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Abstract. Data assimilation (DA) is a process for integrating models and observations into comprehensive and
reliable estimates of the ocean state. It is used to produce near-real-time initial conditions (analyses) from which
ocean forecasts are produced and to generate reconstructions of the past state of the ocean (reanalyses). Here we
provide an overview of the methods currently used in ocean systems for assimilating satellite and in situ observa-
tions, together with a brief review of methods being developed which will be implemented in future operational
systems, including the use of machine learning (ML) techniques that provide a way to improve their efficiency. A
list of data assimilation software used by most of the global and regional operational ocean forecasting systems is
provided, together with the availability of each software. A discussion of practical considerations for employing
data assimilation software and techniques operationally is also given, including the types of observations which
are commonly used, and the implementation choices made by existing operational systems at global and regional
scales is summarised.

1 Introduction

Accurate estimates of the state of the ocean are required
for many purposes. Observations provide direct information
about the ocean but are sparse in time and space. Numer-
ical models can give information everywhere and describe
the time evolution of the ocean but are prone to error. Data
assimilation (DA) is the process by which these two sources
of imperfect information are combined, taking into account
their errors, in order to produce complete and accurate esti-
mates of the ocean (Moore et al., 2019; Hoteit et al., 2018;
Alvarez Fanjul et al., 2022; Stammer et al., 2016; Carrassi
et al., 2018). These estimates are used to produce historical
reanalyses of the ocean (Storto et al., 2019; Heimbach et al.,
2019) and in near real time to initialise forecasts (Moore et
al., 2019).

Data assimilation is used in global, regional, and coastal
ocean forecasting systems. The characteristics of the mod-
els used in each setting can be different, including the res-
olution, processes represented, and the model components.
Global models are usually coupled physical ocean–sea ice
models, with a strong move at many operational centres
to coupled atmosphere–ocean–sea ice models. Regional and
coastal models usually resolve more of the higher-frequency
processes which become more important in shallow seas, and
they often include coupled physical–biogeochemical compo-
nents. The observations available for assimilation also of-
ten have different characteristics with different technologies
needed to measure the ocean closer to the coast. The meth-
ods used to initialise forecasts in these different settings have
to take into account the characteristics of the model and ob-
servations available so that the variability associated with the
important processes can be constrained.
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Many of the data assimilation methods used in ocean fore-
casting were originally developed for numerical weather pre-
diction, with the notable exception of the ensemble Kalman
filter (KF). The dominant spatial and temporal scales in the
ocean are quite different to the atmosphere, though, with the
first baroclinic Rossby radius of deformation being a few tens
of kilometres at mid-latitudes (see e.g. Chelton et al., 1998)
with temporal scales ranging from days to weeks. To re-
solve the open-ocean mesoscale at mid-latitudes, model res-
olutions of the order of at least 1/12° are required (Hewitt
et al., 2016), and the aim of many global ocean data assimi-
lation systems is to initialise the ocean state at these scales.
Observations of the surface ocean are available at fairly high
resolution from satellites, but observations of the sub-surface
ocean are much sparser. Sophisticated methods are therefore
required to make the most of the observations to constrain
models of the 3D ocean on the desired scales. The integration
of high-resolution models along with the high computational
processing required for implementing an advanced data as-
similation method demands computational resources that are
available at only a small number of ocean forecasting centres
and research institutions worldwide.

Errors in ocean models arise due to approximations in their
numerical formulation, errors in the parameterisation of un-
resolved physics, and errors in the inputs to the model in-
cluding the surface atmospheric forcing, river inputs, and the
lateral boundary conditions for regional systems. The ocean
is a chaotic system, so small differences in the initial state
grow over time, especially in strongly eddying regions. All
these sources of uncertainty contribute to the model forecast
error, estimates of which are needed for data assimilation.
Observations also contain errors and measure the ocean on
different spatial scales (to each other and to the model). Es-
timates of the errors in the different observations are there-
fore also needed, including the component due to the mea-
surement itself and the component due to the difference in
the representation of the ocean by the observation and model
(Janjić et al., 2018).

Here we provide a summary of the status of ocean data
assimilation as part of a special issue introduced by Alvarez
Fanjul and Bahurel (2025, in this report). The next section
gives a brief overview of data assimilation theory to put into
context the various schemes used in operational ocean fore-
casting centres. The data assimilation software used at many
of the operational centres is also described, including com-
munity open-source software and other code developed and
used at some of the main institutes. An overview of the prac-
tical considerations needed to apply data assimilation effec-
tively in an operational setting is given. We then describe the
current status of data assimilation as applied in many opera-
tional ocean forecasting centres, followed by a summary of
future directions.

2 Data assimilation methodology

A variety of DA methods are being used or currently tested
to develop operational ocean forecasting systems (OOFSs)
(Moore et al., 2019). These first followed the 3D formula-
tion of the DA problem (3DDA) in which the ocean state at
a given time is estimated based only on the available obser-
vations at that time. 3DDA is often cast as a least-squares
fitting problem whose solution minimises a composite ob-
jective function involving a data misfit term and a regulari-
sation term representing prior knowledge on the ocean state,
which is called the background/prior and is usually taken as
the most recent ocean forecast. Both terms of the objective
function are generally weighted by their respective observa-
tions and background error covariances, which can also be
imposed following a (stochastic) Bayesian inverse formula-
tion of the 3DDA problem under the assumption of Gaus-
sian observations and background errors (Moore et al., 2019;
Hoteit et al., 2018). When the observational operator relat-
ing the ocean state to the observations is linear, the 3DDA
problem has an analytical solution, known as the best lin-
ear unbiased estimator (BLUE); when not, this operator is
either linearised to compute the optimal interpolation (OI)
solution or the objective function is directly minimised using
a gradient-based iterative optimisation algorithm to compute
the 3D variational DA (3DVAR) solution.

The solution of the 4D DA problem is more advanced, as
it is estimated based on a set of observations that is avail-
able over a given period of time (Weaver et al., 2003). It
can be computed following a straightforward extension of
the 3DVAR problem by formulating an objective function in
which the data misfit term constrains the ocean model pre-
diction to the observations in time. When the ocean model
and its forcing are considered perfect, only the ocean state
at the start of the observation period needs to be estimated.
The resulting strongly constrained (by the ocean model equa-
tions) 4DVAR solution is then integrated forward with the
model beyond the observation period to compute the ocean
forecasts. In contrast, the weak constraint 4DVAR problem
considers model errors in the ocean model, which can then
be estimated as part of the objective function minimisation
process. Jointly estimating the ocean initial state and model
errors at every time step can quickly become computation-
ally intractable. This was elegantly addressed by moving the
optimisation in the observation space, which should be of
much smaller dimension in this case, using the dual formula-
tion or Representer method (Bennett, 2005). In between the
strong and weak constraint 4DVAR, a large variety of differ-
ent implementations exist, for instance, estimating the ocean
model parameters (e.g. mixing schemes) and inputs (e.g. at-
mospheric forcing, open boundary conditions, bathymetry)
as part of the minimisation process. This has been success-
fully demonstrated with the MIT general circulation model
(MITgcm) (Forget et al., 2015) and the Regional Ocean Mod-
eling System (ROMS) (Moore et al., 2019). In all 4DVAR
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methods, the computation of the objective function gradients
required for the minimisation process can be efficiently im-
plemented through the adjoint model, governed by the ad-
joint equations to the ocean tangent linear model (Moore et
al., 2004; Vidard et al., 2015). Coding and running the adjoint
model can be demanding on both human effort and compu-
tational resources.

The observational and background error covariances are
key in determining the 3D and 4D DA solutions. The first
sets the weights of the data misfit terms and their correla-
tions to avoid overfitting the observations while accounting
for redundant information (Moore et al., 2019). The second
constrains the DA solution by enforcing some dynamical re-
lationships in the initial state and/or smoothness on the esti-
mated inputs and parameters to enable a proper propagation
of the observations’ information into all ocean model vari-
ables (Moore et al., 2019).

The DA methods discussed so far are designed to compute
a deterministic estimate of the ocean state (the maximum a
posteriori of the Bayesian inversion problem) and therefore
do not provide a framework to quantify the uncertainties in
the ocean forecasts, the covariance of which could be used
as the background for the next DA cycle. This sets the stage
to the filtering DA methods which sequentially compute the
solution of the Bayesian inversion problem by considering
the observations as they become available. The filtering for-
mulation of the DA problem allows model and observational
errors and involves computing the probability distribution of
the ocean state conditioned on all previous observations. This
provides a recursive framework suitable for OOFSs where
the model is used for forecasting the ocean state and its error
statistics (forecast step), which are then updated with the new
incoming observations based on Bayes’ rule (analysis step)
(Hoteit et al., 2018).

The Bayesian filtering problem can be conceptually solved
by the Kalman filter (KF) when the underlying dynamical
and observational models are linear and their errors are Gaus-
sian, in which case the forecast and analysis distributions are
Gaussian and the analytical form of their mean (state esti-
mate) and covariance is available. Ocean general circulation
models are, however, nonlinear, and the discrete dimension
of the underlying ocean state can be very large. This moti-
vated the development of a variety of simplified and extended
variants of the KF for ocean DA, either by (i) linearising the
ocean dynamics and enforcing low-rank error covariance ma-
trices (e.g. singular evolutive extended Kalman (SEEK) fil-
ters) or (ii) using the widely celebrated ensemble KF (EnKF)
methods (Vetra-Carvalho et al., 2018). EnKF methods use
samples to compute statistical approximations of the first
two moments of the ocean state forecast and analysis dis-
tributions. Given an analysis ensemble, an EnKF integrates
its members, eventually with perturbed noise to account for
model errors, forward with the ocean model for forecasting,
and the resulting forecast ensemble statistics are then updated
with the incoming observations using the KF analysis step.

The latter is referred to as stochastic when the KF analysis
step is applied on each forecast ensemble member using per-
turbed observations, so that the analysis ensemble covariance
matches that of the KF, and deterministic (e.g. ETKF, EAKF,
SEIK, DEnKF) when the KF analysis step is directly applied
on the mean and covariance of the forecast ensemble, after
which a deterministic resampling step is needed to resample
a new analysis ensemble (Hoteit et al., 2018).

EnKFs are generally integrated with relatively small en-
sembles (∼ 100 samples) to limit their computational cost,
making their sample covariances low-rank and thus necessi-
tating localisation/covariance-tapering techniques to confine
the spatial range of their correlations (Hoteit et al., 2018).
Limited ensemble size can also result in underestimation of
the ensemble variance, leading to the need for ensemble in-
flation (Evensen et al., 2022). To further reduce the computa-
tional requirements, EnKFs are also often implemented with
static ensembles, only using the ocean model to compute the
forecast starting from the analysis state (ensemble OI (EnOI)
methods), or their ensembles augmented with pre-selected
static members (hybrid EnOI–EnKF methods) (Counillon et
al., 2009). On the other side of the spectrum, more sophis-
ticated filtering methods have also been proposed to move
beyond the Gaussian error assumption by employing Monte
Carlo approximations of the forecast and analysis distribu-
tions, so-called particle filters, or through Gaussian mixture
approximations, which, when implemented within an ensem-
ble framework, reduce to some sort of ensemble of EnKFs
(Van Leeuwen at al., 2019). These methods are, however, still
in testing phases and are yet to be applied in operational set-
tings.

4DVAR and EnKFs were proven to provide viable and ro-
bust solutions for many ocean DA applications, and most
ocean centres are currently developing their operational sys-
tems around these approaches. There are benefits and draw-
backs in using an EnKF or a 4DVAR (Lorenc, 2003; Kalnay
et al., 2007). EnKFs involve flow-dependent ensemble rep-
resentation of the background, though rank-deficient. On the
downside, the EnKF is generally only efficient for moderate
model nonlinearity because of its second-order moments ap-
proximation of the error statistics. 4DVAR, on the other hand,
should better handle nonlinearities, though the optimisation
of its objective function can be a complex task in the presence
of strongly nonlinear dynamics (Moore et al., 2019; Hoteit et
al., 2018), and can be implemented with a full-rank, albeit
static, background error covariance matrix. 4DVAR further
requires coding and maintaining the adjoint of the observa-
tion and forecasting models, which is quite demanding. The
use of automatic differentiation in distributed HPC environ-
ments, which is receiving a renaissance in the context of ma-
chine learning (ML), may overcome this limitation (Heim-
bach et al., 2005). Finally, 4DVAR does not lend itself easily
to parallelisation, while the important computational cost for
computing the forecast ensemble can be drastically mitigated
by trivial parallelisation.
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There have been various attempts to merge the 4DVAR and
EnKF approaches in order to combine their strengths, which
introduced a new family of hybrid ensemble-variational (En-
VAR) methods. This includes (i) consideration of an ensem-
ble of DA (EnDA) methods to obtain flow-dependent er-
ror representations, (ii) the iterative ensemble Kalman filters
(iEnKFs) and smoothers (iEnKSs) which use a forecast en-
semble to describe the background statistics and apply a non-
linear optimisation to the 4DVAR objective function in the
ensemble space (Sakov et al., 2012a), and (iii) the class of 4D
ensemble-variational (4DEnVAR) methods which also per-
forms a set of 4DVAR optimisations in the subspace spanned
by the ensemble using a set of perturbed observations (Liu
et al., 2008). Different 4DEnVAR versions have been pro-
posed (Bannister, 2017), employing hybrid background co-
variances, adjoint model or finite differences to compute the
gradients, and different types of perturbations.

Recently, machine learning (ML) techniques have also
been considered to enhance the efficiency of the DA meth-
ods, in terms of both capacity and computations (Cheng et
al., 2023). ML techniques harness the potential of neural
networks (NNs) to approximate highly nonlinear functions,
which may enable the development of computationally less
demanding forecasting models (Barthélémy et al., 2022), and
backward models for efficient data fitting. NNs were also
proposed as end-to-end replacement of the analysis steps
(Beauchamp et al., 2023) and to parameterise and account
for model errors (Farchi et al., 2021).

3 Data assimilation software

Data assimilation software packages come in all sizes and
flavours. A first distinction needs to be made between educa-
tional packages that can be used for methodological develop-
ments and operational codes designed for high-performance
computers. We will only consider the latter category in this
section. A second distinction can be made between software
packages aimed at 4DVAR methods and those that take the
EnKF as their target algorithm. These two types of software
differ in their complexity and size and therefore adopt dif-
ferent development strategies. There are thus several small-
sized EnKF packages and a few more ambitious 4DVAR
packages on the market. The latter may also include the
EnKF as a small addition to their ensemble-variational tool-
box. Some of the packages (DART, PDAF, JEDI) have users
in other research fields beyond ocean forecasting. See Table 1
for a list of commonly used DA software in ocean prediction
systems.

The software packages listed in Table 1 have mainly
been used on high-performance computers (HPCs), and
some of them have been used on personal computers. The
NEMOVAR and MITgcm 4DVAR codes and the NEDAS
ensemble code are actively being developed for use on GPU-
based systems. However, all the DA software packages listed

above have been around long enough to be ported several
times to different HPC architectures with different compilers
and can be qualified as portable.

4 Practical implementations in operational systems

Several factors dictate the practical implementation of ocean
DA systems within an operational environment. The primary
controlling factors in any operational environment typically
relate to (i) scheduling of the DA analysis and forecast phases
with respect to the competing demands of other essential ac-
tivities (e.g. numerical weather prediction, hydrological fore-
casts) and (ii) the release of analysis–forecast products in a
timely manner so that they are of maximum benefit to the
users. These overarching criteria therefore, in turn, dictate
the configuration of the forecast model and the data assimi-
lation approach that may be used.

In the case of ensemble approaches, such as the EnKF or
EnVar, there may be a trade-off between model resolution
and the ensemble size in that computation time increases
with resolution. Thus, with limited resources, fewer ensem-
ble members can be run within the constraints imposed by
items (i) and (ii). An advantage of ensemble approaches is
that each ensemble member can be computed independently,
meaning that, in very large HPC environments, many ensem-
ble members can be run simultaneously. Here again, though,
there can be a trade-off between resolution and ensemble
size. While most ocean models scale reasonably well on par-
allel computing architectures, wall-clock time typically does
not scale linearly with the number of cores. Hence, there is
a point of diminishing returns whereby it may be better to
allocate fewer cores to the business of computing ensemble
members at the expense of a longer wall-clock time for each
member, rather than dedicating a very large number of cores
to a single task.

Unlike ensemble methods, the traditional approaches to
variational data assimilation, namely 3DVAR and 4DVAR,
are strictly sequential and cannot be parallelised in time.
In other words, the inner- and outer-loop iterations of the
cost function minimisation algorithm must be performed se-
quentially. The sequential iterative nature of variational ap-
proaches therefore imposes a heavy computational burden on
the data assimilation phase of the analysis–forecast cycle, es-
pecially in the case of 4DVAR. This burden is alleviated in
some 4DVAR systems by performing the inner-loop minimi-
sation steps at lower model resolution – for example, a re-
duction in the horizontal resolution by a factor of 2 typically
yields a reduction in wall-clock time by a factor of 8 assum-
ing that the inner-loop time step can also be halved. Perform-
ing the inner loops at lower arithmetic precision (i.e. 32-bit
arithmetic versus 64-bit arithmetic) can lead to further cost
savings. In 4DVAR, the inner-loop iterations involve integra-
tions of the tangent linear (TL) and adjoint (AD) versions
of the forecast model. Further reductions in computational
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Table 1. Data assimilation software packages.

Software
name

Target
algorithm(s)

Programming
language

Development
community

Code availability

JEDI Variational DA C++ JCSDA, NOAA,
NASA, US Navy and
Air Force, Met Office

Open source.
https://github.com/JCSDA
(last access: 25 March 2025)

MITgcm Variational DA Fortran.
A version in Julia is
under development.

ECCO consortium,
GECCO, MIT, Uni
Texas

Open source.
https://mitgcm.readthedocs.io/
(last access: 25 March 2025)

NEMOVAR Variational DA Fortran CERFACS, ECMWF,
Met Office, INRIA

Not open source

OceanVar Variational DA Fortran CMCC, CNR Not open source

ROMS Variational DA Fortran ROMS community Open source.
https://www.myroms.org/
(last access: 25 March 2025)

DART Ensemble DA Fortran NCAR Open source.
https://dart.ucar.edu
(last access: 25 March 2025)

EnKF Ensemble DA Fortran NERSC Open source.
https://github.com/nansencenter/enkf-topaz
(last access: 25 March 2025)

EnKF-C Ensemble DA C Bureau of Meteorology Open source.
https://github.com/sakov/enkf-c
(last access: 25 March 2025)

NEDAS Ensemble DA Python, parallel NERSC Open source.
https://github.com/nansencenter/NEDAS
(last access: 25 March 2025)

OAK Sequential DA Fortran U. Liège Open source.
https://github.com/gher-uliege/OAK
(last access: 25 March 2025)

OpenDA Ensemble DA Java TU Delft Open source.
https://www.openda.org
(last access: 25 March 2025)

PDAF Ensemble DA Fortran AWI Open source.
https://pdaf.awi.de
(last access: 25 March 2025)

SAM2 SEEK filter Fortran Mercator Ocean
International, ECCC

Not open source

Sequoia Sequential DA Fortran OMP/LEGOS Available on request.
https://sirocco.obs-mip.fr/
(last access: 25 March 2025)

cost can therefore also be achieved by reducing the complex-
ity of the TL and AD models. Time-parallel formulations of
4DVAR based on a saddle-point algorithm also yield substan-
tial computational savings (Fisher and Gurol, 2017; Moore et
al., 2023).

The assimilation strategy employed also depends on the
types of observations that are to be assimilated and their dis-
tribution in time. In the case of a Kalman filter, while each
observation can be assimilated sequentially at the associated
observation time, this may not be an efficient strategy, since
this might require overly frequent stopping and restarting of
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the filter computations. Thus, it is often preferable to group
together observations that are closely spaced in time and
treat them as though they were available at the same time.
This approach underpins the strategy of first guess at appro-
priate time (FGAT), which is commonly employed in con-
junction with both ensemble approaches and 3DVAR. Such
approaches necessitate the choice of a time window over
which the observations will be aggregated for assimilation.
In between times, the forecast model is run to yield the first
guess or background for the next data assimilation cycle, so
the time window of aggregation also dictates how frequently
the analysis–forecast cycle can be performed. For an EnKF,
it is sufficient to store observation equivalents from each
model ensemble member to calculate asynchronous cross-
covariances (Sakov et al., 2010). In the case of 4DVAR, ob-
servations are typically assimilated at the actual time of ob-
servation. This involves integrations of the TL and AD mod-
els forward and backward in time. Since these are based on
a linearised version of the forecast model, the validity of
the linear assumption through time is an important consid-
eration. In particular, linear instabilities can develop if ap-
propriate care is not exercised. Therefore, while a long time
window in 4DVAR may be preferable so that the analysis
is informed by more observations, this must be balanced by
the validity of the linear assumptions employed in the TL
and AD models and the added computational burden of the
longer assimilation window.

5 Ocean observations

While there is a common subset of observations from the
global ocean observing system (GOOS) that are assimilated
into ocean models, additional sources of data may be avail-
able for assimilation into regional ocean models that are not
appropriate for global models. The GOOS and different types
of observations available are discussed in the ETOOFS guide
(Alvarez Fanjul et al., 2022). The mainstay of the GOOS
is remote sensing observations of sea surface temperature
(SST), sea surface height (SSH), sea surface salinity (SSS),
and sea ice concentration. This is supported by the Argo
network of profiling floats that provide vertical sections of
temperature and salinity (and in some cases biogeochemical
variables) mostly over the upper 2000 m of the water col-
umn, although deep Argo floats below 2000 m are now also
being deployed. In the tropical oceans, the observing sys-
tem is augmented by networks of buoys that provide profiles
of temperature (and in some cases salinity and currents) to
depths of ∼ 500 m. Observations from tagged marine mam-
mals also provide useful information in some regions of the
world ocean. In coastal regions, other data sources are often
available that cannot be readily assimilated into global mod-
els because of the disparity in horizontal resolution. These
include data from gliders and other autonomous underwater
vehicles (AUVs), estimates of surface currents from high-

frequency (HF) radars, other tagged marine mammals, moor-
ings, drifters, and (in some locations) dedicated coastal ar-
rays.

All observations, regardless of their origin, must be sub-
ject to strict quality control (QC) standards before they can
be assimilated into a model (Good et al., 2023). All oper-
ational centres employ sophisticated QC systems for flag-
ging and rejecting erroneous observations and those of poor
quality. In addition, the large volume of remote sensing ob-
servations from Earth-orbiting satellites must generally be
thinned in space and time. There are three main reasons for
this: firstly, remote sensing observations contain a great deal
of redundancy which can be reduced by judicious thinning;
secondly, the sheer volume of remote sensing observations
can quickly overwhelm a data assimilation system if not ap-
propriately thinned (particularly in light of the high redun-
dancy); and, lastly, accounting for correlated observation er-
rors in data assimilation systems is technically challenging,
so thinning the observations is one approach for reducing
the degree of correlation. Another important aspect of opera-
tional data assimilation systems is the formation of so-called
“super-observations”. This refers to the procedure for com-
bining multiple observations of the same type that fall within
a model grid cell at the same observation time into a single
datum (a super-observation). This usually entails some sim-
ple averaging or aggregation procedure and is necessary in
order to improve the numerical conditioning of the data as-
similation inverse problem.

The use of observations in data assimilation requires in-
formation about their uncertainties. The observation uncer-
tainty consists of a component due to the instrument error
and a component related to the different representation of
the ocean by the observations and the model (for example,
representing different spatial scales and/or timescales; Janjić
et al., 2018). Some observation types (e.g. satellite SST) are
provided together with information about the expected un-
certainty in each measurement, and this information can be
used directly in the data assimilation. For other observation
types, estimates of the uncertainty have to be obtained from
the literature. An example list of instrumental uncertainties
for different observation types assimilated in a global ocean
forecasting system is provided in Table 1 of Lea et al. (2022).

Since the observations are the only, albeit far from com-
plete, measure of the true state of the ocean, they often form
the basis for metrics that are used to monitor the performance
of data assimilation systems. The statistics of the observation
minus background (OmB) and observation minus analysis
(OmA) provide information about the fit of the model to ob-
servations before and after the observations have been assim-
ilated. The statistics of OmB and OmA provide an important
diagnostic check on prior assumptions made about the back-
ground error and observation error covariances (Desroziers et
al., 2005). Inconsistencies between the actual and expected
error statistics can be used to retune the data assimilation
system, regardless of the data assimilation methodology em-
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ployed. In variational data assimilation systems, continuous
monitoring of the cost function and cost function gradient
also provide useful diagnostics of system performance. The
impact of different components of the observing system can
also be quantified and monitored in various ways. This is
commonly done in terms of the impact on the skill of fore-
casts that are initialised from the data assimilation analyses.
By continuously monitoring the impact of each component
of the observing system on forecast skill, data streams that
consistently degrade the forecast skill can be flagged (and re-
moved) and the degradation of any data stream over time can
be identified.

6 Current status of data assimilation in operational
forecasting systems

An overview of operational ocean data assimilation systems
and their characteristics is provided in Fig. 1 for global sys-
tems and Fig. 2 for regional and coastal systems. Not all op-
erational systems are covered here, but the figures provide
information about the main choices which have been made
by some of the existing operational centres producing near-
real-time forecasts in the configuration of their data assimi-
lation schemes. The information represents the current oper-
ational status, but all centres are continually developing and
improving their systems, and many have research configura-
tions which are more sophisticated than those presented.

In general, the global systems use somewhat simpler DA
algorithms (though they are still complex in their implemen-
tation of those algorithms) than the regional and coastal sys-
tems, the exception being the BoM system which uses a hy-
brid EnKF with 48 dynamic members and 144 stationary
low-mode members (Brassington et al., 2023). Many global
forecasting groups use a 3DVAR-FGAT algorithm (Barbosa
Aguiar et al., 2024; Zuo et al., 2019; Cummings and Smed-
stad, 2013; Storto et al., 2016; Ravichandran et al., 2013),
with some groups using a SEEK filter or an LESTKF with a
static ensemble (Lellouche et al., 2018; Smith et al., 2016; Li
et al., 2021). The reason these algorithms are generally sim-
pler is largely due to the large number of grid points, espe-
cially in the higher-resolution global systems, which restricts
the options for more expensive algorithms when timely de-
livery of forecasts is the main goal. Some groups are test-
ing more sophisticated schemes in research mode, though,
including those which make use of ensembles; e.g. MOI
are testing LETKF, the Met Office and ECMWF are test-
ing hybrid 3DEnVAR schemes (Lea et al., 2022; Chrust et
al., 2024), and JMA are implementing 4DVAR (Fujii et al.,
2023). The observations assimilated in these systems are
fairly consistent across the different systems, with the main
difference being whether the systems include sea ice or at-
mosphere components. Some of the DA systems are focused
purely on the ocean, many include a sea ice component,
and some now run with a coupled atmospheric component,

though these systems all still use so-called “weakly” coupled
DA where the DA in the atmospheric and ocean/sea ice com-
ponents is run separately, despite using coupled models (see,
for example, Guiavarc’h et al., 2019, and de Rosnay et al.,
2022). There is a large range of time windows used by the
different systems, with the most common time window be-
ing 1 d. A short 6 h window is used in the Met Office coupled
DA system (to match the time window in the atmospheric
DA; Guiavarc’h et al., 2019), and longer time windows of
5–7 d are used by some systems.

There is a wider range of DA algorithms employed in
regional and coastal forecasting systems from EnOI/static
SEEK filters (Carvalho et al., 2019; Ji et al., 2017; Smith et
al., 2021; Escudier et al., 2022) and 3DVAR-FGAT schemes
(Rahaman et al., 2018; King and Martin, 2021; Coppini et al.,
2023) through to the more sophisticated EnKF (Sakov et al.,
2012b; Röhrs et al., 2023), LESTKF (Brüning et al., 2021),
and 4DVAR algorithms (Moore et al., 2023; Iversen et al.,
2023; Hirose et al., 2019; Lee et al., 2018). Many of these re-
gional systems also include biogeochemical DA (see Fennel
et al., 2022, for a recent review), and some include coupled
sea ice DA (e.g. Sakov et al., 2012b). The range of observa-
tions assimilated is also quite varied, with some systems only
assimilating SST data, while others include the full range of
available observations, including HF radar, gliders, and bio-
geochemical data from satellites and in situ platforms.

7 Future directions

Operational ocean forecasting systems are under constant de-
velopment, including the data assimilation component. There
is a continued push towards higher resolution at many centres
and an increase in the use of ensembles both for improved
data assimilation and for providing forecast uncertainty in-
formation to users. These directions both require significant
additional computational resources, so improving the com-
putational efficiency of data assimilation software, particu-
larly on new computer architectures like GPUs, is impor-
tant to allow more flexibility in the choice of algorithms and
resolutions used. While there is evidence that increasing en-
semble size provides greater improvements in forecast skill
once the important processes are resolved, rather than further
increasing model resolution (Thoppil et al., 2021), there is
also continued research in improving assimilation method-
ology to allow sub-mesoscale processes to be constrained
where there are sufficient observations (Ying, 2019; Jacobs et
al., 2023). New observing systems are being developed and
launched, particularly wide-swath altimeter missions such as
SWOT (Morrow et al., 2019), which allow improved con-
straints on mesoscale ocean forecasts (King et al., 2024;
Liu et al., 2024; Benkiran et al., 2024). Treatment of spa-
tially correlated observation errors is important to allow the
most information to be extracted from such data, and various
groups are developing methods to represent these in data as-
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Figure 1. Operational global ocean data assimilation systems. For each institute, the following are listed: the DA algorithm (∗ indicates the
fixed-basis version of the algorithm) and software, DA resolution and time window, Earth system components (O: physical ocean; SI: sea
ice; A: atmosphere; W: surface waves; BGC: ocean biogeochemistry; L: land), and observations assimilated (SST: sea surface temperature;
SLA: sea level anomaly; SIC: sea ice concentration; SID: sea ice drift; T/S: profiles of temperature and salinity; OC: satellite ocean colour;
BGC: biogeochemical profile data; HFR: HF radar).

Figure 2. Operational regional and coastal ocean data assimilation systems. See description for Fig. 1.
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similation systems (e.g. Guillet et al., 2019; Yaremchuk et al.,
2024). Coupled ocean–atmosphere data assimilation is also
an evolving area (de Rosnay et al., 2022), with the develop-
ment of more strongly coupled data assimilation algorithms
requiring the use of consistent software across the different
Earth system components. The use of machine learning in the
ocean forecasting process is also developing quickly, with
various applications in the context of data assimilation be-
ing tested and implemented (Heimbach et al., 2025, in this
report).

Code and data availability. No data or codes were used to pro-
duce the article, but a list of data assimilation software packages is
provided in Table 1, together with their availability.
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