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Abstract. Operating the ocean value chain requires the implementation of steps that must work systematically
and automatically to generate ocean predictions and deliver ocean data information in standard format. This
task, which represents the backbone of operational forecasting systems, implies the design of robust workflows
that organize pre-processing of the upstream data, run the core models, and handle post-processing before the
final delivery. Operational chains require dedicated computational resources to supply demanding modeling runs
but also processing and analysis of big volumes of data in relation to the specific spatial scale and consistently
for the forecast lead times. The monitoring of each step of the workflow through key performance metrics can
support not only timely delivery but also identifying problems and troubleshooting. The paper illustrates the
main challenges foreseen by operational chains in integrating complex numerical frameworks from the global to
coastal scale and discusses existing tools that facilitate orchestration of operational chain components, including
examples of existing systems and their consolidated capacity to provide high-quality and timely ocean forecasts.

1 Introduction

Operational ocean forecasting systems integrate advanced
numerical modeling, aimed at resolving ocean dynamics and
processes from the global to coastal scale, and robust compu-
tational suites that are devoted to running models and orches-
trating different data pre- and post-processing blocks, with
the ultimate goal of providing high-quality and reliable ocean
forecasts to enhance decision-making, monitoring, and plan-
ning for the sustainable use of ocean resources. In the last
years, ocean observations — from remote sensing (Gould et
al., 2013) and in situ (Le Traon et al., 2015) platforms — avail-
able for operational oceanography have increased in number,
quality, and timeliness, making it possible to improve ocean
models, to validate numerical ocean products, and to sup-
port monitoring activities (Tonani et al., 2015; Davidson et
al., 2019). Data assimilation techniques, aimed at blending
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the observations into the model, have evolved numerically
to provide the most accurate description of the past and the
best initial conditions for the forecast. As computing power
has increased, numerical solvers have evolved towards high-
resolution models that can capture small-scale features en-
abling global, regional, and coastal simulations and predic-
tions at higher resolution and over longer time spans. The
numerical information produced is then processed to make it
usable by operational applications and services. Some recent
ocean modeling examples in support of operational ocean
and coastal services are compiled in Sect. 4.2. Therefore, as
shown in Chap. 4 of Alvarez Fanjul et al. (2022), the archi-
tecture of an operational ocean forecasting system includes
pre-processing of ocean observations, quality control assess-
ments, objective analysis, data assimilation, initial field gen-
eration, numerical forecasting, and data post-processing, to-
gether with the generation and dissemination of products. All
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these steps have influenced the evolution of forecasting sys-
tems from a technological point of view to accommodate the
need to harmoniously interconnect complex steps towards fi-
nal delivery to users. Section 2 provides an overview of the
technical characteristics of processing suites that guarantee
reliable operations and product provision.

2 Technical characteristics of an operational chain
for ocean forecasting

The objective of an operational chain is to systematically and
automatically perform a series of complex numerical steps to
ensure the generation of ocean predictions and the delivery of
related products to end users. The main phases of its work-
flow are pre-processing, modeling component runs, and post-
processing. Figure 1 shows, as an example, the overall work-
flow of the chain implemented for the Global Ocean Fore-
casting System operated by NMEFC (China). Here, the main
steps, as designed for the specific operational system, include
data pre-processing, data assimilation, numerical simulation,
and production for final delivery.

Pre-processing consists of accessing and preparing up-
stream data (i.e., observations, atmospheric forcings, and
other model outputs to be used as boundary conditions) to be
ingested by the modeling component. In the case of ocean
observations, it is responsible for collection, transmission,
analysis, and quality control. The time consumption of data
assimilation depends on the amount of data used and on
their complexity. Ocean models also need atmospheric forc-
ing fields. Indeed, the performance of ocean operational fore-
casting systems is very sensitive to the type of atmospheric
forcing used (Li et al., 2021), and atmospheric forecasting
variables need to be collected and interpolated into the ocean
model grid to compute wind stress, surface heat fluxes, or
surface water exchanges. The time needed for the prepara-
tion of the atmospheric forcing, usually part of the first step
of an operational suite, depends firstly on the (scheduled) at-
mospheric model forecast availability and secondly on the
computational efficiency, as well as the computational effi-
ciency in having the atmospheric forcing data ready to be
used by the ocean model.

Other forcing data sources, such as freshwater inputs from
river discharges, are progressively being included in ocean
forecast models. Unlike in global ocean models, in regional
models, this pre-processing block must include the prepara-
tion of the necessary data (usually from a global or basin
model) that will be imposed as boundary conditions along
the open boundaries of the regional domain.

Incorporating observations (from both satellites and in situ
platforms) into an ocean model via data assimilation is de-
sirable for operational forecasting (and reanalysis) systems
to obtain accurate estimates of the ocean state (Tonani et
al., 2015) and initial conditions for the forecast. Complex
methodologies are developed and implemented in oceans
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forecasting chain that are strongly linked to the ocean model
used, to the model resolution, and to the observations assimi-
lated using different classes of data assimilation (Cummings
et al., 2009)

Running an ocean model is the most complex and demand-
ing part of the operational chain. Numerical models include
physical parameterizations and solvers for the numerical in-
tegration of the Navier—Stokes equations. This complexity
can be computationally demanding, so by employing paral-
lel computing, we can distribute this workload across multi-
ple cores. This allows us to run high-resolution ocean models
faster. Hence, the use of multiple cores and parallelization is
crucial in state-of-the-art ocean modeling.

Once the model run is complete, the resulting data must
be post-processed by interpolating the numerical outputs
(if needed) onto specific regular spatial grids and by ap-
plying procedures aimed at transforming the raw model
data into a standardized format (e.g., CF-compliant; https:
/Icfconventions.org, last access: 28 February 2025). Such
post-processing must be executed afterwards as an indepen-
dent process or in parallel while the model is running.

Finally, the ocean forecast products are released directly
to users through different specific dissemination mechanisms
(such as FTP, THREDDS, web services and API, and cloud-
based solutions).

From a computational point of view, the execution of
an operational chain may require significant computing re-
sources, while the number of cores used must be such that
the forecast is produced on time: they can therefore be ex-
ecuted in dedicated clusters, benefitting from heterogeneous
computing capabilities by using CPU or GPU resources.

The operational chain is then required to orchestrate a
complex sequence of tasks in a flexible and efficient way,
allowing for monitoring and troubleshooting. When design-
ing an operational chain, it is important to decide which pro-
gramming language is most appropriate for coding each task
belonging to each of the main steps: this choice depends on
the characteristics of the numerical procedure to be adopted
for solving a specific task. For example, for acquisition of
upstream data from various external databases or data stores,
the forecaster can adopt the following.

— Bash or Shell scripting offers functions like wget or curl
for accessing files made available by a provider, as well
as cron for scheduling its execution.

— Python codes are available for accessing data through
web APIs (for example, the Copernicus Marine Toolbox
that is a Python-based tool for accessing the Coperni-
cus Marine Data Store) and for performing some initial
basic manipulation (i.e., subsetting in space and time,
interpolation to target grid).

The ocean model couple to data assimilation scheme is tech-
nically much more complex to run and there are also some
compilation and performance requirements to be met. The
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Figure 1. Operational chain of an ocean forecasting system (example of a global system in NMEFC, China).

operational chain is then instructed to launch a task that sub-
mits each model run to be executed directly on the dedi-
cated core(s) or to a job scheduler that verifies resource avail-
ability. In addition, the ocean model itself is usually coded
in a pre-defined programming language (such as Fortran,
C/C+ +, or other) and can be executed in parallel mode
using MPI/OpenMP or GPU-based parallel paradigms (i.e.,
CUDA, OpenCL, OpenACC).

Data post-processing, product generation, and product de-
livery can usually be done in parallel during the model run
time as independent tasks from the overall workflow: again,
it can adopt procedures coded in Bash/Shell, Python, Julia,
or other interpreted languages that can guarantee flexibility,
simplicity, and preliminary data analysis tasks.

The operational chain workflow engine can be coded ad
hoc to sequentially organize the tasks to be executed. A basic
approach can be determined through the implementation of a
software package that includes the following:

— A main script, designed to collect the specific tasks and
subtasks as requested by the operational chain

— A list of scripts, each representing the task to execute
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— One or more specific scripts that are designed to track
the status of the operational chain execution by creating
logs to further support monitoring

The evolution of this approach towards systematic monitor-
ing of the overall workflow and automatic detection of issues
are represented by the adoption of a workflow manager. It is
a tool that assists the forecaster in orchestrating complex se-
quences of tasks, including detection of anomalies during the
execution and supporting the seamless processing of infor-
mation. The workflow manager adopted by the Earth science
community includes the following.

- ECFLOW (https://confluence.ecmwf.int/display/
ECFLOW, last access: 28 February 2025), developed
by ECMWF

— Cylc (https://cylc.github.io/, last access: 28 Febru-
ary 2025)

Others, extensively used by industry but also progressively
chosen by forecasting centers, are the following.

— Apache Airflow (https://airflow.apache.org, last access:
28 February 2025)
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— Prefect (https://www.prefect.io/, last access: 28 Febru-
ary 2025)

3 Key performance metrics

To ensure that an operational ocean forecasting system de-
livers accurate and timely products, it is necessary to identify
metrics that can be implemented for measuring performances
and that can support the resolution of potential anomalies and
issues.

Based on the analysis performed in Ciliberti et al. (2023),
the main properties of an operational forecasting system that
can be used to monitor its performance are as follows.

— Quality certifies that the delivered product or service
consistently performs well and provides useful results.
This can be measured by providing relevant metrics
aimed at measuring the degree to which the forecast
product matches the observation (through validation ex-

ercises).
— Reliability refers to whether the wuser can
rely on the forecast product to make deci-

sions. As shown by the World Climate Service
(https://www.worldclimateservice.com/2020/07/06/
what-is-forecast-reliability/, last access: 28 Febru-
ary 2025), it is a measure of the quality of a probability
forecast that varies between 0 % (i.e., the a posteriori
observation is never in the forecast range) and 100 %
(i.e., the a posteriori observation is always in the
forecast range).

— Timeliness is a measure of the time between the expec-
tation that the information will be available and the time
when it is actually available for use. To save time, it is
usual to execute in parallel two or three parts of the op-
erational chain. However, not all parts can run in paral-
lel. Pre-processing and data assimilation should be fin-
ished before the ocean model starts running. In contrast,
post-processing, product generation, and release can be
done in parallel with model running. Timeliness man-
agement depends on characteristics of different cases or
different user needs. With coupled and ensemble model
development, it is difficult to have a strict time control.

— Accessibility refers to the capacity for a user to get ac-
cess to forecast product, including authentication and
authorization (if needed).

— Usability involves the adoption of standards for data and
metadata to ensure that the product can be used well
and is self-describing. Data with a defined file format,
adequate documentation, and high quality can be used
and reused. This metric can be measured through user
surveys.
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Timeliness management depends on characteristics of dif-
ferent cases or different user needs. With coupled and en-
semble model development, it is difficult to have a strict time
control (Liu et al., 2018).

The adoption of a workflow engine facilitates the monitor-
ing phase of the operational chain workflow. Figure 2 illus-
trates an example of how an operational forecasting service
needs to monitor all the components of a specific operational
suite to generate the proper KPIs (key performance indica-
tors) that should later be managed to ensure timely service.
The example shows how all the elements previously dis-
cussed, such as pre-processing, model execution, and post-
processing of raw model outputs, together with some time
dedicated to the data push to catalogs and later storage,
are included in this operational monitoring performed by
the Copernicus Marine Iberia—Biscay—Irish Monitoring and
Forecasting Center (IBI-MFC) for its operational suites. This
control of the different components is recommended and
helps operators to identify issues in the operational suites and
in the environment that could potentially lead to incidents.
Likewise, this monitoring by component helps to manage de-
lays in the service related to different types of incidents. The
operational KPIs for service timeliness that are usually used
to verify that the service is meeting the timeliness require-
ments stated in its proposed service level agreement (SLA)
are computed using the time statistics provided daily by these
time control monitoring processes. This monitoring is also
important to identify and manage temporary incidents or con-
tinuous problems that may result in service delays or product
outages.

4 Other operational-chain-relevant aspects

It is important to outline and summarize some general char-
acteristics a user needs to consider in the setup of numerical
ocean models for ocean forecasting.

— Infrastructure aspects.

— Itis highly desirable that a model performs well on
most of the most powerful HPCs available. In prac-
tice, this requires that the code is parallelized (using
domain decomposition with MPI and/or OpenMP),
is not excessively memory-bound (particularly on
CPU machines), and supports the low-level parallel
processing required by GPUs. This requires analy-
sis of the scalability and portability of the code as
well as the restartability and reproducibility of the
numerical ocean model solution.

— Workflow tools can support proper monitoring of
the computing process workflow and facilitate trou-
bleshooting as well as scalability of the operational
configuration.

— The network is an essential element in the infras-
tructure of an operational chain; it must allow an
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Figure 2. Example from the Copernicus Marine IBI-MFC Service Monitoring. Monthly summary statistics (for January 2023) from the
time control monitoring performed for the IBI physical forecast operational suite. Monitoring of all the operational suite components (i.e.,
input data pre-processing, model execution, post-processing of raw model outputs, and processes to push products into the catalogs and later
storage) is included.

effective link between the distribution centers up- through one or more of the standard coupling sys-
stream and downstream of the production centers. tems (e.g., OASIS, US system); in some cases (like
with waves and sea ice) alternative or ad hoc cou-

— Storage must be linked to the HPC center to ensure
pling approaches should be provided.

effective back-up of production and enable produc-
tion to be restarted if necessary. — Run biogeochemical (BGC) models as part of the
overall integration (on line coupling) or generate

— Interfaces. To appropriately handle the spatiotemporal data to run the BGC model in offline mode.

scale of the ocean process that requires reproduction,
the following steps are necessary. — Interface the ocean model with data assimilation

) ) systems.
— Select a proper state-of-the-art option for subgrid-

scale parameterization: if the option is incompati-
ble, the model should be able to generate an error
message and stop.

— Generate restart and diagnostic files in a flexible
manner.

. — Design and documentation. To meet quality assurance
— Use state-of-the-art bathymetries for the setup of requirements, it is highly desirable that the model
new configurations. The user should also be able to

use and specify smoothing techniques that can be
applied to avoid model instabilities while also tak-
ing into account the topographical peculiarities that
can play a fundamental role, especially in coastal
models.

has a clear design,

has a well-chosen modularity,

is easily readable,

is written in a familiar language (such as Fortran90
— Specify time-varying river inflows (i.e., discharges, or Python),
nutrients) as inputs, generated from climatologies
or from real-time data (e.g., from observations).

has a user guide and a developer guide, and

. can be further developed without excessive effort.
— Specify surface fluxes of momentum, heat, and P

freshwater and ancillary data such as surface tem-

— Sustained support. The model needs to be sustainably
peratures and surface wave fields.

supported by a lead agency, a consortium of agencies,
— Couple the model to models of other physical sys- a committed user community, or a combination of the
tems (e.g., atmospheric, sea ice, or wave models) above. This support should aim to ensure the following.
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— The model’s formulation is improved as the state of
the art evolves.

— Novel improvements are documented in peer-
reviewed publications.

— The code documentation is openly available and
kept up to date.

— The code is openly accessible or made available
subject to “legal” agreement (which might include,
e.g., a commitment by a new user to contribute to
further developments and testing of source code).

— New users are supported by instructions for setting
up relatively simple configurations which can easily
be compiled and run and outputs can be checked.

— New releases of the code are properly version-
controlled.

— The methods by which the code is verified are de-
scribed in its documentation.

— The results from standard test cases are made pub-
licly available (an aspiration at this stage).

Code and data availability. The data and code are available from
the websites, which are all mentioned in the paper:

— Argos data: ftp://ftp.ifremer.fr/ifremer/argo/latest_data (Argo
Program Office, 2025)

— TOGA data: https://www.pmel.noaa.gov/gtmba/ (Global Trop-
ical Moored Buoy Array, 2025)

— SLA data: https://doi.org/10.48670/moi-00149 (CMEMS,
2022a)

— SST data: https://doi.org/10.48670/moi-00165 (CMEMS,
2022b)

— MERCATOR reanalysis: https://doi.org/10.48670/moi-00021
(CMEMS, 2022c¢)

Other data are available from the authors upon request.
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