Climate Relevant Atmospheric
and SurfaCe Processes and Feedback Mechanisms (AC)3” (Project
C03) and by the ESA project 4DMED-Sea (4000141547/23/I-
DT). Ehsan Mehdipour’s work was supported by the project “4D-
Phyto” funded by AWI-INSPIRES and HGF-MarDATA. We thank
ESA, EUMETSAT, and NASA for distributing ocean color satel-
lite data and especially thank the ACRI-ST GlobColour team
for providing OLCI and merged ocean color L3 products. In
situ data from four Polarstern expeditions were funded under
grant nos. AWI_PS126_02, AWI_PS131_5, AWI_PS133/1_11, and
AWI_PS136_04. The captain, crew, and expedition scientists are
also acknowledged for their support at sea. We also acknowledge
Alexandre Castagna and the other reviewer for their constructive
comments in improving this study.

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (grant no. (AC)3 Project
C03), the European Space Agency (project 4DMED-Sea (grant
no. 4000141547/23/IDT)), the Helmholtz-Gemeinschaft Deutscher
Forschungszentren (Program MarData for project “4D-Phyto”),

https://doi.org/10.5194/sp-6-osr9-7-2025 State Planet, 6-osr9, 7, 2025

https://doi.org/10.1594/PANGAEA.982433
https://doi.org/10.5194/sp-6-osr9-7-2025-supplement


14 H. Xi et al.: Consistent long-term observations of surface phytoplankton functional types from space

the Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung (Program INSPIRES for project “4D-Phyto”, Ex-
pedition Programs with grants AWI_PS126_02, AWI_PS131_5,
AWI_PS133/1_11 and AWI_PS136_04), and the Mercater Ocean
International (project GLOPHYTS (2022–2024), 21036L05B-
COP-INNO SCI-9000, and project ML-PhyTAO (2024-2026),
23138L03D-COP-INNO SCI-9000).

Review statement. This paper was edited by Pierre-Marie
Poulain and reviewed by Alexandre Castagna and one anonymous
referee.

References

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung: Polar Research and Supply Vessel PO-
LARSTERN Operated by the Alfred-Wegener-Institute,
Journal Of Large-Scale Research Facilities, 3, A119,
https://doi.org/10.17815/jlsrf-3-163, 2017.

Antoine, D., Morel, A., Gordon, H. R., Banzon, V. F., and Evans, R.
H.: Bridging ocean color observations of the 1980s and 2000s
in search of long-term trends, J. Geophys. Res.-Oceans, 110,
C06009, https://doi.org/10.1029/2004JC002620, 2005.

Behrenfeld, M. J., O’Malley R. T., Boss, E. S., Westberry, T.
K., Graff, J. R., Halsey, K. H., Milligan, A. J., Siegel, D.
A., and Brown, M. B.: Revaluating ocean warming impacts
on global phytoplankton, Nat. Clim. Change, 6, 3223–3330,
https://doi.org/10.1038/nclimate2838, 2016.

Bracher, A., Bouman, H. A., Brewin, R. J. W., Bricaud, A., Bro-
tas, V., Ciotti, A. M., Clementson, L., Devred, E., Di Cicco,
A., Dutkiewicz, S., Hardman-Mountford, N. J., Hickman, A.
E., Hieronymi, M., Hirata, T., Losa, S. N., Mouw, C. B., Or-
ganelli, E., Raitsos, D. E., Uitz, J., Vogt, M., and Wolanin, A.:
Obtaining phytoplankton diversity from ocean color: a scien-
tific roadmap for future development, Front. Mar. Sci., 4, 1–15,
https://doi.org/10.3389/fmars.2017.00055, 2017.

Breiman, L: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I.:
STL: A seasonal-trend decomposition procedure based on Loess,
J. Off. Stat., 6, 3–73, https://doi.org/10.1007/978-1-4613-4499-
5_24, 1990.

Colella, S., Böhm, E., Cesarini, C., Jutards, Q., and Brando,
V. E.: EU Copernicus Marine Service Product User Man-
ual for the Global Ocean Colour (Copernicus-GlobColour),
Bio-Geo-Chemical, L3 (daily) from Satellite, OCEAN-
COLOUR_GLO_BGC_L3_MY_009_103, Issue 5.0, Mercator
Ocean International, https://documentation.marine.copernicus.
eu/PUM/CMEMS-OC-PUM.pdf (last access: 18 February
2024), 2024.

EU Copernicus Marine Service Information: Global
Ocean Chlorophyll-a trend map from Observations Re-
processing, Mercator Ocean International [data set],
https://doi.org/10.48670/moi-00230, 2022.

EU Copernicus Marine Service Product: Global Ocean Colour
(Copernicus-GlobColour), Bio-Geo-Chemical, L3 (daily) from

Satellite Observations (1997–ongoing), Mercator Ocean Interna-
tional [data set], https://doi.org/10.48670/moi-00280, 2024.

Garnesson, P., Mangin, A., and Bretagnon, M., and Jutard,
Q.: EU Copernicus Marine Service Quality Information
Document for the Global Ocean Colour (Copernicus-
GlobColour), Bio-Geo-Chemical, L3 (daily) from Satel-
lite, OCEANCOLOUR_GLO_BGC_L3_MY_009_103,
Issue 5.0, Mercator Ocean International, https:
//documentation.marine.copernicus.eu/QUID/
CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf
(last access: 22 August 2024), 2024.

Gilbert, R. O.: Statistical Methods for Environmental Pollution
Monitoring, John Wiley and Sons, United States, 336 pp., ISBN
978-0471288787, 1987.

Gregg, W. W. and Rousseaux, C. S.: Decadal trends in global
pelagic ocean chlorophyll: A new assessment integrating multi-
ple satellites, in situ data, and models, J. Geophys. Res.-Oceans,
119, 5921–5933, https://doi.org/10.1002/2014JC010158, 2014.

Gruber, N., Boyd, P. W., Frölicher T. L., and Vogt, M.: Biogeochem-
ical extremes and compound events in the ocean, Nature, 600,
395–407, https://doi.org/10.1038/s41586-021-03981-7, 2021.

Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L.,
Lima, I., Doney, S. C., John, J., and Beaulieu, C.: Detec-
tion of anthropogenic climate change in satellite records of
ocean chlorophyll and productivity, Biogeosciences, 7, 621–640,
https://doi.org/10.5194/bg-7-621-2010, 2010.

Henson, S. A., Beaulieu, C., and Lampitt, R.: Observing climate
change trends in ocean biogeochemistry: when and where, Glob.
Chang. Biol., 22, 1561–1571, https://doi.org/10.1111/gcb.13152,
2016.

Kendall, M. G.: Rank Correlation Methods, in: 4th edn., Charles
Griffin, London, UK, 202 pp., ISBN 978-0852641996, 1975.

Li, X., Yang, Y., Ishizaka, J., and Li, X.: Global estimation of phyto-
plankton pigment concentrations from satellite data using a deep-
learning-based model., Remote Sens. Environ., 294, 113628,
https://doi.org/10.1016/j.rse.2023.113628, 2023.

Mann, H. B.: Nonparametric tests against trend, Econometrica, 13,
245–259, https://doi.org/10.2307/1907187, 1945.

Mélin, F. and Franz, B. A.: Chapter 6.1 – Assessment of satel-
lite ocean colour radiometry and derived geophysical products,
Experimental Methods in the Physical Sciences, 47, 609–638,
https://doi.org/10.1016/B978-0-12-417011-7.00020-9, 2014.

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin,
A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-
Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., and
Schuur, E. A. G.: Polar Regions, In: IPCC Special Report on the
Ocean and Cryosphere in a Changing Climate, edited by: Pört-
ner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor,
M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai, M.,
Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 203–
320, https://doi.org/10.1017/9781009157964.005, 2019.

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., and
Nauss, T.: Improving performance of spatio-temporal ma-
chine learning models using forward feature selection and
target-oriented validation, Environ. Model. Softw., 101, 1–9,
https://doi.org/10.1016/j.envsoft.2017.12.001, 2018.

NASA Ocean Color: VIIRSN-vs-VIIRSN (vr2022.0m_vr2018.0m)
Global Remote Sensing Reflectance Trends, NASA Ocean

State Planet, 6-osr9, 7, 2025 https://doi.org/10.5194/sp-6-osr9-7-2025

https://doi.org/10.17815/jlsrf-3-163
https://doi.org/10.1029/2004JC002620
https://doi.org/10.1038/nclimate2838
https://doi.org/10.3389/fmars.2017.00055
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-1-4613-4499-5_24
https://doi.org/10.1007/978-1-4613-4499-5_24
https://documentation.marine.copernicus.eu/PUM/CMEMS-OC-PUM.pdf
https://documentation.marine.copernicus.eu/PUM/CMEMS-OC-PUM.pdf
https://doi.org/10.48670/moi-00230
https://doi.org/10.48670/moi-00280
https://documentation.marine.copernicus.eu/QUID/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf
https://documentation.marine.copernicus.eu/QUID/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf
https://documentation.marine.copernicus.eu/QUID/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf
https://doi.org/10.1002/2014JC010158
https://doi.org/10.1038/s41586-021-03981-7
https://doi.org/10.5194/bg-7-621-2010
https://doi.org/10.1111/gcb.13152
https://doi.org/10.1016/j.rse.2023.113628
https://doi.org/10.2307/1907187
https://doi.org/10.1016/B978-0-12-417011-7.00020-9
https://doi.org/10.1017/9781009157964.005
https://doi.org/10.1016/j.envsoft.2017.12.001


H. Xi et al.: Consistent long-term observations of surface phytoplankton functional types from space 15

Color, https://oceancolor.gsfc.nasa.gov/data/analysis/global, last
access: 7 May 2025.

Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff,
A., Sallée, J. -B., Ingvaldsen, R. B., Devred, E., and Babin,
M: Faster Atlantic currents drive poleward expansion of temper-
ate phytoplankton in the Arctic Ocean, Nat. Comm., 11, 1705,
https://doi.org/10.1038/s41467-020-15485-5, 2020.

Pauthenet, E., Martinez, E., Gorgues, T., Roussillon, J., Drumetz,
L., Fablet, R., and Roux, M.,: Contrasted trends in chlorophyl-
a satellite products, Geophys. Res. Lett., 51, e2024GL108916,
https://doi.org/10.1029/2024GL108916, 2024.

Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V.,
Calton, B., Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J.,
Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M.,
Groom, S., Horseman, A., Jackson, T., Krasemann, H., Laven-
der, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore,
T. S., Müller, D., Regner, P., Roy, S., Steele, C., Steinmetz,
F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Züh-
lke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A.,
Frouin, R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer,
S., Mitchell, B. G., Muller-Karger, F. E., Sosik, H. M., Voss,
K. J., Werdell, J., and Platt, T.: An ocean-colour time se-
ries for use in climate studies: The experience of the Ocean-
Colour Climate Change Initiative (OC-CCI), Sensors, 19, 4285,
https://doi.org/10.3390/s19194285, 2019.

Sen, P. K.: Estimates of the regression coefficient based
on Kendall’s tau, J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968.

Stock, A., Gregr, E. J., and Chan, K. M. A.: Data leakage jeop-
ardizes ecological applications of machine learning, Nat. Ecol.
Evol., 7, 1743–1745, https://doi.org/10.1038/s41559-023-02162-
1, 2023.

van Oostende, M., Hieronymi, M., Krasemann, H., and
Baschek, B.: Global ocean colour trends in biogeo-
chemical provinces, Front. Mar. Sci., 10, 1052166,
https://doi.org/10.3389/fmars.2023.1052166, 2023.

Xi, H., Losa, S. N., Mangin, A., Soppa, M. A., Garnesson, P.,
Demaria, J., Liu, Y., d’Andon, O. H. F., and Bracher, A.: A
global retrieval algorithm of phytoplankton functional types: To-
wards the applications to CMEMS GlobColour merged prod-
ucts and OLCI data, Remote Sens. Environ., 240, 111704,
https://doi.org/10.1016/j.rse.2020.111704, 2020.

Xi, H., Losa, S. N., Mangin, A., Garnesson, P., Bretagnon,
M., Demaria, J., Soppa, M. A., d’Andon, O. H. F., and
Bracher, A.: Global chlorophyll a concentrations of phytoplank-
ton functional types with detailed uncertainty assessment us-
ing multi-sensor ocean color and sea surface temperature satel-
lite products, J. Geophys. Res.-Oceans, 126, e2020JC017127,
https://doi.org/10.1029/2020JC017127, 2021.

Xi, H., Bretagnon, M., Losa, S. N., Brotas, V., Gomes, M., Peeken,
I., Alvarado, L. M. A., Mangin, A., and Bracher, A.: Satellite
monitoring of surface phytoplankton functional types in the At-
lantic Ocean over 20 years (2002–2021), in: 7th edition of the
Copernicus Ocean State Report (OSR7), edited by: von Schuck-
mann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos,
M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen,
J., and Neukermans, G., Copernicus Publications, State Planet,
1-osr7, 5, https://doi.org/10.5194/sp-1-osr7-5-2023, 2023a.

Xi, H., Peeken, I., Gomes, M., Brotas, V., Tilstone, G., Brewin,
R. J. W., Dall’Olmo, G., Tracana, A., Alvarado, L. M. A.,
Murawski, S., Wiegmann, S., and Bracher, A.: Phytoplank-
ton pigment concentrations and phytoplankton groups measured
on water samples collected from various expeditions in the
Atlantic Ocean from 71° S to 84° N, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.954738, 2023b.

Xi, H., Peeken, I., Nöthig, E.M., Kraberg, A., Metfies, K., Bre-
tagnon, M., Mehdipour, E., Lampe, V., Mangin, A., and Bracher,
A.: How is the surface phytoplankton community composition
changing in the Arctic Fram Strait in the last two decades?,
Ocean Optics Conference XXVI, 6–11 October 2024, Las Pal-
mas Spain, https://epic.awi.de/id/eprint/59785/ (last access: 18
May 2025), 2024.

Xi, H., Wiegmann, S., Hohe, C., Schmidt, I., and Bracher,
A.: A validation data set of phytoplankton pigment concen-
trations and phytoplankton groups measured on water sam-
ples collected from various expeditions, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.982433, 2025.

Yu, S., Bai, Y., He, X., Gong, F., and Li, T.: A new
merged dataset of global ocean chlorophyll-a concentration
for better trend detection, Front. Mar. Sci., 10, 1051619,
https://doi.org/10.3389/fmars.2023.1051619, 2023.

Zhang, Y., Shen, F., Li, R., Li, M., Li, Z., Chen, S., and Sun, X.:
AIGD-PFT: the first AI-driven global daily gap-free 4 km phyto-
plankton functional type data product from 1998 to 2023, Earth
Syst. Sci. Data, 16, 4793–4816, https://doi.org/10.5194/essd-16-
4793-2024, 2024.

Zoffoli, M. L., Brando, V., Volpe, G., González Vilas, L., Davies,
B. F. R., Frouin, R., Pitarch, J., Oiry, S., Tan, J., Colella, S., and
Marchese, C.: CIAO: A machine-learning algorithm for map-
ping Arctic Ocean Chlorophyll-a from space, Science of Remote
Sensing, 11, 100212, https://doi.org/10.1016/j.srs.2025.100212,
2025.

https://doi.org/10.5194/sp-6-osr9-7-2025 State Planet, 6-osr9, 7, 2025

https://oceancolor.gsfc.nasa.gov/data/analysis/global/vr2022.0m_vr2018.0m/comp_global_rrs_mission.html
https://doi.org/10.1038/s41467-020-15485-5
https://doi.org/10.1029/2024GL108916
https://doi.org/10.3390/s19194285
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1038/s41559-023-02162-1
https://doi.org/10.1038/s41559-023-02162-1
https://doi.org/10.3389/fmars.2023.1052166
https://doi.org/10.1016/j.rse.2020.111704
https://doi.org/10.1029/2020JC017127
https://doi.org/10.5194/sp-1-osr7-5-2023
https://doi.org/10.1594/PANGAEA.954738
https://epic.awi.de/id/eprint/59785/
https://doi.org/10.1594/PANGAEA.982433
https://doi.org/10.3389/fmars.2023.1051619
https://doi.org/10.5194/essd-16-4793-2024
https://doi.org/10.5194/essd-16-4793-2024
https://doi.org/10.1016/j.srs.2025.100212

	Abstract
	Introduction
	Data and methodology
	PFT products from the Copernicus Marine Service
	Machine-learning-based ensemble (MLBE) for inter-sensor correction of PFT data
	Validation data
	Trend and anomaly analysis
	Statistical metrics

	Results
	Correction of the OLCI-derived PFT data using the MLBE scheme
	Validation of the MLBE-corrected OLCI-derived PFT data
	PFT time series analysis
	PFT anomaly of 2023

	Discussion, conclusions and outlook
	The need for harmonization
	MLBE correction scheme
	Consistent PFT time series and validation
	Conclusion and outlook

	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

