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Abstract. We describe, at an elementary level, the spatially varying properties of the ocean that physical ocean
models represent, the principles they use to evolve these properties with time, the physical phenomena that they
simulate, and some of the roles these phenomena play within the Earth system. We describe at an intermediate
level the governing equations the models use and the grids that they typically use and, at a more advanced
technical level, the methods and approximations that the models use and the difficulties that limit their accuracy
or reliability. We also briefly describe the wider context and future prospects for the development of these models.

1 Introduction

The models of ocean physics described in this paper use
physical principles to simulate how the three-dimensional
structures of the ocean’s temperature, salinity, and currents
evolve in time. Section 2 describes the models at an intro-
ductory level. It first outlines the spatially varying quanti-
ties they predict and the physical principles they use. It then
describes the circulations the models simulate and some of
the reasons why these circulations are important in the Earth
system. Section 3 describes the models at an intermediate
level, outlining their governing equations, some approxima-
tions used to improve their efficiency, and the grids they typ-
ically employ. Section 4 outlines at a more technical level the
main approximations the models typically use and the steps
in the discretization of their equations, drawing attention to
some of the difficulties which limit their accuracy or reliabil-
ity. Section 5 discusses wider and future perspectives.

Chassignet et al. (2019) provide an alterna-
tive non-technical introduction to ocean modelling.
McWilliams (1996) and Fox-Kemper et al. (2019) provide
more detailed reviews, and Griffies (2004) is still a helpful
primer on the basic techniques. Aspects of the design,
testing, documentation, and support for an ocean model code
that are crucial for it to be suitable for use in operational
predictions or climate simulations are covered in Wan et

al. (2025, in this report). Porter and Heimbach (2025, in this
report) discuss the adaptations of ocean models required for
them to perform efficiently on modern high-performance
computers (HPCs).

2 An overview of the models and what they simulate

2.1 The quantities simulated and the principles used

The temperature structure of the ocean at a given time in a
physical ocean model is represented by a three-dimensional
(3D) grid of temperature values. The three dimensions of the
grid correspond to the three dimensions of space. One of the
dimensions is aligned with the local vertical and the other
two with locally horizontal directions. The set of tempera-
ture values on the grid is referred to as the temperature field.
The salinity structure is similarly represented by a 3D grid of
salinity values, referred to as the salinity field. The currents in
the two locally horizontal directions are represented by two
fields and the locally vertical current by a third field. The
fluid’s density and pressure are also represented by fields. In
total, conceptually there are seven 3D fields (the temperature,
salinity, density, and pressure as well as three velocity fields)
and the physical ocean model simulates how these fields will
evolve in time. Given all these fields at time t , the model pre-
dicts how they will all evolve over the next few minutes or
hours – that is, over a time step 1t – and hence their values
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2 M. J. Bell et al.: Numerical models for simulating ocean physics

at time t +1t . Model predictions to days, months, or years
ahead are generated by performing a large number of time
steps.

The equations used by physical ocean models are based on
the following physical principles:

– conservation of momentum (Newton’s laws of motion)
for each direction in space;

– conservation of the mass of water and salt;

– conservation of energy (the first law of thermodynam-
ics); and

– the thermodynamics determining the density at a point
from the temperature, salinity, and pressure (the equa-
tion of state).

Together with information about the momentum, heat, and
fresh water exchanged with the atmosphere and sea ice at
the ocean surface and with the solid Earth at the bottom of
the ocean (the boundary conditions), these seven sets of con-
straints are sufficient to determine how the seven fields will
evolve from given initial values at every point of the seven
fields (the initial conditions). In practice, the details of how
the equations are used to provide computationally efficient,
stable, and accurate solutions are quite intricate. The accu-
racy of the model predictions is primarily limited by the rep-
resentation of the ocean structure by the values on a grid
whose resolution is limited by computational power. Mo-
tions at scales comparable to or smaller than the grid are
not resolved. The effects of these subgrid-scale (SGS) mo-
tions on the resolved scales are calculated by parameteriza-
tion schemes. Although these are based on physical princi-
ples and detailed studies, their accuracy and reliability are
inevitably limited. This is one of the main areas where fur-
ther research has potential to improve the model simulations.

2.2 The circulations simulated and their impacts

The circulations and physical phenomena that these ocean
models are typically used to simulate are principally the fol-
lowing:

– the near-surface boundary layer where there is strong
turbulent mixing driven by surface winds and heating
or cooling (Large et al., 1994);

– gyre circulations associated with the region, called
the thermocline, where the vertical density gradient is
strongest – large-scale displacements in the thermocline
are primarily driven by Ekman pumping: in the subtrop-
ical gyres, the thermocline is bowl-shaped and in the
sub-polar gyres it is dome-shaped (Chap. 20 of Vallis,
2017);

– meridional overturning circulations (MOCs) associated
with heat loss and stirring of mixed layers at high lati-
tudes and wind-driven upwelling and heat uptake in the

Southern Ocean and near the Equator (Srokosz et al.,
2021);

– western boundary currents (WBCs) – the depth-mean
WBCs are associated with the wind-driven gyre circula-
tions (Pedlosky, 1982, Chap. 5) and oppositely directed
surface and deep WBCs (Hogg, 2001) with MOCs;

– mesoscale circulations (with horizontal scales
<100 km) associated with instabilities of the boundary
currents and gyre circulations (Robinson, 1983); and

– sub-mesoscale motions (with horizontal scales<10 km)
that are strongest in the near-surface boundary layer
(Taylor and Thompson, 2023).

These circulations and phenomena play important roles in
the Earth system. For example, the western boundary cur-
rents are responsible for very large meridional transports of
heat and geographically varying air–sea fluxes which con-
tribute to the shape of atmospheric circulations, interannual
variations in the slope of the thermocline along the Equator
in the Pacific Ocean are an essential component of the El
Niño–Southern Oscillation (ENSO) phenomenon, the advec-
tion of heat by large-scale ocean currents towards ice shelves
has a significant impact on their heat balance and evolution
(Stewart et al., 2018), and biogeochemical cycles are typi-
cally sensitive to the vertical advection of nutrients (Williams
and Follows, 2011).

The ocean models can be configured as a component of
a coupled system, with models of other components such as
the atmosphere, sea ice, surface waves, or biogeochemistry,
or as a stand-alone system with suitable datasets providing
surface forcing. They can be configured to cover the entire
global ocean, or to cover just a limited region with lateral
boundary conditions (that are often taken from a model of
a larger region). Their initial conditions can be specified by
climatologies based on historical measurements or regularly
updated by assimilating the latest measurements as in oper-
ational forecast systems (Martin et al., 2025, in this report).
The model coupling, domain, resolution, and initial condi-
tions should be chosen to suit the purpose of the modelling
and are constrained by the computational resources available.

3 A simple description of ocean models

3.1 Governing equations

There are many good books on the basics of fluid dynamics.
Fluid dynamics is usually formulated using the concepts of
vector calculus. Appendix A gives a brief introduction to vec-
tor calculus and its application to fluid dynamics, including
simplified derivations of Eqs. (1)–(3) below.

Tracers are defined to be properties that fluid parcels retain
unchanged with time. Using T to denote a tracer, u the veloc-
ity field, and D/Dt the Lagrangian time derivative (following
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the motion),

DT /Dt = ∂T /∂t +u.∇T = 0. (1)

The fraction of the mass of water in a fluid parcel due to
saline components, S, is a tracer and evolves according to the
prognostic equation (Eq. 1). Conservation of mass requires
that the rate of decrease of mass inside an infinitesimal vol-
ume be equal to the fluxes out of its faces and hence that the
density, ρ, satisfies

∂ρ

∂t
+∇. (ρu)= 0. (2)

Combining Eqs. (1) and (2) one obtains an alternative flux
form for the evolution of tracers,

∂(ρT )
∂t
+∇. (ρuT )= 0. (3)

The thermodynamics of seawater is rather complex. Val-
lis (2017) Sections 1.5–1.7 give a helpful introduction to it.
The macroscopic motions models represent are taken to be
in thermodynamic equilibrium and reversible (e.g. not to in-
clude mixing). The internal energy of a fluid parcel (follow-
ing its motion) is then only changed by the heat (Q) input
into it and the work done on it by pressure forces on it re-
ducing its volume (work done equals force times distance
travelled). A potential temperature, θ , can be defined that is
equal to the temperature the fluid parcel would have if re-
versibly moved without input of heat (adiabatically) to a ref-
erence height (such as the surface or 2000 m). The potential
temperature evolves according to

cp
Dθ
Dt
=
θ

T
Q, (4)

where cp is the heat capacity of the seawater at constant pres-
sure and T is temperature. Ocean models generally use θ as a
prognostic variable. This requires that T and ρ be calculated
from the pressure p, θ , and S using the equation of state for
seawater.

The acceleration of fluid particles is determined from
Newton’s second law of motion: F =maI. The acceleration
aI in an inertial frame of reference must take into account
that the Earth is rotating and that the fluid velocity u is the
velocity relative to this rotating frame of motion. Represent-
ing the rotation by the vector � which is aligned with the
axis of rotation and equal to the rate of rotation, Vallis (2017)
Section 2.1 nicely shows that

aI =
Du

Dt
+ 2� × u +� × (� × r) . (5)

A perfect fluid does not resist shearing motions (Batchelor,
1967). Then the force exerted on an infinitesimal element of
the surface area of a fluid parcel by the fluid outside is inward
and in the direction normal to the surface. So with this force

F =−pn̂, where n̂ is the outward-pointing normal vector of
unit length and by an argument similar to that in Eq. (A7),
one finds that the pressure force on a volume δV is given by
−δV ∇p. The force due to gravity on this cell is downward
and equal to its mass ρδV times g. Putting these expressions
together for a perfect fluid we infer that

ρ

[
Du

Dt
+ 2� × u +� × (� × r)

]
=−∇p− ρgk̂, (6)

where k̂ is the local unit vector pointing upward.
In fluids, energy input at one scale does not stay at that

scale; some “propagates” to larger scales and some to smaller
scales. The smaller scales are visible in tracer fields where
one sees tongues of tracers drawn out into filaments that
become interleaved. The cascade of energy to small scales
results in dissipation of energy and vorticity. In the oceans
most mixing occurs on isopycnal (constant density) surfaces.
Models are formulated to mix tracers preferentially along
isopycnal surfaces (Redi, 1982) and aim to constrain the di-
apycnal mixing to realistic levels. The mesoscale motions
in the boundary currents usually derive their energy by ex-
tracting potential energy from the sloping isopycnals associ-
ated with the currents. Models which only partially resolve
mesoscale motions usually include formulations for addi-
tional velocities which flatten these sloping isopycnals (Gent
and McWilliams, 1990). The momentum equations also in-
clude terms which drain kinetic energy. These are usually
designed to be strongly scale-selective (e.g. biharmonic) in
order to drain energy preferentially from the grid scale. It is
important to restrict the grid-scale velocities to levels that do
not result in excessive diapycnal mixing of tracers (Ilicak et
al., 2012).

3.2 Principles of efficiency, accuracy, and stability

Ocean models should be designed to accurately represent the
motions of interest and to be as efficient in their calculations
as possible. It is also highly desirable that they possess ana-
logues of important conservation properties, such as conser-
vation of energy and momentum, and that they have opera-
tors that mimic the properties of div, grad, and curl for some
of the fields.

It is also essential that the model integrations are stable.
The prognostic equations are of the form ∂P/∂t = R. When
calculating P at time step tn+1 nearly all the terms inR need
to be written in terms of quantities at step tn or earlier steps
such as tn− 1. If the time step is too large one of these terms
will cause exponential growth of near-grid-scale fluctuations
in P . The Courant–Friedrichs–Lewy (CFL) criterion, which
requires c1t < 1x, where c is a speed (such as |u| or the
phase speed of a gravity wave),1t is the time step, and1x is
the grid spacing, is of this form (Durran, 1999). If the terms
in R that are directly related to P are specified using P at
time step tn+ 1, a resulting formulation whose time step is
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not restricted can usually be found. Such implicit schemes
usually require the solution of a matrix equation. If the matrix
involves the whole 2D or 3D domain its solution is usually
costly. Vertical mixing is a fast process (mixing across many
grid cells typically happens in one time step) and implicit
schemes result in 1D tridiagonal matrix equations that can
be solved robustly and efficiently, so most ocean models use
implicit schemes for vertical mixing.

3.3 Approximations that improve efficiency

Sound waves in the ocean travel at about 1500 m s−1 and sea
level variations associated with depth-independent motions
travel at about 200 m s−1. Other motions associated with
internal waves (gravity waves, Kelvin and Rossby waves)
and the currents themselves propagate signals at no more
than about 3 m s−1. Ocean models usually employ approx-
imations that make their solution more efficient by elimi-
nating sound waves and enabling special treatment of the
depth-independent motions. The Boussinesq approximation
takes the ocean density to be treated as a constant except
in the gravitational force −ρgk̂. The conservation of mass
(Eq. 2) then reduces to ∇ ·u= 0, which says that the fluid
is incompressible and the evolution of tracers simplifies to
∂T /∂t+∇·(uT )= 0. The deliberate omission of ∂ρ/∂t from
Eq. (2) eliminates sound waves from the model’s solutions.
The external mode, which is almost depth-independent, is
usually calculated separately as a depth-independent mode.
It is usually calculated using variables that depend only on
the “horizontal” coordinates using time steps that are about
60 times smaller than those used for the 3D calculations.

Another approximation that is commonly used is to ne-
glect the vertical velocities in the vertical component of
the momentum equation. This hydrostatic approximation is
valid for motions with horizontal scales that are much larger
than their vertical scales. The vertical pressure gradient is
then diagnostic (rather than prognostic) and typically satis-
fies ∂p/∂z=−ρg.

3.4 Model grid cells

Finite-difference schemes take cell values to be point values
and calculate derivatives explicitly. The advection of tracers
might be calculated using Eq. (1). Finite-volume schemes
calculate the fluxes and forces across cell faces and treat cell
values as grid cell means. They conserve volume, heat, and
momentum and usually aim to conserve energy. Most ocean
models are formulated using finite-volume schemes, at least
for tracers.

Most ocean models use curvilinear orthogonal coordinates
in the horizontal (on spheroidal surfaces) but an increasing
number use triangular or hexagonal grids (Ringler et al.,
2010; Korn et al., 2022). Panels (a) and (b) of Fig. 1 illus-
trate the two most common choices for the placement of vari-
ables in grid cells, the Arakawa B- and C-grids, respectively

(Arakawa, 1988). Both grids store the tracers and the pres-
sure at the centre of each cell. The B-grid stores both compo-
nents of the velocities at each of the corners of the cell, whilst
the C-grid (Fig. 1b) stores them at the centres of the faces to
which they are normal and hence at different points. Particu-
larly when the Boussinesq approximation is made, the C-grid
is ideal for the evolution of tracers, conservation of volume,
and calculation of ∂p/∂x at the u points and ∂p/∂y at the v
points. The B-grid is ideal for the calculation of the Coriolis
terms, whereas the simplest expression for v at the u point on
the C-grid involves a four-point average of v at the surround-
ing grid points. On the B-grid the horizontal divergence and
vorticity are naturally centred at the tracer points, whilst on
the C-grid they are centred at the tracer points and the cell
corners, respectively (Fig. 1c).

The choice of vertical coordinate is particularly important
in an ocean model. A model level may have a constant height
(z coordinates), have constant potential density (isopycnal
coordinates), or vary in proportion to the local depth (terrain-
following coordinates). In principle the vertical coordinate
could aim to transition from z coordinates near the sea sur-
face to isopycnal coordinates in the interior and terrain co-
ordinates near the bottom. These coordinates are discussed
further in the next section. We note that the axes used by the
momentum equations are not altered by these schemes. It is
just the coordinates, not the axes, that are transformed.

Most of the terms in ocean models, including the bound-
ary conditions, are only calculated to second-order accuracy.
This means that if the model were used to simulate an ideal-
ized case in which the motions are reasonably well-resolved,
the errors in the solution should be reduced by a factor of 4 as
the grid spacing is reduced by a factor of 2. To second-order
accuracy, a grid cell mean value is equal to the point value at
its centre. So in some models it is not entirely clear what the
grid cell values are intended to represent. It has been found to
be advantageous to calculate the advection terms (usually the
fluxes through the cell faces) to higher-order accuracy and to
limit the values of the fluxes to avoid extending the range
of tracer values (Durran, 1999; Fox-Kemper et al., 2019).
Higher-order schemes for the calculation of pressure forces
are also advantageous for terrain-following coordinates.

4 Methods and approximations employed in ocean
models

4.1 Variables and equations used

The ocean models used in physical ocean prediction systems
evolve 3D fields of the active tracers and the three compo-
nents of velocity (see Section 5.5.1. of Alvarez Fanjul et
al., 2022). They also evolve either a 2D surface pressure (or
surface height) field or a 3D pressure field. The active trac-
ers used depend on the formulation of the equation of state.
When it is EOS80 (Fofonoff and Millard, 1983) the active
tracers are potential temperature and practical salinity, whilst

State Planet, 5-opsr, 10, 2025 https://doi.org/10.5194/sp-5-opsr-10-2025



M. J. Bell et al.: Numerical models for simulating ocean physics 5

Figure 1. The horizontal placement of variables on (a) the B-grid and (b) the C-grid. Tracers, T , and velocities u and v in the x and y
directions are located at the points marked by blue dots and red and green arrows, respectively. Panel (c) shows that on the C-grid the
vorticity is naturally centred at the corners of the tracer grid.

when it is TEOS10 (IOC et al., 2010) they are conservative
temperature and absolute salinity. The evolution of these
fields is determined by some form of the so-called primitive
equations (Griffies and Adcroft, 2008). The approximations
that are usually made are generally well-described in Sec-
tion 5.4 of Alvarez Fanjul et al. (2022). We note, however,
that the centripetal acceleration is not included in the equa-
tions because they have been transformed so that the spheroid
coincident with the Earth’s bulge follows a spherical surface
(Vallis, 2017). It is of course assumed (the turbulent closure
hypothesis) that the effect of small-scale motions on large-
scale motions can be represented (that is parameterized) in
terms of the large-scale motions. None of the Boussinesq, hy-
drostatic, incompressible, or additional Coriolis term approx-
imations are mandatory, but maintaining consistent, well-
behaved equations requires care. Some alternative forms of
the primitive equations which enjoy good conservation prop-
erties are derived in White et al. (2005). Compressible equa-
tions support rapidly travelling sound waves, which (can be
artificially slowed but) make a competitively efficient solu-
tion difficult.

4.2 Numerical discretization

Ocean models normally use a smoothly varying horizontal
grid consisting of triangular or quadrilateral elements (Sec-
tion 5.4.2. of Alvarez Fanjul et al., 2022). Where the grid
lines on the quadrilateral grids intersect, they are usually
orthogonal (hence called curvilinear orthogonal). The grids
are chosen to have rather uniform resolution (cubed sphere
grid; Ronchi et al., 1996) or to be isotropic (same resolu-
tion locally in the two directions) with grid spacing decreas-
ing away from the Equator and the poles of the grid placed
over land (Madec and Imbard, 1996). Triangular elements
have the obvious advantage that they can be chosen to fol-
low coastlines more accurately. With triangular elements, re-
duced grid spacing is often employed for selected regions
within one smoothly varying grid. With quadrilateral ele-
ments, reduced grid spacing is usually achieved by using sep-
arate “child” grids that are nested within the “parent” grid
with one-way nesting (the child takes boundary values from

the parent – Staniforth, 1997) or two-way nesting (the parent
also takes values from the child – Debreu and Blayo, 2008).

Finite-difference and finite-volume methods are usually
employed with the quadrilateral grids. Finite-volume mod-
els evolve their fields by calculating the fluxes across their
cell faces (the difference between the two is not significant
for terms that are calculated only to second-order accuracy).
Models using triangular elements use either finite-element or
finite-volume techniques (Danilov, 2010; FESOM has transi-
tioned from finite element to finite volume).

The main choices for the staggering of variables on orthog-
onal grids are the B-grid and C-grid (Arakawa, 1988). The
dispersion properties of gravity waves on the C-grid are bet-
ter (worse) than the B-grid when the grid resolves (does not
resolve) the Rossby radius. Stationary chequer-board modes
for the pressure field on the B-grid and the velocity field
on the C-grid can be associated with undesirable grid-scale
“noise”. The dispersion properties of gravity waves on trian-
gular grids are more problematic, though some finite-element
pairs (Le Roux et al., 1998) perform relatively well. There
has been significant recent progress in the development of C-
grid-like formulations for triangular grids (and their hexago-
nal dual grids) with good mimetic properties (Ringler et al.,
2010; Cotter and Shipton, 2012).

The choice of vertical “grid” is well-known to have far-
reaching consequences for ocean models. Lorenz grid stag-
gering is commonly used despite its computational mode and
susceptibility to spurious shortwave instabilities (Arakawa
and Moorthi, 1988; Bell and White, 2017). Ideally, the ver-
tical grid would have fine vertical spacing near the surface
so that the mixed layer can be well-represented. Also, the
surfaces on which the vertical coordinate takes constant val-
ues would follow isopycnals at mid-depths (so that advec-
tive velocities and spurious numerical time-mean advective
diapycnal transports are minimized) and would follow the
bathymetry at the ocean bottom so that flow down slopes
(with the associated vortex stretching) is well-represented.
Techniques to use coordinates that treat some parts of the
motions using Eulerian methods and others using Lagrangian
approaches with re-mapping are described in Petersen et
al. (2015), Griffies et al. (2020), and Hofmeister et al. (2010).
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The generation of an appropriate vertical grid for ocean mod-
els is an active area of research.

Most terms in ocean models are calculated using second-
order-accurate formulae. The advection of tracers should,
however, be calculated using schemes of higher-order accu-
racy (typically third or fourth order) which also take care to
retain the upper and lower bounds of the advected quantities.
There is a very extensive body of literature on this subject
(Durran, 1999; Brasseur and Jacob, 2017) and it is generally
agreed that the advecting velocity field should be constrained
to be sufficiently smooth (e.g. Ilicak et al., 2012). The ef-
fective resolution of the model also depends on how scale-
selective the dissipation of variance is near the grid scale
(Soufflet et al., 2016).

Specific terms in the equations of motion present differ-
ent challenges depending on the grid that has been chosen.
For terrain-following coordinates, calculation of the hori-
zontal pressure gradient to higher order (Shchepetkin and
McWilliams, 2003) and of the diffusion along isopycnal sur-
faces (Lemarié et al., 2011) is beneficial, and some smooth-
ing of the bathymetry is necessary. The formulation of the
governing equations for the cells that are only partially filled
by water is an active area of research (Adcroft, 2013; Debreu
et al., 2020). For C-grid models, calculation of the Coriolis
term should ensure conservation of energy, and some care
is needed to avoid unintended transfer of energy to the grid
scale (Hollingsworth et al., 1983; Bell et al., 2017; Ducousso
et al., 2017).

The strengths and weaknesses of various time-stepping
schemes used in ocean models are reviewed in Lemarié et
al. (2015). Various approaches have been taken to the time
stepping of the external (barotropic) mode (Shchepetkin and
McWilliams, 2003; Demange et al., 2019).

4.3 Parameterization of unresolved processes

The parameterization of unresolved processes is of primary
importance: Fox-Kemper et al. (2019) provide a useful re-
view. The classic parameterizations of isopycnal diffusion
(Redi, 1982; Visbeck et al., 1997) and of the slumping of
isotherms by baroclinic instabilities (Gent and McWilliams,
1990) work well in climate models with order 1° grid spac-
ing. The latter needs to be developed further for models of
higher resolution using ideas such as Bachman (2017) and
Mak et al. (2018). It is increasingly clear that sub-mesoscale
motions within the ocean surface boundary layer cause heat
to flux vertically (Fox-Kemper et al., 2011) and generate fil-
amentary structure. The interaction of these motions with
standard parameterizations of turbulence (Umlauf and Bur-
chard, 2005) and Langmuir turbulence (Reichl et al., 2016)
is an active area of research, as is the parameterization of
internal dissipation by internal gravity waves generated by
tidal displacements over steep bathymetry (de Lavergne et
al., 2020). Machine learning (ML) methods are being applied
to the parameterization of subgrid-scale motions (Zanna and

Bolton, 2020; Ross et al., 2023) and are likely to play impor-
tant roles in future ocean models.

5 Wider and future perspectives

Modern ocean models use large HPC resources and open-
source codes supported by communities of scientists and
software engineers. They support public safety and pro-
tection of the environment by contributing to short-range
weather predictions (including forecasts of hurricanes), sea-
sonal forecasts of El Niño, and information about climate
change. In order to properly appreciate their roles one needs
to see them as one component within the much wider range
of scientific activities required to provide this support. Inno-
vations in remote sensing and in situ measurement technol-
ogy and their internationally coordinated and sustainable im-
plementation are fundamental to these endeavours. The de-
velopment of seasonal predictions in the late 1980s and early
1990s, for example, was closely tied to the development of
the TOGA TAO array (Smith, 2001). The doubling of the
number of transistors in a CPU every 2 years from 1970–
2020 (Porter and Heimbach, 2025), and the emergence of ac-
curate near-real-time satellite altimetry and the ARGO sys-
tem of drifters around the turn of the century, enabled near-
global assimilation and prediction of the strongest mesoscale
ocean motions to first become a reality around 2015 (Bell et
al., 2015). What will be the major societal drivers and what
are the best opportunities for scientific improvement in the
next 10–20 years? We do not have a crystal ball but we can
offer some suggestions.

As mentioned at the end of the last section, ML methods
have recently emerged as a new set of tools that can be used
in many ways to improve Earth system models (Eyring et
al., 2024). Depending on the directions explored, the ocean
model codes may need to be rewritten as differentiable func-
tions to exploit ML methods fully (Silvestri et al., 2024).
Ocean reanalyses based on measurements from 1980 on-
wards are gradually being improved and together with at-
mospheric reanalyses will provide an essential resource for
inputs to ML and the assessment and improvement of cou-
pled ocean–atmosphere models. The international coordina-
tion established under CMIP (Coupled Model Intercompari-
son Project, https://www.wcrp-climate.org/wgcm-cmip, last
access: 17 February 2025) should enable much richer sets
of experiments to be conducted and more diverse ensem-
bles of ocean and Earth system models to be explored than
would otherwise be possible. There is also scope for more
traditional improvements to ocean models, such as improved
methodologies and choices for vertical coordinates, param-
eterization of vertical mixing, specification of surface ex-
changes (Yu, 2019; Storto et al., 2024), the use of finer hori-
zontal resolution in selected regions, and more efficient gen-
eration of ensembles of simulations. Coupled simulations of
ENSO still have significant deficiencies and simulations of
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the future Atlantic MOC are not as reliable as they need to be.
In summary, it is reasonable to be optimistic that successful
progress with significant societal impacts can be made over
the next 10–20 years.

Appendix A: An introduction to vector calculus for
fluid dynamics

Fluid dynamics is concerned with properties like tempera-
ture and salinity that vary spatially and evolve with time.
Such properties are referred to as fields. Just as y(x) repre-
sents any curve y that is a function of x in ordinary calculus,
F (x,y,z, t) represents any field that depends on x,y,z, and
t . In ordinary calculus we have δy ∼= y (x+ δx)− y(x) and
consider δy/δx in the limit as δx becomes very small. For
“smooth” enough functions there is a limiting value dy/dx.
In vector calculus we consider how F varies with each of its
coordinates whilst keeping the other coordinates fixed. Vary-
ing x and considering the limit when δx becomes very small
we write

∂F

∂x
=
∂F

∂x

∣∣∣∣
y,z,t

=
F (x+ δx,y,z, t)−F (x,y,z, t)

δx

in the limit as δx→ 0. (A1)

∂F/∂x is termed the partial derivative of F with respect to x.
The variables that are held constant can be explicitly declared
as shown. For brevity they are often omitted, in which case
they are implicit. An extremely useful expression analogous
to δy ∼= y (x+ δx)− y(x) is

δF ∼=
∂F

∂x
δx+

∂F

∂y
δy+

∂F

∂z
δz+

∂F

∂t
δt. (A2)

For the sake of simplicity we limit ourselves hereafter to
rectilinear Cartesian coordinates in which the axes are or-
thogonal straight lines, the coordinates of a point r are de-
noted by (x,y,z), the distance from the origin, d, is given by
the Pythagorean theorem (d2

= x2
+ y2
+ z2), and z points

upward. We explain later that the equations can be derived
for a more general set of locally orthogonal coordinates.

Consider first a curve r(s) between two points, r0 =

r(s0) and r1 = r(s1), as illustrated in Fig. A1a. Integrating
Eq. (A2) along the curve (with δt = 0) one sees that

F (r1)−F (r0)=
∫ s1

s0

(
∂F

∂x

dx
ds
+
∂F

∂y

dy
ds
+
∂F

∂z

dz
ds

)
ds. (A3)

Writing ∇F = (∂F/∂x,∂F/∂y,∂F/∂z) and dr/ds =
(dx/ds,dy/ds,dz/ds), Eq. (3) can be re-expressed as

F (r1)−F (r0)=
∫ s1

s0

∇F.
dr

ds
ds =

∫ r1

r0

∇F.dr. (A4)

Equation (A4) is the defining property of ∇F , which is
termed the gradient of F or “grad F ” for short. If one in-
tegrates around any path which closes on itself, i.e. r1 = r0,

one sees that the left-hand side of Eq. (A4) is equal to zero.
Hence the integral of ∇F around any closed curve is zero.

The rate of change with time of a field F following a fluid
particle moving at velocity u= (u,v,w) can also be inferred
from Eq. (A2) by dividing it by δt . Following the fluid parcel,
δx ∼= uδt , δy ∼= vδt , and δz∼= wδt . So

DF
Dt
=
∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+w

∂F

∂z
=
∂F

∂t
+u.∇F. (A5)

Here we have used the standard notation DF/Dt to denote
the rate of change of F with respect to time following a fluid
parcel, which is often called the Lagrangian derivative. Trac-
ers are defined to be properties that fluid parcels retain un-
changed with time. Using T to denote a tracer we see that

DT /Dt =
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y
+w

∂T
∂z
= 0. (A6)

An equation expressing conservation of mass can be de-
rived by considering the “notional” cuboid cell illustrated
in Fig. A1b. The density of a fluid, ρ, is defined to be its
mass per unit volume. The volume of the cell in Fig. A1b
equals δV = δxδyδz. The fluxes of mass through the two
side faces perpendicular to the x axis are U (x,y,z)δyδz and
U (x+ δx,y,z)δyδz, where U = ρu. So in the limit as the
cell volume becomes very small the mass flux out of the cell
from these two faces equals

[
U (x+ δx,y,z)−U (x,y,z)

]
δyδz∼=

∂U

∂x
δxδyδz. (A7)

Conservation of mass requires that the increase in mass in-
side the cuboid plus the fluxes out of the three pairs of
side faces equal zero. Using expressions corresponding to
Eq. (A7) and dividing by δV one obtains

∂ρ

∂t
+
∂(ρu)
∂x
+
∂(ρv)
∂y
+
∂(ρw)
∂z
=
∂ρ

∂t
+∇. (ρu)= 0. (A8)

The operator ∇. introduced in Eq. (A8) is called the diver-
gence. At any point it is defined to be the outward flux per
unit volume through a surface enclosing that point. Gauss’s
theorem shows that for smooth fields the divergence does not
depend on the shape of the volume (e.g. it is the same for in-
finitesimal spheres and cuboids). Combining Eqs. (A6) and
(A8) one obtains the flux form for the conservation of tracers,

∂(ρT )
∂t
+
∂(ρuT )
∂x

+
∂(ρvT )
∂y

+
∂(ρwT )
∂z

=
∂(ρT )
∂t

+∇. (ρuT )= 0. (A9)

There is one other vector quantity that is particularly im-
portant in fluid dynamics: the curl of the velocity field,
∇×u, which is termed the vorticity. The component of the
vorticity perpendicular to the infinitesimal square shown in
Fig. A1c is calculated by considering the line integral of
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u · dr anticlockwise around its sides. Similarly to Eq. (A7),[
v (x+ δx,y)− v (x,y)

]
δy ∼=

∂v
∂x
δxδy and∮

u.dr =

∫ ∫ (
∂v

∂x
−
∂u

∂y

)
dxdy =

∫ ∫
∇×u.dS. (A10)

Here dS is the vector perpendicular to the area enclosed by
the line integral whose length is equal to that area. Stokes’
theorem shows that the vorticity does not depend on the
shape of the area used to calculate it (e.g. it is the same for
infinitesimal circles and squares). The vorticity of the fluid
is particularly important because of Kelvin’s theorem, which
states that under certain conditions following a fluid parcel
the vorticity does not change with time (i.e. it is conserved).
Ertel’s theorem on conservation of potential vorticity is based
on Kelvin’s theorem (Pedlosky, 1982 Chap. 2).

Expressions for the gradient, divergence, and curl of vector
fields and relations between them can be derived for general-
ized curvilinear orthogonal coordinate systems (see Lorrain
and Corson, 1970, for a well-illustrated introduction and Ap-
pendix A of Batchelor, 1967, for a concise summary). Lati-
tude and longitude coordinates for the sphere are one exam-
ple of such coordinate systems.

Figure A1. (a) Illustration of a curve r (s) in 3D space obtained by varying the scalar parameter s from s0 to s1. (b) Illustration of the
contribution to the mass flux divergence for a cell of volume δxδyδz from the fluxes through the faces perpendicular to the x axis. (c) The
anticlockwise path around the sides of the infinitesimal cell with sides of length δx and δy used to calculate the area integral within the cell
of the normal component of vorticity.
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