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Abstract. Climate change is placing growing pressure on all parts of the ocean, increasing the need for regular
information to support regional assessments and inform policy and decision-making. Understanding not only
what is changing and where but also why is essential for effective response and meaningful action. To answer
this need a new conceptual framework for the assessment of the physical state of the general natural water basin
was introduced and then tested for the Baltic Sea. The approach is based on major process characteristics of the
Baltic Sea and includes the analysis of mutual variability of well-established climate indicators such as ocean
heat content (OHC), freshwater content (FWC), subsurface temperature, and salinity, combined with atmospheric
forcing functions along with salt transport across the open boundaries as well as river runoff. A random forest
model is used as the main analysis tool to enable statistical dependencies between state variables and potential
forcing factors. Results reveal a clear 30-year warming trend in the Baltic Sea, closely linked on an interannual
scale to 2 m air temperature, evaporation, and wind stress magnitude. The study highlights that interannual
variations in temperature and salinity within the vertically extended halocline are key drivers of changes in OHC
and FWC in the Baltic Sea. Interannual changes of FWC are explained by large-volume saline water inflows,
net precipitation, and zonal wind stress. This framework also offers a new perspective of the potential impact of
a shallowing mixed layer depth, resulting from sustained sensible heat flux changes at the air–sea interface, on
salt export and the overall reduction of FWC in the Baltic Sea. This new framework could be applied to other
geographical regions or future datasets, providing consistent information for a basin-wide monitoring tool that
tracks the state and variability of the sea. Such a tool could be integrated into regional climate and environmental
assessments.

1 Introduction

Human-induced greenhouse gas emissions are warming
Earth’s climate, causing ocean temperatures to rise and ice
to melt globally (IPCC, 2021). The increase in ocean water
temperatures has induced a rise in ocean heat content (OHC),
and ice melt on land has introduced significant amounts of
fresh water into the ocean, contributing to the rise in global
sea levels. In 2023, global average sea surface temperature
reached a record high relative to the 1973–2024 baseline pe-
riod (McGrath et al., 2024), and global ocean heat content
climbed to record levels (Cheng et al., 2024). In the Baltic
Sea, the temperature trends for the period 1850–2008 show

fast warming at the surface (∼ 0.06 K per decade) and bottom
(> 0.04 K per decade) and slow warming in the intermediate
layers (< 0.04 K per decade) (Dutheil et al., 2023). Surface
warming has progressively increased over time, primarily
due to the sensible heat flux and latent heat flux (Kniebusch
et al., 2019a). Trends in freshwater content (FWC) are not
as consistent globally as those of OHC (Boyer et al., 2007),
although the rise in global sea level is widely acknowledged
(Frederikse et al., 2020). Salinity patterns differ across var-
ious ocean regions of the world (Skliris et al., 2014), with
the North Atlantic–North Pacific salinity contrast increasing
by 5.9 %± 0.6 % since 1965 (Lu et al., 2024). At a regional
scale in the Baltic Sea, FWC has shown a significant down-
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Table 1. Product table.

Product
ref. no.

Product ID and type Data access Documentation

1 BALTICSEA_MULTIYEAR_PHY_003_011;
numerical models

EU Copernicus Marine
Service Product (2023)

Quality Information Document (QUID):
Panteleit et al. (2023)
Product User Manual (PUM):
Ringgaard et al. (2024)

2 ERA5; numerical models Copernicus Climate
Change Service (2023)

Product reference: Hersbach et al. (2023)
Journal article: Hersbach et al. (2020)

3 E-HYPE; numerical models SMHI Donnelly et al. (2016)

ward trend over the last 30 years (Raudsepp et al., 2023).
Winsor et al. (2001) highlighted the cumulative impact of
riverine input on the Baltic’s freshwater budget, while Rodhe
and Winsor (2002) underscored the importance of episodic
saltwater inflows in renewing deep water. An increase in
freshwater supply to the Baltic Sea will intensify the regional
water cycling, resulting in lower salinity, and vice versa.

The analysis of the physical state of natural water basins
typically focuses on the evolution and spatial distribution of
temperature and salinity and corresponding uncertainty esti-
mations, which are essential ocean variables (EOVs; Global
Ocean Observing System, 2024; Lindstrom et al., 2012).
These variables are four-dimensional and therefore provide
a spatially and temporarily resolved description of the state
of the water body. Meanwhile, OHC and FWC are vital inte-
gral characteristics of the ocean, indicative of a water body’s
energy and mass, respectively. OHC offers a comprehensive
view of oceanic heat storage, which is crucial for evaluat-
ing climate change impacts, energy budgets, and long-term
trends (Forster et al., 2024). FWC represents the mass of the
fresh water relative to the total mass of a water parcel with
a given salinity (see Raudsepp et al., 2023). The increase in
net precipitation over land and sea areas, the decrease in the
ice cover, and the increase in river runoff are the main com-
ponents of the global hydrological cycle that increase FWC
in the ocean (Boyer et al., 2007; Cheng et al., 2020; Yu et al.,
2020). While OHC is a well-established indicator in ocean
and climate research, its counterpart, ocean FWC, has re-
ceived less attention.

We propose a new conceptual framework for assessing
the physical state of the Baltic Sea by integrating multiple
physical and statistical approaches (Fig. 1). OHC and FWC
serve as integrative indicators of the Baltic Sea’s physical
state, analogous to essential climate indicators (IPCC, 2021;
Forster et al., 2025). The OHC and FWC are well-established
measures (IPCC, 2021; Forster et al., 2025) which we in-
tegrate into a unified assessment framework with additional
analysis layers – vertical distribution and statistical inference
– to assess the Baltic Sea’s state, and they are central to un-
derstanding its energy and mass balance. OHC reflects the
vertically integrated heat stored in the water column and is

Figure 1. Conceptual scheme of the Baltic Sea state parameters il-
lustrating the interplay among key indicators: ocean heat content
(OHC), freshwater content (FWC), sea ice extent (SIE), sea ice
volume (SIV), subsurface temperature (subST), subsurface salin-
ity (subSS), and major Baltic inflows (MBIs). Changes in OHC and
FWC drive variations in sea ice cover and subsurface conditions,
while episodic MBI events inject saline water into deep layers, alter-
ing subsurface salinity and temperature. Together, these processes
shape the overall state of the Baltic Sea.

primarily influenced by surface heat fluxes, vertical mixing,
and subsurface temperature changes (Forster et al., 2025).
FWC quantifies the deviation of the water column’s salinity
from a reference value and serves as a measure of accumu-
lated fresh water (Durack, 2015; Raudsepp et al., 2023). It
is affected by net precipitation, river runoff, evaporation, and
saltwater intrusions from the North Sea. In this study, these
indicators are integrated into a unified assessment framework
that includes both their vertical structure and statistical infer-
ence layers. The study identifies the importance of these ma-
jor variables affecting the OHC and FWC, including subsur-
face temperature, salinity, atmospheric forcing factors, and
salt transport.
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The framework follows a three-stage process: time series
analysis, depth-based variability analysis, and statistical rela-
tionships using machine learning. The initial phase consists
of calculating the time series of OHC and FWC for the entire
Baltic Sea. This provides insights into long-term trends and
interannual variability. In basins covered partially by sea ice,
the annual mean ice extent (MIE) is considered an important
integral characteristic. The next step examines the horizon-
tally averaged vertical distribution of temperature (for OHC)
and salinity (for FWC) to determine which depth ranges con-
tribute the most to their variations. While this does not di-
rectly attribute causal links, the vertical profiles of temper-
ature and salinity provide strong indications of which forc-
ing factors might be responsible for changes in OHC and
FWC. The final stage integrates forcing functions and ocean
state characteristics to identify statistical dependencies be-
tween them, using a random forest (RF) model to probe po-
tential drivers of variability. A RF model is employed to high-
light statistical dependencies between oceanic state variables
and external forcing mechanisms. This machine-learning ap-
proach enables the identification of general patterns in the
temporal evolution of the Baltic Sea’s physical state. The
main reason we introduced the RF models is to determine,
in a data-driven way, the relative importance of different
depth layers and forcing factors on the variability of OHC
and FWC. The RF approach offers a flexible means to han-
dle nonlinear relationships and multiple predictors simulta-
neously.

Our proposed framework integrates the analysis of OHC
and FWC by considering both their bulk integral values
and their vertical distributions, allowing for the identifica-
tion of key depth ranges contributing to their variability –
which goes beyond other similar frameworks. Unlike the
GOOS EOV framework (https://goosocean.org/, last access:
22 August 2025), which focuses on structured global ocean
monitoring without machine-learning-based statistical anal-
ysis, our approach explicitly incorporates machine learn-
ing to identify potential drivers of variability. Compared to
the IPCC Climate and Ocean Monitoring Framework (IPCC
AR6, 2021, Ocean Observations Chapter, https://www.ipcc.
ch/report/ar6/wg1/, last access: 22 August 2025), which re-
lies on dynamical climate models for global-scale processes,
our framework is designed for regional-scale Baltic Sea anal-
ysis, offering a more localized and detailed assessment. Fi-
nally, while the NASA Salinity and Heat Budget Analysis
(NASA Salinity Budget Project, https://podaac.jpl.nasa.gov,
last access: 22 August 2025) is largely empirical and fo-
cused on global salinity and heat transport, our approach
provides a structured three-stage methodology, incorporat-
ing not only empirical analysis but also a cause-and-effect
exploration using machine learning. This makes our frame-
work uniquely suited for regional climate monitoring and ac-
tionable insights into the physical state of the Baltic Sea.

The Baltic Sea is recognized for its spatially pronounced
heterogeneous structure. Its various subregions may exhibit

distinct temporal variations in key state variables and over-
all dynamics, making it a complex environment for test-
ing the conceptual framework. The Baltic Sea, a shal-
low marginal sea in northeastern Europe, is characterized
by its hydrographic fields and sea ice conditions (Lep-
päranta and Myrberg, 2009). Salinity levels are affected by
saline water inflows from the North Sea through the Dan-
ish straits, riverine freshwater inputs, and net precipitation
(Lehmann et al., 2022). Major Baltic inflows, which intro-
duce saline and oxygen-rich water, are sporadic and unpre-
dictable (Mohrholz, 2018). Temperature fields are influenced
by the heat exchange with the atmosphere. The residence
time of the Baltic Sea’s water is several decades long (Meier
et al., 2022). The vertical salinity stratification is defined by
the halocline’s depth, featuring a well-mixed surface layer
and a slightly stratified layer beneath. Water temperature
plays a crucial role in forming secondary stratification re-
lated to the temperature of the upper mixed layer. Seasonal
temperature cycles lead to partial freezing of the Baltic Sea in
winter. Changes in sea ice extent over time are a vital indica-
tor of climate change for the area. A reduction in maximum
ice extent impacts the sea’s vertical stratification and the sea-
sonal trends in ocean heat and freshwater content (Raudsepp
et al., 2022, 2023). Despite global warming, there has not
been a significant increase in the Baltic Sea’s relative sea
level (Ranasinghe et al., 2021), which instead shows a strong
seasonal cycle.

This conceptual framework is designed as an indicator-
based approach relevant to policymakers. OHC and FWC
distill complex, high-dimensional data (many temperature
and salinity profiles) into two easy-to-interpret indices of the
Baltic Sea’s thermal and haline state. This kind of simpli-
fication is valuable for decision-makers who require clear,
high-level indicators. However, interpretation is also neces-
sary – and this becomes particularly challenging at the re-
gional scale, where a variety of interacting processes, includ-
ing long-term changes, are at play. The framework not only
delivers time series and regular statistical assessments, but
also provides a structured path toward meaningful interpre-
tation by focusing directly on the main drivers of change.
Understanding not just what is changing and where, but also
why it is happening, is essential for taking informed action
and gaining a comprehensive view of the system. The frame-
work enables the monitoring of climate change impacts on
the Baltic Sea while maintaining a balance between scien-
tific rigor and practical accessibility. It is not meant to serve
as a comprehensive dynamical model but rather as a tool for
assessing the state of the Baltic Sea and guiding regional
management decisions. The framework is grounded in well-
established physical quantities and validated by statistical
analysis, which ensures that its findings are consistent and
credible.

The study aims to present a framework for assessing the
physical state of the Baltic Sea by integrating annual mean
values of OHC, FWC, subsurface temperature and salin-
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ity, atmospheric forcing functions, salt transport, and river
runoff. The objective is to use a data-driven RF approach as
the primary analysis tool to parse out nonlinear relationships
and feature importances from a broad dataset. This study
introduces an integrative, basin-wide approach, defining the
entire Baltic Sea as a single water body for analysis. It com-
putes a time series of total OHC and FWC for the whole
sea. Unlike previous approaches that focus mainly on lo-
cal variations, this methodology prioritizes integrated indices
that capture the sea’s overall state. This holistic perspective
represents a fundamental shift away from fragmented, lo-
calized analyses toward a comprehensive understanding of
ocean dynamics, making the framework uniquely suited to
inform large-scale assessments and decision-making.

2 Data and methods

2.1 Oceanographic and atmospheric data

The Baltic Sea physics reanalysis multi-year product (BAL-
MYP; Table 1, product ref. no. 1) is derived from the
ocean model NEMO v4.0 (Madec et al., 2019). It assimilates
satellite observations of sea surface temperature (SST) (EU
Copernicus Marine Service Product, 2022) and in situ tem-
perature and salinity profiles from the ICES database (ICES,
2022). The model data are provided on a grid with a horizon-
tal resolution of 1 nmi (nautical mile), including 56 vertical
layers, covering the entire Baltic Sea and the transition zone
to the North Sea. The dataset covers the period from 1993
to 2023, with the model setup detailed in the Product User
Manual (PUM; Ringgaard et al., 2024).

The BAL-MYP has been extensively validated, as docu-
mented in the Quality Information Document (QUID; Pan-
teleit et al., 2023), focusing on the period from 1 January
1993 to 31 December 2018. Additionally, the BAL-MYP
data were evaluated using a clustering method with the K-
means algorithm (Raudsepp and Maljutenko, 2022), which
provided insights into the reanalysis accuracy by categoriz-
ing errors (Lindenthal et al., 2024). Fifty-seven percent of
the data are clustered with a bias of dS =−0.40 g kg−1 and
dT =−0.02 °C, encompassing 57 % of all data points with
RMSE S= 0.92 g kg−1 and T = 0.54 °C. These points are
distributed throughout the Baltic Sea. Clusters with high pos-
itive and negative temperature biases account for 11 % and
8 % of total points, respectively, with marginal salinity bi-
ases and relatively even spatial distributions across the Baltic
Sea. Twenty-six percent of the points have low temperature
but high salinity errors, both negative and positive, predomi-
nantly located in the southwestern Baltic Sea, indicating oc-
casional underestimation or overestimation of the inflow/out-
flow salinity.

Given its spatial coverage and validated accuracy, the
BAL-MYP reanalysis (Table 1, product ref. no. 1) provides
a reliable basis for calculating integrated environmental indi-
cators such as OHC and FWC, which are essential for large-

scale climate assessments. OHC directly reflects Earth’s en-
ergy imbalance, making it a key metric for tracking global
warming, unlike basin-averaged temperature, which lacks a
direct connection to energy budgets (von Schuckmann et al.,
2016, 2023). Consequently, OHC is prioritized in climate
models and international assessments (Bindoff et al., 2019)
due to its direct relationship with anthropogenic forcing and
its predictive value for future climate scenarios. The daily
OHC has been computed for each model grid cell from re-
analysis (product ref. no. 1), following the methodology of
Meyssignac et al. (2019):

OHC= ρ× cp × (T + 273.15), (1)

where ρ is the density of seawater calculated following the
TEOS10 (IOC et al., 2010), cp is specific heat capacity cal-
culated as a third-order polynomial function of salinity and
temperature according to Millero et al. (1973), and T is daily
temperature.

Ocean FWC is deemed more significant than mean salin-
ity for understanding climate dynamics and ocean processes.
FWC provides a holistic measure of freshwater storage and
its effects on ocean circulation, climate, and sea-level rise
(Solomon et al., 2021; Fukumori et al., 2021). It directly
measures freshwater inputs (e.g., ice melt, river runoff, rain-
fall) or losses (e.g., evaporation), whereas mean salinity only
indicates the average salt concentration, ignoring volume
(Hoffman et al., 2023). A minor salinity change over a large
water volume could signify a substantial freshwater flux,
which mean salinity alone would not reveal (Schauer and
Losch, 2019). The FWC was calculated at each grid point
and day as in Boyer et al. (2007):

FWC= ρ(Sref,Tref,p)/ρ(0,Tref,p)× (Sref− S)/S. (2)

The three-dimensional temperature (Tref) and salinity (Sref)
fields are temporal averages over the period of 1993–2023.
A detailed description of the calculation procedure is avail-
able in Raudsepp et al. (2023). The OHC and FWC were
calculated by spatially integrating the gridded OHC (1) and
FWC (2) over the Baltic Sea, and then the annual mean OHC
and FWC values were calculated from these daily values.

The mixed layer depth (MLD), also referred to as the upper
mixed layer (UML), was included in the analysis using data
from a multi-year reanalysis product (product ref. no. 1). The
MLD was calculated based on density stratification following
the method of de Boyer Montégut et al. (2004), which defines
MLD as the depth at which seawater density deviates from
the reference density at 10 m depth by a specified threshold.
For the Baltic Sea, this threshold was adjusted to 0.03 kg m−3

to better represent the characteristics of the regional upper
mixed layer (Panteleit et al., 2023).

Atmospheric data for the RF input (Atm8) were obtained
from the ERA5 reanalysis (product ref. no. 2) for the pe-
riod 1993–2023. The parameters (eight in total) included 2 m
air temperature, total precipitation, evaporation, wind stress
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magnitude, and the x and y components of wind stress, along
with total cloud cover and surface net solar radiation. The
time series for the annual mean values of these atmospheric
parameters were computed as horizontal averages across the
Baltic Sea region (8–33° E and 52–68° N).

Additionally, total river runoff to the Baltic Sea (RNF)
(product ref. no. 3) and a proxy for saltwater inflows – rep-
resented by bottom salinity in the Bornholm Basin (SOB)
(product ref. no. 1) – were included as external forcing fac-
tors. These variables capture key hydrological and oceano-
graphic influences not fully accounted for by atmospheric
drivers alone and contribute to a more comprehensive assess-
ment of interannual variability in FWC.

Horizontally average temperature and salinity profiles cal-
culated from the BAL-MYP (product ref. no. 1) at 42 differ-
ent depth layers (shown on Fig. 3) and Baltic Sea domain
(13–31° E and 53–66° N; excluding the Skagerrak strait)
were used as predictors in two of the RF models. The ratio-
nale for using the full vertical profiles is to allow the model
to identify which depth layers most strongly influence the to-
tal OHC or FWC. Instead of assuming a priori which depths
matter, the RF can learn this from data: if variations at a par-
ticular depth are consistently associated with changes in to-
tal OHC/FWC, the model’s feature importance for that depth
will be high.

2.2 Random forest

Random forest (RF) is an ensemble learning method predom-
inantly used for classification and regression tasks (Breiman,
2001). It functions by building multiple decision trees dur-
ing the training phase and outputs the class that is the mode
of the classes (classification) or the mean prediction (regres-
sion) of the individual trees. This method enhances accuracy
and helps prevent overfitting, thus making it resilient to noise
in the dataset. RF proves to be highly effective in analyz-
ing complex interactions between variables, such as the re-
lationships between marine state variables and atmospheric
parameters. Its effectiveness is due to its capability to man-
age high-dimensional data and its resistance to outliers and
noise, which are prevalent in environmental datasets. Addi-
tionally, RF is adept at detecting nonlinear relationships be-
tween predictor variables (atmospheric parameters) and re-
sponse variables (marine state variables), which linear mod-
els often overlook.

In the context of a RF model, feature importance is a tech-
nique that identifies the most influential input features (vari-
ables) in predicting the output variable. The importance of
each feature is determined by the decrease in model accu-
racy when the data for that feature are permuted, while all
other features remain unchanged. If permuting a feature’s
values significantly increases the model’s error, that feature
is deemed crucial for the model’s predictions. This approach
aids in discerning the contribution of each feature to the
model’s decision-making process and in identifying key at-

mospheric parameters that significantly impact marine state
variables. A positive value for a feature implies that per-
muting that predictor variable’s values raises the model’s
prediction error, indicating the variable’s importance for the
model’s predictive accuracy. A higher positive value suggests
greater reliance on that variable by the model.

In this study we have trained the four different RF mod-
els to fit the OHC and FWC annual average time series from
annual average predictor variables with the hyperparameter
configurations shown in Table 2. Two models are trained to
predict the OHC and FWC values from the set of the atmo-
spheric variables (VAR arguments). The OHC model uses
only atmospheric input variables, whereas the FWC model
includes, in addition to atmospheric variables, two external
predictors: total river runoff to the Baltic Sea and bottom
salinity in the Bornholm Basin. In addition, two more mod-
els are trained to predict OHC and FWC using horizontally
averaged temperature and salinity profiles (Z arguments). To
study variability independent of long-term trends, all input
variables and target time series used in the VAR models were
linearly detrended prior to training. This ensures the models
capture interannual to decadal fluctuations rather than long-
term changes.

To optimize the performance of the RF models while en-
suring robustness and generalizability, a set of hyperparame-
ters was selected based on best practices outlined by Probst et
al. (2019), along with and based on sensitivity analysis con-
ducted for the number of trees (Fig. A2). The minimum leaf
size (MinLS) was set to 1, allowing the trees to fully grow
and capture complex data patterns. The number of predic-
tors to sample at each split (Pred2Samp) was dynamically
determined as one-third of the total number of predictors,
tackling a balance between feature randomness and predic-
tive strength. This approach promotes diversity among trees
while preventing excessive correlation. The number of trees
(NumTrees) in each RF model was set to 100, providing suf-
ficient ensemble stability while maintaining computational
efficiency (Appendix A2). Since this study employs RF mod-
els to investigate nonlinear relationships between predictors
and state variables, we use the entire dataset (all available
data) as the training set to maximize the models’ ability to
learn patterns. We conducted 5-fold cross-validation, which
yielded similar conclusions regarding which predictors are
most influential, suggesting that the RF importance measures
are qualitatively robust. To further enhance predictive relia-
bility, assess uncertainty, and evaluate the stability of both
predictions and feature importances, an ensemble of 150 in-
dependently trained RF models was constructed.

We employed MATLAB’s TreeBagger function to assess
the feature importance of atmospheric predictors on ma-
rine state variables. The OOBPermutedPredictorDeltaError
method, a robust metric from MATLAB’s TreeBagger, quan-
tifies each predictor’s importance via the out-of-bag (OOB)
prediction error. This involves permuting each variable’s val-
ues across OOB observations for each tree. The resulting
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Table 2. Hyperparameter configurations and validation for different random forest models. All models use the same random forest config-
uration: number of trees set to 100 and forest ensemble size to 150. The variable number of predictors to sample at each split (Pred2Samp)
is set to 2/3 of the number of input parameters. The minimum leaf size is fixed at 1. Asterisks (∗) indicate RF models applied to variability
using detrended variables. Models performance is shown by means of Pearson’s correlation coefficient (CC) and root mean square difference
(RMSD).

Model Predictors Pred2Samp CC RMSD

RF_OHC(Z) Tprof_421 14 0.986 0.0016
RF_FWC(Z) Sprof_421 14 0.973 0.004
RF_OHC(VAR)∗ ATM_82 3 0.9012 0.3432
RF_FWC(VAR)∗ ATM_82

+RNF3
+SOB4 4 0.8994 0.3624

1 Tprof_42, Sprof_42: horizontally averaged annual mean temperature and salinity profiles at 42 depth levels
(Fig. 3). 2 ATM_8: horizontally averaged annual mean values of eight atmospheric variables. 3 RNF: total
annual river runoff into the Baltic Sea. 4 SOB: annual mean bottom salinity in the Bornholm Basin.

change in prediction error from these permutations is cal-
culated for each tree. These measures are averaged across
all trees and normalized by the standard deviation of the
changes, providing a standardized score that highlights the
variables with the most significant impact on predictive accu-
racy. Averaging the feature importance scores across all mod-
els in ensembles minimizes the noise and variability from
any single model’s training, offering a more consistent and
dependable indication of each atmospheric parameter’s con-
tribution to predicting marine state variables. A larger impor-
tance value means that permuting (randomizing) that predic-
tor greatly degrades model accuracy, indicating the predictor
was influential. Conversely, near-zero or negative importance
means that randomizing the predictor had little effect or even
slightly improved the model’s error, suggesting the predictor
is not informative (or that its influence is redundant or noisy).

3 Results

Both OHC and FWC display a statistically significant linear
trend, as shown in Fig. 2. Using a z-score time series allows
for the comparison of trends per year (trend∗) and data dis-
tributions without the influence of their units. OHC shows
an increasing trend∗ of 0.089± 0.025, while FWC exhibits
a decreasing trend∗ of −0.092± 0.023, both comparable in
magnitude (Table 3). The corresponding absolute values are
0.34± 0.095 W m−2 for OHC and −36.99± 9.20 km3 yr−1

for FWC (Table 3). Between 1993 and 2003, OHC and FWC
varied similarly, both rising and falling concurrently (blue
dots in Fig. 2). After this period, their patterns diverged (yel-
low and red dots in Fig. 2). Interannual variations of the an-
nual mean sea ice extent and OHC are strongly correlated
but in opposite phases (not shown). Among the forcing func-
tions, the 2 m air temperature shows a distinct positive trend
(Fig. 2), albeit weaker than the trends of OHC and FWC (Ta-
ble 3). The air temperature over the Baltic Sea area has risen
with a trend∗ of 0.074± 0.031 (Table 3). Surface net solar
radiation has a weaker but still significant positive trend∗ of
0.058± 0.035, and the evaporation time series shows a neg-

ative trend∗ of −0.041± 0.039 (Fig. 2, Table 3). Other at-
mospheric variables did not exhibit statistically significant
trends (Fig. 2). Correlation coefficients among various at-
mospheric datasets were generally low (Table 4). The two
highest correlation coefficients, 0.76 and 0.73, are between
wind stress magnitude and its zonal component, indicating
a predominance of westerly airflow over the Baltic Sea and
between 2 m air temperature and surface net solar radiation,
respectively. The low correlations suggest a weak statistical
relationship between the annual mean atmospheric parame-
ters, supporting the inclusion of all forcing functions in the
RF model.

In analyzing OHC variations, we use a RF_OHC(Z)
model (Table 2). This model employs horizontally averaged
annual temperature values at each depth level, derived from
the depth levels of a multi-year product (product ref. no. 1),
as input features. The RF model finely replicates the annual
OHC time series (Fig. 3a), with a high correlation coeffi-
cient (0.986) and a RMSD of the standardized time series at
0.0016. However, it did not capture the extreme OHC event
in 2020 or the low OHC extreme in 1996 (Fig. 3). Feature
importance is significant within a depth range of 10–80 m
(Fig. 3b), with two peaks at depths of 18 and 60 m, align-
ing with the average depths of the seasonal thermocline and
the permanent halocline, respectively. This suggests that in-
terannual OHC variations are mainly influenced by temper-
ature changes within these layers. Subsurface temperatures
from 1993 to 2023 indicate warming trends of approximately
0.06 °C yr−1 across all depths (CMS, 2024a). From 1993 to
1997, deep water temperatures remained relatively low (be-
low 6 °C). Since 1998, deeper waters have warmed, with tem-
peratures above 7 °C occupying the layer below 100 m since
2019. The water temperature below the halocline has risen
by about 2 °C since 1993, and the cold intermediate layer’s
temperature also increased during the 1993–2023 period.

A similar method is employed to elucidate the inter-
annual fluctuations of FWC using RF_FWC(Z) (Table 2),
utilizing horizontally averaged salinity at each depth level.
The model’s precision is slightly lower (correlation: 0.973;
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Figure 2. Trend analysis and probability distribution functions (PDFs) of the annual time series of standardized (∗z scores) Baltic Sea state
and meteorological parameters. To the left of the dashed line, the period-normalized annual trend values (multiplied by the period length
in years, i.e., 30) are displayed as red (positive) and blue (negative) bars with corresponding p values (95 % confidence level), along with
whiskers representing ±1 standard error (x ticks) and the 95 % uncertainty range (+ ticks). On the right side of the dashed line, probability
density functions (PDFs) are shown as the solid lines for the standardized time series, which are represented by colored dots. The color of
the dots represents the year on a common color scale shown at the OHC variable. OHC: ocean heat content; FWC: freshwater content; T2:
2 m temperature; TP: total precipitation; EVAP: evaporation; Wstr: wind stress; WUstr and WVstr: wind stress u and v component; TCC:
total cloud cover; SSR: surface net solar radiation; RNF: river runoff.

Figure 3. OHC∗ and FWC∗ ensemble predictions (ensemble mean as blue dots) using the horizontal average salinity and temperature
profiles (a, b). The prediction feature importance, with ensemble spread (1 SD shown with “+” marker), for each depth in the upper 120 m
layer shown on panels (c) and (d) and for the full depth range in the upper-right inset panels. All variables are z-scored.
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RMSD of standardized time series: 0.004) compared to that
for OHC. The model consistently underperforms in predict-
ing the FWC peaks, encompassing both the lows and highs
(Fig. 3c). The most notable features cover the depth range of
40–120 m (Fig. 3d), coinciding with a halocline layer and its
vertical extensions to both shallower and deeper depth. The
salinity levels at the bottom layer are of secondary impor-
tance to the inter-annual variations of FWC in the Baltic Sea.
The salinity in the top 25 m stratum exerts a minimal influ-
ence on FWC changes. The interannual variability of salinity
in the upper stratum is minor relative to the deeper stratum.
The salinity gradient ascends steadily from zero at a depth
of 25 m to 0.04 g kg−1 annually at 70 m (CMS, 2024b). The
most marked trend, 0.045 g kg−1 yr−1, occurs within the ex-
panded halocline layer extending from 70 to 150 m. Notably,
there is a slight dip in the salinity trend to 0.04 g kg−1 yr−1

between the depths of 150 and 220 m. While this reduction is
slight, it indicates that salt influx into the expanded halocline
layer is more significant than into the deeper strata. A salin-
ity trend of 0.05 g kg−1 annually is detected in the deepest
stratum of the Baltic Sea.

Building a RF model targeting OHC and FWC time series
with atmospheric forcing functions reveals the 2 m air tem-
perature as the most significant contributor (Appendix A1).
This correlation is physically plausible for OHC but less
so for FWC. The 2 m air temperature affects the air–sea
heat exchange via the sensible heat flux component. To fur-
ther explore the declining FWC trend, we examined interan-
nual changes in the annual average upper mixed layer depth
(MLD). In the Baltic Sea, MLD varies widely across differ-
ent areas and seasons. A shallowing of MLD is observed in
the Baltic Proper and to some extent in the Bothnian Sea,
while a MLD deepening is noted in the Bothnian Bay, the
Gulf of Finland, and the Gulf of Riga. Typically, the Baltic
Sea’s stratification is influenced by salinity, although a sea-
sonal thermocline forms across the sea. In the northern and
eastern basins, the dispersal of river water during spring and
summer leads to the development of the seasonal pycnocline.
Conversely, in the southern Baltic Sea, the spread of river wa-
ter is mostly restricted to the coastal areas, so the mixed layer
is less affected by the seasonal halocline.

We performed test experiments with the RF model, incor-
porating the upper mixed layer (UML) as an additional fea-
ture. We determined the annual mean UML depth across the
Baltic Sea and specifically for the Eastern Gotland Basin.
The decline in the UML depth was more significant in the
Eastern Gotland Basin compared to the entire Baltic Sea. The
UML depth in the Eastern Gotland Basin decreased from
30 m in 1993 to 22 m in 2023. The MLD feature became
more significant than the 2 m temperature in explaining the
FWC when we considered the UML depth in the Eastern
Gotland Basin. However, the results were contentious when
we applied the average UML depth for the entire Baltic Sea.
An increase in the 2 m temperature may cause a shallower
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Table 4. Correlation coefficients (lower triangle) and standard errors (Gnambs, 2023) (upper triangle) of atmospheric parameters. Correlation
coefficients which pass a two-tailed t test at 95 % confidence are in bold. OHC: ocean heat content; FWC: freshwater content; T2: 2 m
temperature; TP: total precipitation; EVAP: evaporation; Wstr: wind stress magnitude; WUstr: wind stress u component; WVstr: wind stress
v component; TCC: total cloud cover; SSR: surface net solar radiation.

T2 TP EVAP Wstr WUstr WVstr TCC SSR

T2 0.19 0.17 0.17 0.15 0.14 0.15 0.09
TP 0.12 0.18 0.17 0.18 0.18 0.13 0.17
EVAP −0.28 −0.18 0.19 0.18 0.16 0.19 0.15
Wstr 0.31 0.35 −0.10 0.08 0.15 0.18 0.19
WUstr 0.47 0.25 0.16 0.76 0.15 0.16 0.18
WVstr 0.48 0.16 0.37 0.43 0.43 0.19 0.19
TCC −0.43 0.58 −0.04 −0.20 −0.42 −0.13 0.09
SSR 0.73 −0.31 −0.43 0.07 0.18 0.11 −0.73

mixed layer, potentially reducing the mixing between the sur-
face freshwater layer and the denser saline layer beneath.

By eliminating trends, we utilized RF models to iden-
tify the primary characteristics of the interannual fluctua-
tions of OHC and FWC. The ensemble mean forecast of
RF_OHC(VAR)∗ (Table 2) effectively captures these interan-
nual changes (Fig. 4a), evidenced by a correlation coefficient
of 0.9012 and a RMSD of 0.3432. Factors such as 2 m tem-
perature, wind stress, and evaporation significantly influence
the interannual variability of OHC (Fig. 4c). Additionally,
total cloud cover and solar radiation have a minor impact on
the shape of OHC.

In the RF_FWC(VAR)∗ model, we incorporated bottom
salinity from the Bornholm Basin as a supplementary fea-
ture. The direct calculation of salt transport from model data
across a section at the Baltic Sea entrance is error-prone.
Utilizing daily average cross-section velocities and salini-
ties overlooks high-frequency fluctuations with considerable
residual salt flux. The model’s precision in predicting ac-
curate salinity levels at the Baltic Sea’s entrance is quite
low (Lindenthal et al., 2024). Time series of bottom salin-
ity changes in the Arkona and Bornholm basins facilitate
the tracking of the intermittent nature of water inflow and
outflow events. The Arkona Basin, being relatively shallow,
is known for its dynamic nature regarding volume and salt
transport. Here, bottom salinity reflects the salinity shifts
caused by inflow and outflow variations at the Baltic Sea
entrance. These variations mask the large volume inflows
chiefly responsible for the Baltic Sea’s salt influx, thus not
significantly affecting the Arkona Basin’s bottom salinity
over time. Conversely, the Bornholm Basin’s greater depth
means its bottom salinity is less affected by the upper layer’s
varying salinity water movements. Hence, the Bornholm
Basin’s bottom salinity serves as a more accurate indicator
of the Baltic Sea’s salt inflow. We also factored in the annual
average river runoff (product ref. no. 3) into the Baltic Sea in
our RF model.

The ensemble mean predictions of the RF_FWC(VAR)∗

are marginally less precise, with a correlation coefficient of

0.8994 and a root mean square difference of 0.3624. The bot-
tom salinity in the Bornholm Basin – used here as an in-
dicator of salt flux into the Baltic Sea – and total precipi-
tation and the zonal wind component emerge as the primary
drivers of interannual variations in freshwater content (FWC)
(Fig. 4d). In contrast, riverine freshwater discharge shows
no significant impact on FWC variability at the interannual
scale. Raudsepp et al. (2023) showed that there are multi-year
periods when river runoff is in phase or out of phase with the
FWC as calculated for the whole Baltic Sea.

Notable FWC peaks occurred in 1993, 2002, and 2013,
each followed by a rapid decline in subsequent years
(Fig. 4b). The elevated FWC in 1993 reflects the end of a pre-
ceding stagnation period characterized by low salinity, which
was interrupted by the major Baltic inflow (MBI) of 1993 oc-
curring at the end of that year. The gradual increases in FWC
observed from 1997 to 2002 and from 2004 to 2013 represent
periods during which the influence of earlier MBIs – specif-
ically those of 1993 and 2002 – on the basin’s total salinity
diminished over time.

Reductions in FWC are associated with increases in wa-
ter salinity, driven primarily by the advection of saline water
through the Danish straits. The highest bottom salinity val-
ues correspond to the MBIs that occurred at the end of 1993,
2002, and 2014. These inflows had a limited effect on an-
nual FWC during the years of the inflows themselves (1993
and 2002), with their primary impact becoming evident in the
following years – 1994 and 2003, respectively. Although the
2014 MBI took place at the end of that year, an increase in
deepwater salinity was already underway prior to the event,
leading to a decrease in FWC during 2014.

Finally, profiles of salinity, temperature, and dissolved
oxygen concentration in the Gotland Basin from 1993 to
2023 – sourced from the Copernicus Marine Service Baltic
Sea in situ multi-year and near-real-time observations (IN-
SITU_BAL_PHYBGCWAV_DISCRETE_MYNRT_013_032)
(CMS, 2024c) – complement our analyses of OHC and FWC
by providing additional context on the evolution of the Baltic
Sea’s physical and biogeochemical conditions.
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Figure 4. Time series of detrended OHC∗ (a) and FWC∗ (b) ensemble predictions (ensemble mean as blue dots) using RF ensembles.
Ensembles of corresponding models feature importances, with ensemble spread (“+” markers corresponding to 1 SD) shown on panels (c)
and (d) for OHC and FC, respectively. All variables are z-scored. OHC: ocean heat content; FWC: freshwater content; T2: 2 m temperature;
TP: total precipitation; EVAP: evaporation; WSTR: wind stress; WSTRU and WSTRV: wind stress u and v component; TCC: total cloud
cover; SSR: surface net solar radiation; RNF: river runoff; SOB: bottom salinity in the deepest location of the Bornholm Basin. Importance
values are scaled by the permutation effect’s standard deviation; positive values indicate reduced model performance when a predictor is
permuted, while negative values reflect spurious performance improvements from permutation.

4 Discussion and conclusions

The growing complexity of climate-driven changes in ma-
rine environments necessitates a comprehensive framework
that transcends traditional localized assessments. By inte-
grating key indicators into holistic indices representing the
overall state of the sea, this approach advances beyond frag-
mented analyses to provide a coherent basis for regional eval-
uation. Such an integrative methodology is essential for de-
livering actionable insights that can effectively inform policy
and support sustainable management of ocean resources.

OHC and FWC are established large-scale metrics widely
used to track global ocean changes. Here we adapt these
metrics to the regional Baltic Sea and integrate them with
additional analysis layers. This framework distinguishes it-
self by linking these integral metrics with depth-resolved in-
formation and machine-learning-based attribution, which to
our knowledge has not been previously applied in the Baltic
Sea context. OHC and FWC are proposed as key descrip-
tors of the Baltic Sea’s physical state because they encap-
sulate the overall thermal and haline content of the entire
basin. While temperature and salinity at specific locations
or layers provide detailed information, OHC and FWC offer
a high-level integration of those details. OHC and FWC re-
flect temperature and salinity changes across the entire basin.
OHC variations primarily follow surface layer temperature
changes. The negative trend and interannual variability in
FWC are mainly driven by subsurface salinity changes, as
surface salinity remains relatively stable (Fig. 3c, d). High

feature importance values indicate the depths where temper-
ature and salinity changes most closely align with OHC and
FWC variations, respectively.

We employed the RF model (Breiman, 2001) to link the
atmospheric and hydrologic variables with the variability of
OHC and FWC. Given the limited sample size of 31 an-
nual observations, overfitting represents a potential concern
in our modeling approach. To mitigate this, we employed
an ensemble of 150 independently trained RF models, each
with controlled tree complexity (e.g., limited depth, mini-
mum leaf size). This ensemble strategy helps stabilize fea-
ture importance estimates and reduces prediction variance
arising from random sampling effects, thereby enhancing the
robustness of the results. Nonetheless, caution is warranted,
as some predictor importances may reflect spurious correla-
tions. Because our RF models were trained on the full time
series (1993–2023) with no independent test period, the re-
ported errors (based on OOB) could underestimate true pre-
dictive error. The results should thus be interpreted as pat-
terns learned from the given dataset rather than as fully gen-
eralizable predictions. Future analyses could leverage ex-
tended reanalysis or model datasets (e.g., BMIP; Gröger et
al., 2022) to independently validate the machine-learning re-
sults, thereby strengthening confidence in the predictive skill
of the proposed framework.

OHC and FWC are particularly useful for monitoring
long-term trends and basin-wide changes, which is why we
argue that they effectively define the large-scale physical
state. Indeed, our framework’s indicators, total OHC and
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FWC of the Baltic Sea, are integrative and require com-
prehensive observation or modeling efforts to compute in
real time. In situ monitoring of the entire water column
at sufficient spatial coverage is needed to directly measure
OHC/FWC, which is more demanding than, say, monitoring
a few atmospheric indices. However, these integrated indices
provide a succinct summary of the state that individual pre-
dictors cannot fully capture. Advancements in remote sens-
ing can help estimate these indices indirectly (e.g., Kondeti
and Palanisamy, 2025).

Our results confirm a long-term warming and salinization
trend in the Baltic Sea, as evidenced by increasing OHC and
a slight decreasing trend in FWC (Table 3). At the same time,
by removing these trends for the RF analysis, we isolated the
interannual variability and identified its drivers.

Our analysis across the entire Baltic Sea reveals the direct
impact of atmospheric forcing on ocean warming. Moreover,
this framework provides new insights into the role of salt im-
port/export in FWC’s interannual variability and draws on
the basin-wide decline of FWC, elevating the potential role
of a flatting MLD from long-term sensible flux change at the
air–sea interface. Particularly, results reveal that the Baltic
Sea has undergone substantial change over the past decade
as evidenced by the increase in OHC over the last 30 years.

Simultaneously, there has been a reduction in FWC, sug-
gesting an increase in seawater salinity. The analysis of aver-
age subsurface temperature and salinity indicates that inter-
annual variations in OHC and FWC are mainly influenced by
temperature shifts in both the seasonal thermocline and per-
manent halocline and changes in salinity within the perma-
nent halocline. This highlights the critical need for a compre-
hensive framework while reporting on the state of the Baltic
Sea, allowing for the evaluation of basin-wide conditions, in-
cluding its trends, interannual variations, and extremes, as
well as the factors driving these changes. Using this approach
could prove to be a valuable asset for the science–policy in-
terface, aiding in regional evaluations of the sea state.

Previous studies have reported a positive trend in OHC and
a negative trend in FWC (Raudsepp et al., 2022, 2023), along
with an inverse relationship between OHC and the maxi-
mum ice extent in the Baltic Sea (Raudsepp et al., 2022).
The increase in OHC has been attributed to the rising air
temperature over the Baltic Sea, yet the decline in FWC
remains largely unexplained. Raudsepp et al. (2023) noted
that neither salt transport to the Baltic Sea, net precipita-
tion, nor total river runoff accounted for the FWC’s down-
ward trend. Despite this, deepwater salinity in the central
Baltic Sea has been increasing at a rate of 0.2–0.25 g kg−1

per decade (Lehmann et al., 2022). A basin-wide analysis
linking FWC changes to atmospheric forces revealed a re-
lation with air temperature, a connection that is physically
tenuous, prompting further investigation into other factors.
This led to the hypothesis that the decreasing trend in the
upper mixed layer thickness in the Baltic Sea might be in-
fluencing FWC changes. Over the last 3 decades, there has

been a noticeable reduction in the upper mixed layer depth.
While it is plausible to suggest a dynamic relationship be-
tween the shrinking mixed layer depth and the decrease in
FWC, verifying this hypothesis requires more research than
what is covered in the present study.

Interannual variations of OHC are influenced by air tem-
perature, evaporation, and wind stress magnitude over the
Baltic Sea (Fig. 4). When considering the lesser impact
of total cloud cover and surface net solar radiation, it be-
comes clear that air–sea heat exchange primarily drives OHC
changes in the Baltic Sea. Notably, the annual mean OHC
parallels the long-term trend of winter OHC in the Baltic
Sea’s upper 50 m layer and yearly maximum sea ice extent
of the Baltic Sea (Raudsepp et al., 2022), highlighting the co-
herence of seasonal ice cover and OHC fluctuations. In seas
with seasonal ice cover, the characteristics of sea ice are cru-
cial for determining the sea’s physical state. Typically, the
maximum sea ice extent in the Baltic Sea indicates the sever-
ity of the winters (Uotila et al., 2015). Sea ice is vital for
temporarily storing ocean heat and fresh water and then re-
leasing it back into the sea (Raudsepp et al., 2022).

The interannual variations of FWC were associated with
major Baltic inflows, overall precipitation, and zonal wind
stress (Fig. 4 d). The signals of the MBIs are evident in
the bottom salinity of the Bornholm Basin. Figure 4d illus-
trates that interannual variations in FWC are linked to the
bottom salinity in the Bornholm Basin, which serves as a
proxy for MBIs, as well as zonal wind stress and net pre-
cipitation. Therefore, Fig. 4d highlights the drivers of FWC,
while Fig. 3d emphasizes the significance of halocline salin-
ity’s response to FWC. Consequently, we can infer that in-
flows from the North Sea and net precipitation are respon-
sible for changes in halocline salinity. Because MBIs are
short-lived, our use of annual mean wind is a coarse indi-
cator. A high annual mean westerly wind might reflect a gen-
erally stormy winter with possible inflows, but it will likely
miss isolated inflow events that occur even in otherwise av-
erage years. Therefore, we interpret the RF finding of zonal
wind importance (Fig. 4d) cautiously – it may be serving as a
proxy for the cumulative effect of many small inflows or sus-
tained minor exchange rather than any single MBI. Meier and
Kauker (2003) demonstrated that increasing westerly winds
could hinder the outflow of fresh water from the Baltic Sea,
leading to decreased salt transport into the sea. However, we
were unable to directly associate moderate and small inflows
from the North Sea with changes in halocline salinity. This
aspect requires further investigation and precise simulation
of salt transport between the North Sea and the Baltic Sea,
which is beyond the scope of the current study. While sev-
eral studies have underscored a correlation of the Baltic Sea’s
salinity with river runoff (Kniebusch et al., 2019b; Radtke et
al., 2020; Lehmann et al., 2022), our research did not find
this connection.

The OHC displays quasi-periodic fluctuations with a pe-
riod of approximately 5–7 years, with 2020 and 2011 stand-
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ing out as relative high and low points, respectively (Fig. 4).
The elevated wintertime OHC in 2020 coincided with an
unusually warm January–March period over the Northern
Hemisphere (Schubert et al., 2022) and was accompanied
by an exceptionally high marine heatwave index and a large
number of marine heatwave days in the Baltic Sea (Bashiri
et al., 2024; Lindenthal et al., 2024). In contrast, 2011 fea-
tured the most extensive sea ice cover and volume recorded
in the past 3 decades (Raudsepp et al., 2022). Similarly, cer-
tain peaks in FWC, such as those observed in 2002 and 2013,
align temporally with the years preceding major Baltic in-
flows, while declines in FWC, as seen in 1997 and 2019, oc-
curred following such events. While these specific years are
highlighted as examples, they are not the basis for broader
conclusions but serve to illustrate patterns consistent with
previous studies.

Global warming, with its increased frequency and inten-
sity of extreme events, has had widespread negative im-
pacts on nature and significant socioeconomic repercussions
(IPCC, 2021). Our methodology has highlighted the ex-
tremes of interannual variability in OHC and FWC. In our
study, we utilized the RF model to investigate the relation-
ships between changes in OHC and FWC and their potential
drivers. Although the model pinpointed the primary factors,
it failed to capture the extremes (Gnecco et al., 2024), as il-
lustrated in Fig. 4a and b. RF models tend to underperform
when extreme values are not well represented in the train-
ing data – a common issue in ecological modeling and other
practical applications (Fox et al., 2017). This can result in a
bias where the model does not recognize or accurately pre-
dict rare but impactful events, such as extreme weather con-
ditions, uncommon species occurrences, or anomalies in fi-
nancial markets (Fox et al., 2017). Acknowledging this, we
hypothesize that while primary forces set the stage for ex-
treme events, these events themselves fall outside the scope
of standard interannual variability and stem from a distinct
combination of forces. Consequently, it is advantageous to
analyze extreme events independently from typical interan-
nual variations (Nontapa et al., 2020; Chen et al., 2021). To
account for the variations in OHC and FWC, models other
than RF, such as deep machine-learning models, could be
employed, especially if the temporal resolution is monthly
(e.g., Barzandeh et al., 2024) or finer, ensuring a represen-
tative dataset is available. It should be noted that the ran-
dom forest analysis reveals statistical connections rather than
definitive physical causation. We interpret these connections
in light of known mechanisms to ensure they are plausible.
Advancing this methodology will further our comprehension
of the causes behind extreme events, thereby improving our
predictive abilities.

A sustained decline in the Baltic Sea’s FWC, indicating
increasing salinity, could alert policymakers to intensified
saltwater intrusion or reduced freshwater input, prompting
investigation into inflow events or drought conditions. Con-
versely, an ongoing rise in OHC is a clear signal of warm-

ing that can inform climate adaptation strategies. The con-
cept of indicators – such as used in this study for OHC and
FC – plays an important role in facilitating knowledge trans-
fer at the science and policy interface (von Schuckmann et
al., 2020; Evans et al., 2025). Integrated indices, OHC and
FWC, could be incorporated into regional climate and en-
vironmental assessments (HELCOM, 2023) as part of UNEP
regional seas conventions (UNEP, 2024), aiding communica-
tion of changes to stakeholders. Our framework based on an
indicator-based approach yields quantitative indicators (an-
nual OHC, FWC, etc.) that can be tracked over time, much
like other environmental indicators, to gauge the Baltic Sea’s
response to climate variability and change.

This framework could be generalized or applied to other
regions or to future data. After defining the region of inter-
est and preprocessing relevant data, the three-stage approach
combining (i) analysis of OHC and FWC time series, (ii) ex-
amination of their vertical distribution, and (iii) RF analysis
of their drivers could be applied.
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Appendix A

A1

We also examined the fit of the trend-included time series and
their correspondence with meteorological variables for OHC
and FWC (Fig. A1). The correlation coefficient and RMSD
for the OHC model are 0.9537 and 0.4310, respectively; for
FWC model, they are 0.8897 and 0.5994.

Figure A1. Same as in Fig. 4 but the RF models are fit for the original FWC and OHC including trends.

A2

Figure A2. Random forest models for ZAX (a) and VAR (b) sensi-
tivity to log10 of the number of trees (NumTrees).
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