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Abstract. Operational ocean forecasting systems (OOFSs) are complex engines that must execute ocean mod-
els with high performance to provide timely products and datasets. Significant computational resources are then
needed to run high-fidelity models, and, historically, the technological evolution of microprocessors has con-
strained data-parallel scientific computation. Today, graphics processing units (GPUs) offer a rapidly growing
and valuable source of computing power rivaling the traditional CPU-based machines: the exploitation of thou-
sands of threads can significantly accelerate the execution of many models, ranging from traditional HPC work-
loads of finite difference, finite volume, and finite element modelling through to the training of deep neural
networks used in machine learning (ML) and artificial intelligence. Despite the advantages, GPU usage in ocean
forecasting is still limited due to the legacy of CPU-based model implementations and the intrinsic complexity
of porting core models to GPU architectures. This review explores the potential use of GPU in ocean forecasting
and how the computational characteristics of ocean models can influence the suitability of GPU architectures for
the execution of the overall value chain: it discusses the current approaches to code (and performance) porta-
bility, from CPU to GPU, including tools that perform code transformation, easing the adaptation of Fortran
code for GPU execution (like PSyclone), the direct use of OpenACC directives (like ICON-O), the adoption of
specific frameworks that facilitate the management of parallel execution across different architectures, and the
use of new programming languages and paradigms.

1 Introduction

Operational ocean forecasting systems (OOFSs) are compu-
tationally demanding, and large computing resources are re-
quired in order to run models of useful fidelity. However, this
is a time of great upheaval in the development of computer
architectures. The ever-shrinking size of transistors means
that current leakage (and the resulting heat generated) now
presents a significant challenge to chip designers. This break-
down of Dennard scaling (transistor power consumption is
proportional to area as in Dennard et al., 1974) began in about
2006 and means that it is no longer straightforward to con-
tinually increase the clock frequency of processors. Histori-
cally, this has been the main source of performance improve-

ment from one generation of processor to the next (Fig. 1).
Although the number of transistors per device continues to
rise, they are increasingly being used to implement larger
numbers of execution cores. It is then the job of the applica-
tion to make use of these additional cores to achieve a perfor-
mance improvement. Graphics processing units (GPUs) are a
natural consequence of this evolution. Originally developed
to accelerate the rendering of computer-generated images (a
naturally data-parallel task thanks to the division of an image
into pixels), scientists were quick to seize on their potential
to accelerate data-parallel scientific computation. Therefore,
manufacturers today produce HPC-specific “GPUs” that are
purely intended for computation. The suitability of this hard-
ware for the training of deep neural networks used in ma-
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chine learning (ML) and artificial intelligence has stimulated
massive development and competition amongst GPU ven-
dors. Because of the exploding interest of AI applications in
virtually all sectors of industry, the commercial HPC market
is undergoing a seismic shift toward GPU-based hardware,
with serious implications for available HPC architectures in
the future, to which OOFS will have to adapt.

Unlike CPUs, which tend to have relatively few but pow-
erful (general purpose) processor cores, GPUs support hun-
dreds of simpler cores running thousands of threads which
can obtain data from memory very efficiently. The simplic-
ity of these cores makes them more energy-efficient; there-
fore GPUs tend to offer significantly greater performance
per watt. With the energy consumption of large computing
facilities now the key design criterion, GPUs are an impor-
tant part of the technology being used in the push towards
exascale performance and beyond (e.g. Draeger and Siegel,
2023). As an illustration, in the November 2024 incarnation
of the TOP500 list (Strohmaier et al., 2024), 9 of the ma-
chines in the top 10 are equipped with GPU accelerators from
NVIDIA, Intel, or AMD. Although CPUs are present in these
machines, their primary role is to host the GPUs which pro-
vide the bulk of the computing performance. GPUs are there-
fore a major feature of the current HPC landscape, and their
importance and pervasiveness are only set to increase.

2 Computational characteristics of ocean models

To understand why GPUs are well suited to running OOFSs,
it is important to consider their computational characteris-
tics. The equations describing ocean evolution form a sys-
tem of partial differential equations that are solved numeri-
cally by discretising the model domain and then using a finite
difference, finite volume, or finite element scheme. In these
forms, the bulk of the computational work takes the form of
stencil computations, where the update of a field at a given
grid location requires that many other field values be read
from neighbouring locations. This means that the limiting
factor in the rate at which these computations can be done
is how quickly all these values can be fetched from memory
(so-called “memory bandwidth”). Finite element schemes do
have the advantage of shifting the balance in favour of do-
ing more arithmetic operations, but memory bandwidth still
tends to dominate. These computations are, of course, re-
peated across the entire model grid, meaning that it is a sin-
gle instruction, multiple data (SIMD) problem. OOFSs are
therefore a very good fit for GPU architectures, which natu-
rally support massively data-parallel problems and typically
provide much higher memory bandwidth than CPUs.

For execution on distributed-memory computers, OOFSs
typically use a geographical domain decomposition where
each processor is assigned a part of the model domain. In
order to handle stencil updates at the boundaries of a proces-
sor’s sub-domain, it must exchange information with those

processors operating on neighbouring sub-domains. Obvi-
ously, there is a cost associated with performing these ex-
changes, which high-performance processor interconnects
can only do so much to mitigate. As more processors are
thrown at a problem in order to reduce the time to solu-
tion, the size of their sub-domains decreases and so does
the amount of computation that each must perform. Con-
sequently, the relative cost of inter-processor communica-
tion becomes more significant and, after a certain point (the
“strong-scaling limit”), will begin to dominate. At this point,
using further processors will bring only limited performance
improvements, if any.

Inter-processor communication on a GPU-based machine
can be more costly, as messages may have to go via the
CPUs hosting the GPUs, unless a machine has both hard-
ware and software support for direct GPU–GPU commu-
nication. Communication-avoiding/minimising strategies are
therefore more important on these architectures. These can
include algorithmic design (e.g. Silvestri et al., 2024) to al-
low the overlap of communication and computation or sim-
ply the use of wider halo regions to reduce the frequency of
halo exchanges.

3 The use of GPUs in ocean forecasting

Although GPUs are now a well-established HPC tech-
nology with potentially significant performance advan-
tages for OOFSs, they are not yet widely adopted in
the ocean-forecasting community. For example, in Europe,
NEMO (Madec et al., 2024) is the most important ocean-
modelling framework; it is used operationally by Merca-
tor Ocean International, the European Centre for Medium-
Range Weather Forecasts (ECMWF), the UK Met Office, the
Euro-Mediterranean Center on Climate Change, and other
institutes worldwide. NEMO is implemented in Fortran and
parallelised with MPI and, as such, is limited to running
on CPUs only. The German Weather Service (DWD) uses
ICON-O (Korn, 2017), which is also a Fortran model. Exper-
iments are in progress with the use of OpenACC directives to
extend this code to make use of GPUs, but this functionality
is not used operationally.

In the US, NOAA’s Real-Time Ocean Forecast System
(https://polar.ncep.noaa.gov/global/, last access: 14 April
2025) is based on the Hybrid Coordinate Ocean Model (HY-
COM; Chassignet et al., 2009). HYCOM is also a Fortran
code, parallelised using a combination of OpenMP and MPI.
Although not used operationally, the Energy Exascale Earth
System Model (E3SM) is also significant. It utilises the
ocean, sea ice, and land ice versions of the Model for Pre-
diction Across Scales (MPAS; Ringler et al., 2013), which
again is implemented in Fortran with MPI. Although a port of
this was attempted through the addition of OpenACC direc-
tives, it has been abandoned due to poor GPU performance
(Mark R. Petersen, personal communication, 2024). Instead,
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Figure 1. The breakdown of Dennard scaling, shown by 50 years of microprocessor (CPU) evolution (Rupp, 2022).

a new ocean model on unstructured meshes named Omega is
being developed in C++ from the ground up. Other widely
used ocean general circulation models include the MIT Gen-
eral Circulation Model (MITgcm; Marshall et al., 1997) and
the Modular Ocean Model, version 6 (MOM6; Adcroft et al.,
2019), both of which again are Fortran codes with support
for distributed- and shared-memory parallelism on CPU.

The Japanese Meteorological Agency runs operational
forecasts using the Meteorological Research Institute Com-
munity Ocean Model (MRI.COM) (Tsujino et al., 2010). As
with the previous models, this is also implemented in Fortran
with MPI and thus only runs on CPU.

For regional (as opposed to global) forecasts, the Rutgers
Regional Ocean Modeling System (ROMS) (Shchepetkin
and McWilliams, 2003) is used by centres worldwide, in-
cluding the Japan Fisheries Research and Education Agency,
the Australian Bureau of Meteorology, and the Irish Ma-
rine Institute. ROMS is also a Fortran code parallelised us-
ing either MPI or OpenMP (but not both combined) and is
thus restricted to CPU execution. Although various projects
have ported the code to different architectures (including the
Sunway architecture for China’s Tianhe machine; Liu et al.,
2019), these are all standalone pieces of work that have not
made it back into the main code base.

4 Discussion

From the preceding section, it is clear that OOFSs are cur-
rently largely implemented in Fortran with no or limited sup-
port for execution on GPU devices. The problem here is that
OOFSs comprise large and complex codes which typically

have a lifetime of decades and are constantly being updated
with new science by multiple developers. Maintainability, al-
lowing for the fact that the majority of developers will be
specialists in their scientific domain rather than in HPC, is
therefore of vital importance. Given that such codes are of-
ten shared between organisations, they must also run with
good performance on different types of architecture (i.e. be
“performance-portable”).

Previously, one generation of supercomputers looked
much like the last; therefore the evolution of these computer
models was not a significant problem. However, the prolif-
eration of computer hardware (and, crucially, the program-
ming models needed to target them) that has resulted from
the breakdown of Dennard scaling has changed this (Bal-
aji, 2021). With the average supercomputer having a lifetime
of just some 5 years, OOFSs are now facing the problem
of adapting to future supercomputer architectures, and this
is difficult because the aims of performance, performance
portability, and code maintainability often conflict with each
other (Lawrence et al., 2018).

Transformation of existing codes. To date there have been
various approaches to this problem. NEMO v.5.0 (Madec
et al., 2024) has adopted the PSyclone code transformation
tool (Adams et al., 2019), which enables an HPC expert
to transform Fortran source code such that it may be exe-
cuted on GPUs using whichever programming model (i.e.
OpenACC or OpenMP) is required. Previous, unpublished
work found that, for a low-resolution (1°) global mesh, a sin-
gle NVIDIA V100 GPU performed some 3.6 × better than
an HPC-class Intel socket. For a high-resolution (1/12th°)
global mesh, ∼ 90 A100 GPUs gave the same performance
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as ∼ 270 Intel sockets. In both cases, this is an ocean-
only configuration, with virtually all computing being per-
formed on the GPUs. This is important, since any compu-
tation happening on the CPU incurs substantial data trans-
fer costs as data are moved from the GPU to the CPU, up-
dated, and then transferred back to the GPU. The advent
of hardware support for unified CPU/GPU memory should
reduce the cost of this. As noted earlier, ICON-O is being
extended manually with OpenACC directives. There are ex-
amples of recent (i.e. experimental) models that have moved
away from Fortran in favour of higher-level programming ap-
proaches. Thetis (Kärnä et al., 2018) implements a discontin-
uous Galerkin method for solving the 3D hydrostatic equa-
tions using the Firedrake framework. This permits the sci-
entist to express their scheme in the Python implementation
of Unified Form Language (Alnæs et al., 2014). The neces-
sary code is then generated automatically. The Veros model
(Häfner et al., 2021) takes a slightly different approach: its
dynamical core is a direct Python translation of a Fortran
code and thus retains explicit MPI parallelisation. The JAX
system (http://github.com/google/jax, last access: 14 April
2025) for Python is then used to generate performant code
for both CPU and GPU. The authors report that the Python
version running on 16 A100 GPUs gives the same perfor-
mance as 2000 CPU cores for the Fortran version (although
this comparison is slightly unfair, as the CPUs used are sev-
eral generations older than the GPUs).

Performance portability tools. Another popular approach
to performance portability is to implement a model using a
framework that takes care of parallel execution on a target
platform. Frameworks such as Kokkos (Carter Edwards et al.,
2014), SYCL, and OpenMP are good examples, and the new
Omega ocean component of E3SM mentioned previously is
being developed to use Kokkos. In principle, this approach
retains single-source science code while enabling portability
to a variety of different hardware. However, it is hard to in-
sulate the oceanographer from the syntax of the framework
(which is often only available in C++), and, while the frame-
work may be portable, obtaining good performance often re-
quires that it be used in a different way from one platform
to another. In OpenMP, for instance, the directives needed to
parallelise a code for a multi-core CPU are not the same as
those needed to offload code to an accelerator.

New programming languages. The Climate Modeling Al-
liance (CliMA) has adopted a radically new approach by
rewriting ocean and atmospheric models from scratch us-
ing the programming language Julia (Perkel, 2019; Srid-
har et al., 2022). Designed to overcome the “two-language
problem” (Churavy et al., 2022), Julia is ideally suited to
harness emerging HPC architectures based on GPUs (Be-
sard et al., 2017; Bezanson et al., 2017). First results with
CliMA’s ocean model, Oceananigans.jl (Ramadhan et al.,
2020), run on 64 NVIDIA A100 GPUs exhibit 10 simulated
years per day (SYPD) at 8 km horizontal resolution (Silver-
stri et al., 2024). This performance is similar to current-

generation CPU-based ocean climate models run at much
coarser resolution (order of 25–50 km resolution). Similarly
promising benchmarks have been obtained with a barotropic
configuration of a prototype of MPAS-Ocean, rewritten in Ju-
lia (Bishnu et al., 2023). Such performance gains hold great
promise for accelerating operational ocean prediction at high
spatial resolution run on emerging HPC hardware.

Toward energy-efficient simulations. Increased resolution,
process representation, and data intensity in ocean and cli-
mate modelling is vastly expanding the need for compute
cycles (more cores and smaller time steps). As a result, the
ocean, atmosphere, and climate modelling community has
recognised the need for their simulations to become more
energy-efficient and to reduce their carbon footprint (Loft,
2020; Acosta et al., 2024; Voosen, 2024). Owing to their ar-
chitecture, GPUs can play a significant role in reducing en-
ergy requirements. A related research frontier being spear-
headed by the atmospheric modelling community is the use
of mixed or reduced precision to speed up simulations (Frey-
tag et al., 2022; Klöwer et al., 2022; Paxton et al., 2022),
with a potentially desirable side effect of natively capturing
stochastic parameterisations (Kimpson et al., 2023). GPUs
are ideally suited for such approaches, but successful imple-
mentation depends heavily on the model’s numerical algo-
rithms.

Data-driven operational ocean forecasting. Operational
weather and ocean forecasting are facing the potential of
a paradigm shift with the advent of powerful, purely data-
driven methods. The numerical weather prediction (NWP)
community has spearheaded the development of machine-
learning-based emulators that perform several orders of mag-
nitude faster than physics-based models (e.g. Bouallègue et
al., 2024; Rasp et al., 2024). Such emulators have the poten-
tial to revolutionise probabilistic forecasting and uncertainty
quantification, among others. The computational patterns un-
derlying the ML algorithms, such as parallel matrix multipli-
cation, are ideally suited for general-purpose GPU architec-
tures. While these methods have been driven to a large extent
by private sector entities and require access to increasingly
large GPU-based HPC systems for training, corresponding
efforts in operational ocean forecasting are only now begin-
ning to catch up. A review of the rapidly changing land-
scape of AI methods in the context of ocean forecasting is
attempted in Heimbach et al. (2025; in this report).
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