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Abstract. Here, the Copernicus Ocean State Report offers detailed scientific analysis of the ocean under cli-
mate change, ocean variability, and ocean extremes. This evidence-based reporting is based on a set of key ocean
indicators such as sea surface temperature, sea level rise, ocean heat content, ocean acidification, and sea ice
extent. Moreover, key indicators for ocean variability such as the El Nifio—Southern Oscillation and major ocean
current systems such as the Atlantic Meridional Overturning Circulation are tackled. Major results show that the
global ocean’s sea surface temperature continues to steadily increase, particularly in the Northern Hemisphere,
with a global warming rate of 0.13 £ 0.01 °C per decade from 1982 to 2023. Since around the 1970s, the ocean
warming trend has intensified, doubling its rate over the past 2 decades. Concurrently, global mean sea level
has risen significantly at intensifying rates from 2.1 mmyr~! in the 1990s to 4.3 mmyr~! in recent years, with
regional disparities. The Arctic Ocean has faced unprecedented sea ice loss and warming, while Antarctic sea
ice has reached record lows. Ocean acidification has progressed, decreasing pH at a rate of —0.017 per decade.
Marine heatwaves have become more frequent, intense, and extensive, affecting up to 80 % of the global ocean
surface annually. Despite significant variability, extreme ocean surface wind speeds have been prevalent, particu-
larly in the North Atlantic, North Pacific, and Southern Ocean. The Atlantic Meridional Overturning Circulation
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shows no significant decline but varies substantially. In 2023, La Nifia conditions have transitioned to El Nifio

conditions in the Pacific Ocean.

Executive summary

The sea surface temperature (SST) of the global ocean con-
tinues to warm, and this warming is not uniform across ocean
basins and particularly pronounced in the Northern Hemi-
sphere. Global mean sea surface temperature is warming at
a rate of 0.13 £0.01 °C per decade over the period 1982—
2023. Apart from areas of major ocean current systems in
the Pacific, Atlantic, and Southern Ocean, the ocean surface
is warming. In particular, 75 % of the Northern Hemisphere
ocean surface is warming faster than the global average, com-
pared to 35 % of the Southern Hemisphere ocean.

Ocean warming continues to increase globally, and since
the 1960s, rates of change have doubled in the past
2 decades. Over the period 1960-2023, the global ocean heat
content increased at a rate of 0.58 £ 0.1 Wm™2. Since 2005,
this global rate has increased to 1.05 4 0.2 Wm™2. Region-
ally, ocean warming is evolving differently in various areas
of the global ocean, while since 1960, the strongest upper
2000 m ocean warming has occurred in the Southern Ocean
(60-35°S), the North Atlantic (20-50° N), and the South At-
lantic (60° S—0°).

Global mean sea level observed by satellite altimetry has
risen more than 10cm, at a rate of 3.4+ 0.3mmyr~!, and
accelerated by 0.11 & 0.05 mmyr=2 over the past 30 years.
Global mean sea level rose from 2.1+0.3mmyr~! over
the period 1993-2002 to 4.3 + 0.3 mm yr—"! over 2013-2023.
Regional sea level rise is not uniform, and almost 50 % of
the ocean is rising faster than the global average. The regions
with faster rates are the major western boundary currents (in
the Kuroshio current in the western North Pacific and in the
Gulf Stream and the Brazil and Malvinas currents in the At-
lantic Ocean), large parts of the western Pacific Ocean and
Indian Ocean, and some areas in the Atlantic Ocean.

The Arctic Ocean has been exposed to unprecedented sea
ice loss and surface ocean warming of 4.37 °C since the
1980s, and in 2016, Antarctic sea ice entered a new state
of low sea ice, reaching the lowest levels on record in 2023.
Over the period 1979-2023, the Northern Hemisphere sea
ice extent decreased by —4.33 % per decade on annual aver-
age, by —12.64 % per decade in September (Summer), and
by —2.55 % per decade in March (Winter). Record summer
sea ice loss is reported during the years 2012 and 2020. The
trend in surface temperature in the Arctic Ocean amounts to
0.104 £ 0.005 °C yr—! between 1982 and 2023. Most of the
Arctic Ocean basin is experiencing surface warming, partic-
ularly in the northern Barents Sea, the Kara Sea, the Beaufort
Sea, and the Eurasian part of the Arctic Ocean. Antarctic sea
ice extent does not show a long-term trend on average due to
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high variability and contrasting regional trends over the pe-
riod 1982-2023. In 2016, Antarctic sea ice showed a rapid
decrease, entering a new low state of sea ice, and 2023 be-
came by far the lowest year on record. Global mean sea ice
extent in the polar regions was at its lowest point in 2023 as
compared to the 1993-2010 reference period.

Global ocean acidification has continuously increased
over the past 37 years (1985-2022), with an observed rate of
decrease in ocean pH of —0.017 pH unit per decade. Region-
ally, ocean acidification is not increasing uniformly. About
47 % of the sampled ocean is getting more acidic at a faster
rate than the global average, particularly in the Indian Ocean,
the Southern Ocean, the eastern equatorial Pacific Ocean, the
northern tropical Pacific, and some regions in the Atlantic
Ocean.

The year 2022 was the third consecutive year of El Nifio—
Southern Oscillation (ENSO) La Niiia conditions, and the
year 2023 was marked by developing El Niiio conditions. The
tropical Pacific Ocean experienced multi-year La Nifia con-
ditions persisting during 2020, 2021, and 2022. This phase
of ENSO reverted afterwards, transitioning to neutral condi-
tions in boreal spring 2023 and then to a warm El Nifio phase
in the second half of 2023.

The Atlantic Meridional Overturning Circulation (AMOC)
strength does not show a statistically significant decline over
the period 1993-2023. Since 1993, the strength of AMOC
has undergone stark variations in both the reanalyses and
observations, superposing any long-term change. Scientific
controversy prevails in the published literature, and several
studies estimate low AMOC strength or even predict a near-
term collapse, while other studies elevate fluctuations of
AMOC.

Since 1982, the frequency, duration, intensity, and regional
extension of marine heatwaves of strong and extreme cate-
gories have increased, and during the years 2022 and 2023,
large areas of the surface ocean were affected. Over the pe-
riod 1982-2023, the fraction of the global ocean surface that
experienced a marine heatwave (MHW) event over 1 year in-
creased from 50 % to 80 %. The spatial extension of strong
MHW events and the yearly averaged maximum duration of
MHW events in recent years have doubled since 2008 from
about 20 % to 40 % and from 20 to 40 d, respectively, while
they were relatively stable before the mid-2000s. In 2022,
12 % of the global ocean surface experienced at least one
marine heatwave event of severe to extreme category, with
most persistent events lasting 6 months or longer occurring
in the Coral Sea, affecting waters off northeast Australia and
the Melanesian Pacific Island states. In 2023, 22 % of the
global ocean surface experienced at least one severe to ex-

https://doi.org/10.5194/sp-4-0sr8-1-2024



K. von Schuckmann et al.: The state of the global ocean

treme marine heatwave event. The most prominent events,
lasting 6 months or longer, occurred in the tropical central
and eastern Pacific, associated with the emerging 2023-2024
El Niflo and the coastal Nifio off the coast of Peru, and in the
northern tropical Atlantic and the Southern Ocean south of
40°S.

Globally, most extreme ocean surface wind speeds exceed-
ing 20m s~! over the past 16 years prevail in the central and
subpolar North Atlantic, the North Pacific, and the South-
ern Ocean. The detection of long-term trends in extreme
wind speeds is hampered by their large variability in space
and time, such as being triggered by the El Nifio—Southern
Oscillation. Over the period 2007-2023, ocean surface ex-
treme wind speeds in the North Atlantic exceeding more
than 22 ms~! were particularly pronounced along the south-
ern coast of Greenland. Extreme winds also reach more than
20ms~! in the North Pacific and Southern Ocean. Extreme
wind speeds in the tropical bands (10-30° of latitude) amount
typically to about 13ms~! and around or below 10ms™~!
in the equatorial band (0-10° of latitude). Wind speed ex-
tremes in the western tropical Pacific are closely correlated
with the El Nifio—Southern Oscillation index, with more ex-
treme wind speeds and longer-lived tropical cyclones during
El Nifio years.

1 Ocean and climate

1.1 Sea surface temperature

The surface of the ocean is in permanent dialogue with the
overlying atmosphere, and every change in this complex in-
teraction governed by air—sea processes transferring energy,
momentum, and gases between them is reflected in changes
of sea surface temperature. Hence, regular monitoring of sea
surface temperature is a fundamental component of climate
variability assessment. Also, sea surface temperature is iden-
tified as an essential ocean variable in weather prediction and
atmospheric model simulation, and it has a profound role in
the study of marine ecosystems, ocean dynamics, and ocean
health (Centurioni et al., 2019). Global targets of political
ambitions are aligned along the global climate indicator of
Earth surface temperature (UN, 2015) from which the ocean
surface constitutes the major fraction covering nearly 70 %
of the Earth’s surface. The most recent assessment of avail-
able scientific knowledge under the sixth assessment cycle
of the IPCC has reported that each of the last 4 decades has
been successively warmer than any decade that preceded it
since 1850. Global surface temperature was 1.09 [0.95 to
1.20] °C higher in 2011-2020 than 1850-1900, with larger
increases over land (1.59 [1.34 to 1.83]°C) than over the
ocean (0.88 [0.68 to 1.01] °C), IPCC, 2021). While the global
mean sea surface temperature is increasing, there is vari-
ability around this average, with different regions and loca-
tions experiencing different responses, both in terms of trend
and variance on different timescales and which are linked to
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climate modes (such as the El Nifio—-Southern Oscillation)
and/or ocean dynamics.

In 2023, the global mean temperature was the highest on
record (Fig. 1). Since 1982, global mean surface temperature
has risen at a rate of 0.13 £ 0.01 °C. Superposed on the long-
term trend, the global mean sea surface temperature also
shows large variations around the average, which is known
to be dominated by internal variations from the El Nifio—
Southern Oscillation (ENSO; Fig. 1, red and blue shading).
Except for the area poleward of about 50° S, the eastern trop-
ical Pacific where upwelling takes place, the central subtrop-
ical South Atlantic, and the area of the so-called “cold blob”
in the subtropical North Atlantic (Fan et al., 2023; Sanders
et al., 2022), which show no statistically significant trend,
the rest of the ocean surface is warming. The spatial pat-
tern of the global SST trend also evidences that nearly 14 %
of the ocean surface is warming more slowly compared to
the global mean surface warming rate (Fig. 2b, Table 1), and
40 % of the ocean surface is even observed to warm at a rate
equal to or exceeding 2 times or more (12 %) the global mean
surface warming (Fig. 2b, Table 1). Higher warming rates
characterize the Northern Hemisphere in all ocean basins,
particularly north of 30° N.

1.2 Ocean heat content

The global ocean is warming, and this human-driven warm-
ing is irreversible over centuries to millennia (IPCC, 2021).
The ocean is warming because today the Earth is out of en-
ergy balance with anthropogenic climate forcing (Forster et
al., 2021; Hansen et al., 2011; von Schuckmann et al., 2016).
This Earth energy imbalance leads to an accumulation of heat
in the Earth system, from which the majority — about 90 % —
is stored in the global ocean. The rest is warming the con-
tinents, melting the ice in the frozen parts of the world, and
warming the atmosphere (von Schuckmann et al., 2020). In
other words: the ocean is our sentinel for monitoring the cur-
rent state and future perspectives of planetary warming and
is hence the fundamental indicator of high policy relevance
(Cheng et al., 2024; von Schuckmann et al., 2023). In ac-
cordance with climate models, this indicator also reveals that
Earth system heating is accelerating (Miniere et al., 2023;
Storto and Yang, 2024; Cheng et al., 2024).

Ocean warming has wide-reaching implications (Cheng et
al., 2022). For example, ocean warming contributes to about
40 % of the observed global mean sea level rise and alters
ocean currents (Gulev et al., 2021). It also indirectly alters
storm tracks (IPCC, 2018), increases ocean stratification (Li
et al., 2022), and can lead to changes in marine ecosystems
(Bindoff et al., 2019). Particularly, and together with ocean
acidification and deoxygenation, ocean warming can lead to
dramatic changes in ecosystem assemblages, biodiversity im-
pacts, population extinction, coral bleaching, infectious dis-
eases, and changes in animal behaviour (including reproduc-
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Figure 1. Annual global (90° N-90° S) mean sea surface temperature (bars) anomalies (relative to the 1991-2020 baseline) together with
pentadal (green line) values over the satellite record as derived from product ref. SST.3 in the Supplement over the period 1982-2023. The
green shaded envelope represents the 2o ensemble spread of pentadal values for three products (product ref. SST.1-SST.4). Colours on bars
indicate the positive (red, El Nifio), negative (blue, La Nifia), and neutral (grey) phases of the multivariate ENSO index (product ref. SST.5).

Table 1. Percentage of ocean surface affected by different sea surface temperature trends, for the whole considered areas, and when consid-
ering only the shallow waters (depth between 0 and 200 m) in the regions.

Region Selection of trend: surface tempera-

ture trend as compared to the global

Percentage of ocean surface (re-
lated to the considered region)

Percentage of ocean surface for
the shelf regions (depth O to

mean trend concerned by the selected trend 200 m deep) in the considered
area

Global ocean Negative trend 5% 1%

Global ocean Positive trend, lower than global 14 % 24 %
mean

Global ocean Trend equal to or lower than 2 times 40 % 40 %
the global mean

Global ocean Trend larger than 2 times the global 12 % 25 %
mean

Northern Trend larger than the global mean 75 % 78 %

Hemisphere

ocean

Southern Trend larger than the global mean 35% 32 %

Hemisphere

ocean

tion), as well as the redistribution of habitats (Garcia Molinos
et al., 2015; Gattuso et al., 2015; Ramirez et al., 2017).
Different research groups have developed products for
evaluating ocean heat content, which rely on different data
processing methods and bias corrections (Gulev et al., 2021;
Cheng et al., 2022). Albeit these different approaches,
those estimates agree on the fact that the global ocean
has been warming since about 1960 onwards (Fig. 3a).
The rate of ocean warming for the period 1960-2023
amounts to 0.58+0.1 Wm™2 (Fig. 3a). For the most re-
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cent 2 decades (2005-2023), the global mean ocean warm-
ing rate has increased as compared to the long-term change
(1.054+0.2Wm™2, Fig. 3a). This doubling of the global
ocean warming rate has been discussed in the recent litera-
ture (Cheng et al., 2022; Loeb et al., 2021; von Schuckmann
et al., 2023), also in the light of ocean warming acceleration
(Miniere et al., 2023). The steady increase in ocean warming
rates is consistent for different types of products, including
direct estimates from ocean in situ observations, indirect es-
timates from remote sensing, the direct estimate of net flux
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Sea surface temperature trends
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Figure 2. (a) Regional trend of sea surface temperature anomalies (rel. to the 1991-2020 baseline) over the period 1982-2023 as derived
from product ref. SST.3. (b) Same as (a) but representing areas where the regional trend is negative (blue), positive and lower (green) than
the global mean sea surface warming trend, equal to or exceeding up to 2 times (yellow) or exceeding 2 times the global mean sea surface
warming trend (see Fig. 1). The grey shading represents areas where the trend is statistically not significant.

at the top of the atmosphere from satellite data, and CMIP6
climate models (Cheng et al., 2024). Different drivers of this
change are discussed in the literature, including an attribu-
tion to a change in anthropogenic climate forcing (Hansen et
al., 2023; Kramer et al., 2021; Raghuraman et al., 2021), or
natural variability (Loeb et al., 2021).

Although ocean heat content (OHC) has increased dra-
matically at the surface, at depth, and over the entire wa-
ter column, the pattern of ocean warming has been non-
uniform (Cheng et al., 2022). The strongest upper 2000 m
ocean warming occurs in the Southern Ocean (60-35°S),
North Atlantic (20-50°N), and South Atlantic (60°S-0°)
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(Fig. 3b). The Southern Ocean domain (78-35°S) has been
the largest heat reservoir since 1960, accounting for ~ 36 %
of the global upper 2000 m OHC increase. This strong warm-
ing is associated with the absorption of anthropogenic heat
by the cold upwelling waters, which is then exported to the
northern flank of the Antarctic Circumpolar Current (ACC)
by the background overturning circulation. While the At-
lantic Ocean (35° S—64° N), Pacific Ocean (35° S—-60° N), In-
dian Ocean (35° S-30°N), and Arctic Ocean (65° N-90° N)
account for ~33 %, ~20%, ~9%, and ~2.5% of the
global 0-2000m OHC increase, respectively, the percent-
ages change with time and ocean area. If considering the

State Planet, 4-osr8, 1, 2024
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Figure 3. (a) Global mean ocean heat content (60° S—60° N) integrated from the surface down to 2000 m depth based on different products,
i.e. IAP (Cheng et al., 2017 (product ref. OHC.1); Levitus et al., 2012 (product ref. OHC.2); Miniere et al., 2023 (product ref. OHC.5),
GCOS (von Schuckmann et al., 2023) product ref. OHC.6) and the Copernicus Marine Ocean Monitoring Indicators (product ref. OHC.7
ensemble mean of reanalyses based on product ref. OHC.8). Shaded areas indicate the uncertainty for each method respectively. The trend
is estimated from product ref. 1-8 using a locally weighted scatterplot smoothing approach and amounts to 0.58 0.13 Wm~2 over the
period 1960-2023 and 1.05 £ 0.17Wm~2 over the period 2005-2023. (b) Regional trend over 1960-2023 for ocean heat content in the
upper 2000 m depth, in W m~2. Data updated from Cheng et al. (2017), product ref. OHC.1.

difference of ocean area, area-averaged warming is larger
in the Southern Ocean, Atlantic Ocean, and Mediterranean
Sea (ranging from 1.11-1.42 x 10° Jm~2) compared to the
other basins (0.49-0.70 x 10° Jm~2), indicating very inten-
sive warming mainly associated with the ocean circulations.
Some regions are cooling, in particular the subpolar Atlantic
Ocean extending from the near surface down to >800m
depth (Fig. 3b). The contrasting pattern of cooling (~ 50-
70°N) and warming (20-50°N) in the North Atlantic has
been associated with both circulation changes and local air—
sea interactions (Cheng et al., 2022). Other cooling regions
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include the northwest Pacific, southwest Pacific, and south-
west Indian oceans (Fig. 3b).

1.3 Sea level

Sea level is a global climate indicator of major interest
(GCOS/WMO) as its long-term change encompasses differ-
ent components of the Earth climate system in response to
anthropogenic and natural forcing (Cazenave and Moreira,
2022). According to IPCC (2019), global mean sea level is
rising, with acceleration in recent decades due to increasing
rates of ice loss from the Greenland and Antarctic ice sheets,
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as well as continued glacier mass loss and ocean thermal ex-
pansion. Global mean sea level increased by 0.20 m between
1901 and 2018, with an increasing rate of rise for which hu-
man influence has very likely been the main driver since at
least 1971 (IPCC, 2023).

The rise in sea levels has increased the adverse effects of
coastal floods, storms, and tropical cyclones and, hence, the
consequent losses and damages, increasing inhabitants’ and
infrastructure vulnerability and food security risk, in particu-
lar in low-lying areas and island states IPCC, 2022a). Adap-
tation and mitigation measures, such as the restoration of
mangroves and coastal wetlands, reduce the risks from sea
level rise (IPCC, 2022b). Part of the present-day global mean
sea level rise is driven by human-induced global warming,
which impacts oceans’ mass and volume. The ocean mass
change (also known as barystatic sea level change) refers
to the sea level change due to water mass redistribution be-
tween the ocean and land due to Greenland and Antarctica
ice sheets’ mass loss, the melting of glaciers and ice caps,
and changes in terrestrial water storage (Oppenheimer et al.,
2019). Change in ocean volume or density (also known as
steric sea level change) is due to temperature and salinity
changes regionally and, at global scale, to thermal expan-
sion of the ocean in response to warming (Oppenheimer et
al., 2019).

Assessment of the global mean sea level budget is key to
disentangling the causes of sea level change. The sea level
budget between 1993 and 2016 was been reported to have
been closed within uncertainties (e.g., WCRP Global Sea
Level Budget Group, 2018). Horwath et al. (2022) estimated
the closure of the sea level budget over two periods 1993—
2016 and 2003-2016. For the period 1993-2016, the thermal
expansion contributes with 38 % and the ocean mass com-
ponent with 57 % to the global mean sea level trend. Dur-
ing the second period, 2003-2016, ocean mass contributions
increased, mostly due to the contribution from the Green-
land ice sheet, accounting now for 66 % of global mean sea
level rise. The recent literature has reported the non-closure
of the sea level budget since 2016 (Chen et al., 2020); how-
ever, efforts have been made to identify the reasons. Barnoud
et al. (2021) identified that errors in Argo salinity measure-
ments are responsible for about 40 % of the non-closure;
however, part of the non-closure remains unexplained.

Since the early 1990s, sea level has been routinely moni-
tored by precision radar altimeters on board the still-growing
satellite constellation. Historically, sea level has also been
monitored by tide gauges installed along coastlines that mea-
sure relative sea level, which is the height of the water rela-
tive to the height of the land. Relative sea level change as
measured by tide gauges describes the variation in ocean
height in relation to the land at a specific location. Abso-
lute sea level as measured by satellites change refers to the
variation in the ocean’s height relative to the Earth’s centre,
irrespective of any changes in the adjacent land’s elevation.

https://doi.org/10.5194/sp-4-0sr8-1-2024

The Copernicus Marine Service altimetry-based global
mean sea level (GMSL) has been rising at a rate
of 3.4mmyr~! with an uncertainty that amounts to
4+0.3mmyr~! with a confidence level of 90 % (Guérou et
al., 2023) over the last 30 years (Fig. 4). The Coperni-
cus Marine Service sea level data have been adjusted for
the modelled glacial isostatic adjustment from Spada and
Melini (2019), with a global mean correction on the or-
der of —0.3mmyr~!. The altimetry-based sea level data
are affected by the TOPEX-A instrumental drift over the
period 1993-1998 (e.g., WCRP Global Sea Level Budget
Group, 2018). The correction applied is based on Ablain
et al. (2017). This empirical correction is based on a com-
parison with tide gauges, and it led to a drift correction of
about —1.0mmyr~! between January 1993 and July 1995
and +3.0 mm yr~! between August 1995 and February 1999,
with an uncertainty of 1.0 mm yr—! (WCRP Global Sea Level
Budget Group, 2018). Even though this correction was ini-
tially intended for the GMSL, Legeais et al. (2020) stated
that the anomaly of the onboard calibration correction is not
expected to have any spatial signature on the regional sea
level trends since it affects all measurements equally; as a
consequence, here we correct the regional sea level data.

Over 1993-2023, the GMSL has increased by more than
10cm (Fig. 4). The rate of rise for the first 10 years (1993—
2002) of the altimetry era is estimated to be 2.1 mmyr~!,
whereas the rate of rise for the last 10 years (2013-2023) is
estimated to be 4.3 mmyr~!, indicating an acceleration that
is broadly reported in the recent literature (e.g., Hamling-
ton et al., 2020). The acceleration is estimated to have been
0.11 4 0.06 mm yr=2 over the last 30 years (e.g., Guérou et
al., 2023).

Atregional scale, the sea level rise is not uniform. Whereas
a positive trend is observed in most regions, spots of negative
trends can also be observed (Fasullo and Nerem, 2018). As
shown in Fig. 5, 49 % of the altimetry-based observed ocean
is rising at a faster rate as compared to the global average
rate (3.4 mm yr_1 over 1993-2023). This is the case in the
Indian Ocean and in some regions of the Pacific and Atlantic
Ocean (yellow areas in Fig. 5b). A total of 23 % of the ocean
level has been rising faster than the rate over the last 10 years
(4.3 mm yr_l over mid-2013 to mid-2023), as for instance in
the eddy-rich regions in the North Atlantic and North Pacific
Ocean basins, in the western Pacific Ocean and Pacific is-
lands, and also in the Gulf of Mexico and some areas in the
South Atlantic and Indian Ocean basins (orange regions in
Fig. 5). Overall, most regions display positive trends over the
period 1993-2023 except in the eastern Pacific Ocean and,
for some spots, near the major Northern Hemisphere western
boundary currents (e.g. the Kuroshio current) (green areas in
Fig. 5b). In any case, internal variability has a significant im-
pact on global and regional sea level trend estimates (e.g.,
Moreira et al., 2021; Hamlington et al., 2019), and hence,
these spatial patterns are affected by the natural variability,
for example, the El Nifio—Southern Oscillation (ENSO).
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Figure 4. Global mean sea level (product ref. SL.1) time series from January 1993 to June 2023 (black curve) and its uncertainty envelope
(shaded). The seasonal cycle has been removed, and the data are low-pass-filtered (175 d cut-off) and adjusted for global GIA correction
of —0.3mm yr71 (Spada and Melini, 2019) and TOPEX-A instrumental drift (1993-1998, Ablain et al., 2017). The trend and acceleration
estimates for the whole altimetry era (1993-2023) are presented in the black box, trends for the first decade (1993-2002) and last decade
(June 2013—June 2023) in red, and trends for the middle period (2003—-June 2013) in blue.

Regionally, the mechanisms responsible for the variations
in sea level trends are dominated by ocean temperature and
salinity changes linked to steric effects and other processes
such as ocean mass redistribution by the ocean circulation,
atmospheric loading and changes in Earth gravity, Earth rota-
tion, and viscoelastic solid-Earth deformation (GRD; Stam-
mer et al., 2012). The latter is due to ongoing changes in the
solid Earth caused by past changes in land ice (glacial iso-
static adjustment, GIA) and by contemporary changes in the
mass of water stored on land as ice sheets, glaciers, and land
water storage (GRD sea level fingerprints) (Gregory et al.,
2019). While at regional scale, sea level trends are still dom-
inated by steric changes (Stammer et al., 2012), theoretical
studies predict that with accelerated land ice melt, GRD fin-
gerprints will become detectable (Tamisiea, 2011). An exam-
ple of sea level fingerprint is the area encircling the Green-
land ice sheet, which shows negative trends observed quite
well for the period 2002-2019, as a consequence of ice mass
melting (Coulson et al., 2022). Over 1993-2019, Prandi et
al. (2021) estimated the average local sea level trend uncer-
tainty to be 0.83 mmyr—!, with values ranging from 0.78 to

1.22mmyr !

1.4 The ocean in the cryosphere

The cryosphere (that is the frozen parts of the world)
and ocean are tightly interlinked, such as through major
Earth system global cycles (energy, water, carbon), sea level
change, or climate feedback processes (IPCC, 2019). For ex-
ample, evaporation from the ocean contributes to snowfall
that builds and sustains ice sheets and glaciers (Abram et
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al., 2019). A major fraction of global sea level rise is driven
by the mass loss from melting land ice (WCRP Global Sea
Level Budget Group, 2018), and ice sheets in Antarctica and
Greenland currently hold about 66 m of potential global sea
level rise (Fretwell et al., 2013). Ocean warming affects sea
ice, ice sheet, glacier, and ice-shelf stability in areas of direct
contact (Cai et al., 2023; Harrison et al., 2022; Naughten et
al., 2022; Turney et al., 2020; Ciraci et al., 2023; de Steur
et al., 2023; Wood et al., 2021). The injection of less dense
water into the ocean from melting processes in turn affects
ocean processes, hydrography, and circulation (Armitage et
al., 2020; Gunn et al., 2023; Rahmstorf et al., 2015; Golledge
et al., 2019). Also, ocean productivity in the polar areas is
triggered — amongst others — through biogeochemical pro-
cesses, such as through seasonal nutrient exchange from sea
ice and glaciers’ melt (Arrigo et al., 2017; Tagliabue et al.,
2017).

A major player for the ocean—cryosphere nexus is sea ice,
which is a thin and active system that triggers fluxes of heat,
water, and carbon and is hence a fundamental actor in phys-
ical and biogeochemical processes (IPCC, 2019). Besides its
role in affecting ocean circulation and processes (e.g., strati-
fication) as mentioned above, sea ice plays a prominent role
within the so called “ice—ocean—albedo feedback”, which is
a central process controlling high-latitude climate change: as
ice cover melts from unusual warming, the underlying ocean
is exposed to increasing absorption of shortwave radiation,
which results in amplified ocean warming (Jenkins and Dai,
2022, 2021; Kashiwase et al., 2017; Goosse et al., 2018).
Together with biogeochemical tracers, sea ice also harbours
various species at the base of the food chain, which plays a
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Figure 5. (a) Regional sea level trends from January 1993 to June 2023 (product ref. SL.2). (b) Shading map indicating the magnitude of the
rates of sea level rise, where blue depicts regions with negative sea level trends, green indicates areas where sea level is rising more slowly
than the altimetry-era global mean sea level rate of rise of 3.4 mm yr_l, yellow indicates locations where sea level is increasing at a range
between the global mean trend and 4.3 mm yr_l, and orange indicates regions where sea level is rising at a rate faster than 4.3 mm yr_l,

which is the global mean sea level trend estimate over the last 10 years (June 2013—June 2023). The data used are corrected for GIA (Spada

and Melini, 2019) and TOPEX-A drift (Ablain et al., 2017).

central role in the biological carbon pump and supports key
foraging species such as Arctic cod (Lannuzel et al., 2020).
Since about the 1980s, Arctic Sea ice area has decreased
by about 40 % (10 %) in September (March) from anthro-
pogenic warming, and in 2011-2020, annual average Arctic
sea ice area reached its lowest level since at least 1850 (IPCC,
2021). The Arctic is likely to be practically sea ice-free in
September at least once before 2050 under all scenarios con-
sidered in the recent IPCC report (IPCC, 2021), with sea ice
losses projected to begin in the European Arctic and proceed

https://doi.org/10.5194/sp-4-0sr8-1-2024

to the Pacific and western Arctic and then the central Arctic
(Jahn et al., 2024).

Sea ice is frozen seawater that floats on the ocean surface.
The sea ice extent indicator is defined as the area where at
least 15 % of the surface area is frozen (Fig. 6). Knowing
how the sea ice cover is changing is essential for monitor-
ing Arctic climate and has critical relevance for ecosystem
health; Arctic communities; and economy such as fisheries,
tourism, and transport (Meredith et al., 2019).

Since 1979, the Northern Hemisphere sea ice extent has
decreased at an annual rate of —0.50 #+0.02 x 10%km? per
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1979-2023 (red), shown together for the seasonal cycle in the year 2023 (green), and (b) time series of yearly average Northern Hemisphere
Sea ice extent. The change of sea ice extent over the period 1979-2023 is expressed as a trend in millions of square kilometres per decade
and is plotted with a dashed line in panel (b). Time series are based on satellite observations (SMMR, SSM/I, SSMIS) by EUMETSAT OSI
SAF with R&D input from ESA CCI (product ref. SI.1). Panel (2): (a) Seasonal Southern Hemisphere sea ice extent expressed in millions
of square kilometres averaged over the period 1979-2023 (red), shown together for the seasonal cycle in the year 2023 (green), and (b) time
series of yearly averaged Southern Hemisphere sea ice extent. The change of sea ice extent over the period 1979-2023 is expressed as a trend
in millions of square kilometres per decade and is plotted with a dashed line in panel (b). Time series are based on satellite observations
SMMR, SSM/1, SSMIS by EUMETSAT OSI SAF with R&D input from ESA CCI (product ref. SI.2). Panel (3): Arctic and Antarctic sea
ice extent between 1993 to 2023. The black line represents the year 2023. Time series estimated using GLORYS12V1 and GLO12 (product
ref. SI.3-4).

decade (—4.33% per decade) (Fig. 6). Loss of sea ice
extent during summer exceeds the loss observed during
winter periods: summer (September) sea ice extent loss
amounts to —0.80 & 0.06 x 10%km? per decade (—12.64 %
per decade), and winter (March) sea ice extent loss
amounts to —0.39 4 0.03 x 10°km? per decade (—2.55%
per decade). These values agree with those assessed in the
IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate (SROCC) (Meredith et al., 2019). Sea
ice extent in September 2012 saw to date a record mini-
mum Northern Hemisphere value since the beginning of the
satellite record, followed by September 2020. January and
February 2023 had the third-lowest values on record for these
months, and September 2023 had the fifth-lowest values.
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Sea surface temperature and sea ice surface temperatures
play a crucial role in the heat exchange between the ocean
and atmosphere and the sea ice growth and melt processes
in the Arctic and are important for forecast and predictions
(Meredith et al., 2019; Rasmussen et al., 2018). Combining
sea surface temperature and sea ice surface temperature is
identified as the most appropriate method for determining
the surface temperature of the Arctic while challenged by
the presence of complex interactions between water and sea
ice at different space scales and timescales (Minnett et al.,
2020; Nielsen-Englyst et al., 2023) (Fig. 7). Over the period
1982-2023, the cumulative trends exceed 2 °C for the great-
est part of the Arctic Ocean, with the largest trends to occur
in the northern Barents Sea, Kara Sea, Beaufort Sea, and the
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Eurasian part of the Arctic Ocean (Fig. 7b). Zero to slightly
negative trends are found in the North Atlantic part of the
Arctic Ocean. The combined sea and sea ice surface temper-
ature trend is 0.104 4 0.005°Cyr~!, which corresponds to
an increase of around 4.37 °C between 1982 and 2023.

For many years, i.e. from the beginning of the record up to
the year 2016, Antarctic sea ice increased (Parkinson, 2019)
(Fig. 6), despite continued global warming (IPCC, 2021) and
the projected decline by climate models (Fox-Kemper et al.,
2021). This overall increase in Antarctic sea ice could be al-
located to increasing regional sea ice concentrations in the
Ross and Weddell seas, which are on average only partly
compensated for by a decrease in ice concentrations in the
Bellingshausen Sea (Parkinson and Cavalieri, 2012; Lecomte
et al., 2017). These regional patterns of sea ice increase over
the period 1979-2016 have been linked to air-sea interac-
tions (i.e. wind, precipitation) (Holland and Kwok, 2012;
Haumann et al., 2014; Purich et al., 2016; Marsland and
Wolff, 2001; Liu et al., 2004; Liu and Curry, 2010), sea ice
advection or other internal ice—ocean processes (Haumann et
al., 2016; Abernathey et al., 2016; Polvani and Smith, 2013;
Zunz et al., 2013; Meehl et al., 2016), and the influence of
freshwater discharge from Antarctic meltwater at the ocean
and cryosphere nexus (Bintanja et al., 2013a; Pauling et al.,
2017; Bintanja et al., 2013b; Swart and Fyfe, 2013). In au-
tumn 2016, however, Antarctic sea ice experienced an un-
precedented rapid loss, and since then, it has remained in a
state of low sea ice, reaching record low levels in the years
2022 and 2023 (Gilbert and Holmes, 2024) (Fig. 6). Re-
cent studies highlight that ocean warming has played a role
in pushing Antarctic sea ice into this new low-extent state
(Zhang et al., 2023; Purich and Doddridge, 2023). Values
in 2023 are the lowest on record and amount to more than
1.5 x 10° km? below the pre-2000 levels (Fig. 6).

Monitoring change in sea ice extent globally allows for
identifying changes in Earth’s albedo sea ice feedback. The
Earth’s albedo, or its ability to reflect sunlight, is heavily in-
fluenced by the extent of ice cover on the planet’s surface.
And ice, with its high reflectivity, has a significant cooling
effect on the Earth’s climate by bouncing a substantial por-
tion of incoming solar radiation back into space. As global
ice cover decreases due to climate change, more sunlight is
absorbed by darker surfaces like water and land, potentially
leading to increased warming and altered weather patterns
and exacerbating global climate change (Abram et al., 2019).
Global sea ice extent in the polar regions — considering both
the Arctic and Antarctic areas together — was on average at
its lowest point in 2023 (Fig. 6), well below the 2020 and
2022 values. The drastic drop in global mean sea ice extent
in 2023 is caused by a combination of strong Arctic sea ice
melting during the Northern Hemisphere spring and the con-
current lack of Antarctic sea ice growth during the Southern
Hemisphere autumn. This global historical low sea ice extent
started in May and lasted until end of October, with total sea
ice cover between 20 and 22 x 10° km? over the entire period.
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1.5 Ocean acidification

The ocean plays a major role in the global carbon cycle, and
it is an important sink for anthropogenic CO,, moderating
climate change (Gruber et al., 2019). According to the recent
IPCC report, the ocean has taken up between 20 %—30 % of
total anthropogenic carbon dioxide emissions since the 1980s
(IPCC, 2019). Every year, the ocean absorbs about 25 % of
the carbon dioxide released to the atmosphere (Canadell et
al., 2021) by fossil fuel consumption, cement manufacturing,
and land use change. The ongoing uptake of CO, alters the
ocean carbonate system (i.e. lowers ocean pH) and threatens
marine ecosystems, as well as reliant human communities
(Doney et al., 2020). The decrease in ocean pH is referred to
as ocean acidification (e.g., Canadell et al., 2021).

Ocean acidification is one of the 10 targets of the Sus-
tainable Development Goal 14: Life Below Water (SG14.3 —
minimize and address the impacts of ocean acidification, in-
cluding through enhanced scientific cooperation at all levels)
of the United Nation’s 2030 Agenda for Sustainable Devel-
opment (UN, 2015). The Intergovernmental Oceanographic
Commission (IOC) of UNESCO is the custodian agency of
SDG 14 Target 3, gathering together average marine acid-
ity (pH) measured at an agreed suite of representative sam-
pling stations. It provides guidance on how to establish the
monitoring of ocean acidification by detailing which mea-
surements to take. The methodology follows the best prac-
tices established by the scientific community. It supports the
design of the most appropriate sampling strategy for a par-
ticular location and presents tools for the collection, quality
control, and reporting of the data (UN, 2023).

IPCC (2019) states that open-ocean surface pH has de-
clined by a very likely range of 0.017 to 0.027 pH units per
decade since the late 1980s, with the decline in surface ocean
pH very likely to have already emerged from background nat-
ural variability for more than 95 % of the ocean surface area.
Ocean acidification has spread deeper in the ocean, surpass-
ing 2000 m depth in the northern North Atlantic and in the
Southern Ocean (Canadell et al., 2021). At regional scale,
ocean acidification is not increasing uniformly: 47 % of the
sampled ocean is getting more acidic at a rate faster than the
global average, particularly in the Indian Ocean, the South-
ern Ocean, the eastern equatorial and northern tropical Pa-
cific Ocean, and some regions in the Atlantic Ocean (Fig. 8).
At global scales, the trends have shown a decrease of about
0.06 pH units (from 8.11 to 8.05) since 1985, corresponding
to an approximately 30 % increase in acidity (Fig. 9), a rate
of —0.017 £ 0.002 pH units per decade.

2 Ocean variability

2.1 El Nino—Southern Oscillation

The El Nifilo—Southern Oscillation (ENSO) is one of the most
important and well-studied natural climate variability phe-
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Figure 7. (a) Time series of monthly mean (turquoise line) and annual mean (blue line) of sea and sea ice surface temperature anomalies for

January 1982 to December 2023, relative to the 1991-2020 mean (product ref. SL.5). (b) Cumulative trends (i.e. the rate of change, °Cyr™ ",

1

scaled by the number of years, 42 years) in combined sea and sea ice surface temperature anomalies calculated from 1982 to 2023 for the

Arctic Ocean (product ref. S1.6).

nomena, originating from coupled ocean atmosphere inter-
actions in the Pacific Ocean and impacting Earth’s climate
globally through complex interaction between oceanic and
atmospheric processes (McPhaden et al., 2006; Timmermann
et al., 2018). ENSO is the dominant source of climate on
seasonal to multi-year timescales that originates in the trop-
ical Pacific Ocean, with alternating warming and cooling
phases — El Nifio and La Nifia, as well as neutral conditions.
It has major worldwide social and economic consequences
through its global-scale effects on atmospheric and oceanic
circulation, marine and terrestrial ecosystems, and other nat-
ural systems (McPhaden et al., 2020). For example, ENSO-
driven ocean temperature extremes, including marine heat-
waves, have been shown to result in coral bleaching, loss of
kelp forests, mass mortality of marine invertebrates, and geo-
graphical shifts of species due to heat stress (Holbrook et al.,
2020; Oliver et al., 2017, 2018; Cavole et al., 2016; Garrabou
et al., 2009). The recent IPCC assessment has concluded that
since the late 19th century, major modes of climate variabil-
ity such as ENSO have shown no sustained trends (Gulev
et al., 2021), as the detectability of a projected increase of
ENSO variability by climate models is hampered by the
strong influence of internal variability (Cai et al., 2021).
Several indices are used to monitor the state of ENSO
variability in the tropical Pacific. For instance, the Nifio
3.4 index (Trenberth and Stepaniak, 2001) measures sea
surface temperature anomalies averaged in the east-central
tropical Pacific (5°N-5°S, 170-120°W). An El Nifio (La
Nifia) event is declared when Nifio 3.4 SST remains above
4+0.4°C (below —0.4°C) for several months, while the
tropical Pacific also exhibits commonly associated atmo-
spheric change (Houghton and Wilson, 2020; Trenberth,
1997). Since 1998, five out of six La Nifia events lasted 2 to
3 years (Wang et al., 2023) (Fig. 10). Recently, multi-year
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La Nifia conditions persisted during 3 consecutive years,
2020, 2021 and 2022 (Fig. 10). This cold phase of ENSO
reverted in 2023, transitioning to neutral conditions during
boreal spring 2023 and then to El Nifio conditions in boreal
summer 2023 (WMO, 2023) (Fig. 10). During the year 2023,
intense ocean surface warming was also observed along
the coasts of Ecuador and Peru. Sea surface temperature
anomalies averaged in the coastal region Nifio 142 (10—
0° S, 90-80° W) remained above +2 °C for most of the year
(https://www.mercator-ocean.eu/actualites/record-high-sea-

surface-temperatures-north-atlantic-drop-in-phytoplankton-

el-nino-costal-el-nino/, last access: 11 September 2024).
Such coastal warming is referred to as a “coastal El Nifio”
that usually overlaps with El Nifio but can sometimes occur
independently (Hu et al., 2019; Gasparin et al., 2019). The
2023 coastal El Nifio surface warming in fact started a few
months before the start of the 2023 El Nifio.

2.2 Atlantic Meridional Overturning Circulation

The Meridional Overturning Circulation (MOC) plays a cen-
tral role in Earth’s climate because it ultimately transports
heat, freshwater, carbon, oxygen, and nutrients around the
globe. The MOC is driven by a complex interplay of ocean
currents, driven by the wind and water density differences, by
surface buoyancy and momentum (wind) fluxes, and by inte-
rior ocean mixing (Rhein et al., 2011). The upper and lower
branches of the MOC are connected via intense water mass
transformation processes through air—sea exchange mainly in
the subpolar and polar oceans. The recent literature has pre-
sented significant changes in the Southern Ocean since the
mid-1970s, with a broadening and strengthening of the up-
per overturning cell and a contraction and weakening of the
lower cell (Lee et al., 2023).
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(a) Global ocean surface pH trend
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Figure 8. (a) Global ocean surface pH trend (in pH unit per decade) computed over the period 1985-2022 (product ref. OA.1). Black
hatching shows the regions where pH trends are associated with the highest uncertainty estimates o (6>10 % | u|, i.e. o-to-u ratio greater
than 10 %). The 10 % threshold is chosen at the 90th confidence level of all ratio values computed across the global ocean. (b) Shading map
indicating the magnitude of the pH decrease rates from product ref. OA.1, where green indicates areas where pH is decreasing more slowly
than the global mean pH trend of —0.017 pH unit per decade, yellow indicates locations where pH is decreasing at a rate between the global
mean trend and —0.02 pH unit per decade, and orange indicates regions where pH is decreasing at rate faster than —0.02 pH unit per decade.

The Atlantic Meridional Overturning Circulation
(AMOC) is a major circulation system in the Atlantic Ocean
and plays a key role for the North Atlantic and global
climate (Volkov et al., 2023; Jackson et al., 2015). The
northward flow of high-salinity waters in the upper North
Atlantic Ocean and heat loss to the atmosphere are essential
for the formation of deep, dense waters at high latitudes
(Holliday et al., 2020). In the Northern Hemisphere the
northward transport is mainly via the Gulf Stream and North
Atlantic Current system, while the southward transport of
cold and dense water is via the Deep Western Boundary

https://doi.org/10.5194/sp-4-0sr8-1-2024

Current System. The AMOC components are monitored at a
number of latitudes across the Atlantic (Frajka-Williams et
al., 2019), with basin-wide arrays being the South Atlantic
Meridional Overturning Circulation (SAMOC) array at
34.5°S (subtropical South Atlantic), which ran in a pilot
phase from 2009 to 2010 and has routinely been run since
2013; the RAPID array (McCarthy et al., 2015; Smeed et al.,
2014) at 26.5°N (subtropical North Atlantic), in operation
since 2004; and the OSNAP array (OSNAP, 2023; Lozier
et al., 2019) at nominal 60°N (subpolar North Atlantic)
and operational since 2014. The AMOC estimates from the
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Figure 9. Time series of annual global mean surface sea water pH reported on a total scale over the period 1985-2022 and associated

uncertainties (range). Product ref. OA.2.
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Figure 10. Monthly ensemble mean (solid line) and spread (bars) of sea surface temperature anomalies (relative to the 1993-2014 climatol-
ogy) averaged over the NINO box 3.4 (5°S-5°N, 170-120° W). Product ref. OV.1 based on product ref. OHC.8 for the period 1993-2022
and extended up to December 2023 using product ref. SI.4 (using GLORYS2V4 (product ref. OHC.8) 19932014 as climatology).

arrays make use of moored instruments, ship and float data,
and data from satellites. Variability in the AMOC influences
global ocean heat content (OHC) and heat/freshwater trans-
port, global ocean carbon uptake, nutrient redistribution, and
sea level change (Fox-Kemper et al., 2021).

The 2014-2020 OSNAP observational period in the sub-
polar North Atlantic reveals robust seasonal variability
driven by the wintertime formation and export of dense wa-
ter and by the seasonally varying Ekman transport amplified
by the positive phase of the North Atlantic Oscillation (Fu
et al., 2023). While combining records from ocean reanaly-
ses (Jackson et al., 2018; Baker et al., 2022, 2023) and di-
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rect observations from the RAPID array (Moat et al., 2023)
monitoring of the AMOC can be established from 1993 on-
wards (Fig. 11). The results clearly visualize the challenge
of detecting any long-term change of AMOC as discussed
in Box 1, as records show large uncertainties and are domi-
nated by large interannual to decadal-scale variations over a
period that is too short to capture any eventual slowdown in
the AMOC strength.

https://doi.org/10.5194/sp-4-0sr8-1-2024



K. von Schuckmann et al.: The state of the global ocean

The AMOC has been identified as one of the tipping elements in the climate system with
various implications for Earth’s climate (Lenton et al., 2008; Boers, 2021; McKay et al.,
2022; Chen and Tung, 2023; Westen et al., 2024; Rahmstorf, S., 2024). According to the most
recent IPCC assessment, there is low confidence that the AMOC has declined during the 20th
century (Gulev et al., 2021), but it is projected to very likely weaken over the 21st century
for all emissions scenarios (IPCC, 2021). The assessment further states that an abrupt
collapse of the AMOC cannot be ruled out, which would very likely cause abrupt shifts in
regional weather patterns and water cycle, such as a southward shift in the tropical rain belt,
weakening of the African and Asian monsoons and strengthening of Southern Hemisphere
monsoons, and drying in Europe (IPCC, 2021).

However, scientific controversy prevails in published literature as it is difficult to quantify
the impact of anthropogenic warming on the AMOC due to its strong interannual to multi-
decadal fluctuations and short observational records that complicates the long-term trend
detection (Jackson et al., 2022; Zhu et al., 2023). For example, assessments show that there
is low confidence in reconstructed and modelled AMOC changes for the 20th century because
of their low agreement in quantitative trends (Fox-Kemper et al., 2021). Some studies have
found that the AMOC is slowing down, such as for example the analysis of proxy records
revealing that during recent decades, the AMOC reached its weakest point for more than a
thousand years (Caesar et al., 2021) - a result which is contradicted by the recent study of
(Chen and Tung, 2023). A more recent statistical-based study estimates a collapse of the
AMOC to occur around mid-century under the current scenario of future emissions
(Ditlevsen and Ditlevsen, 2023), as well as a recent study which discusses based on model
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results that AMOC is on tipping course (Westen et al., 2024).

Box 1. Did AMOC change?

3 Ocean extremes

3.1 Marine heatwaves

A marine heatwave (MHW) is commonly defined as a pe-
riod of at least 5 consecutive days of anomalously warm sea
surface temperatures exceeding the 90th climatological per-
centile threshold (Hobday et al., 2016). In other words, it is
seen as an extreme event during which a given region heats
way past its regular range of temperature variations. The reg-
ular range of variations is defined in practice over a reference
period (here 1993-2016), which is discussed as a sensible
choice (Amaya et al., 2023). Marine heatwaves are globally
observed and are emerging as important stressors to marine
ecosystems at the individual, collective, and community lev-
els, also including coral reefs and seagrass beds (Welch et
al., 2023; Smith et al., 2023; Wakelin et al., 2021; Marba and
Duarte, 2010). They can trigger the migration of species and
mass extinctions and lead to significant economic losses in
fisheries and aquaculture (Garrabou et al., 2022; Smith et al.,
2023; Oliver et al., 2019; Holbrook et al., 2022).

The frequency, duration, and intensity of marine heat-
waves have increased over the past decades under global
warming (Peal et al., 2023; Yao et al., 2022; Oliver et al.,
2019; IPCC, 2021). The fraction of the global ocean surface
that did not experience any MHW event over the year has in-
creased from about 50 % in the 1980s to about 80 % in the
most recent years (Fig. 12). The ocean surface fraction af-
fected by strong MHW events has doubled since 2008, from
about 20 % to 40 % in recent years, and severe and extreme

https://doi.org/10.5194/sp-4-0sr8-1-2024

marine heatwave events also show positive trends in terms
of surface extent over the same period. However, the posi-
tive trend of extreme marine heatwave events is dampened
when excluding sea-ice-covered regions from the computa-
tion (Fig. 12), while the impact on other marine heatwave
categories is minor (not shown). In these regions, the marine
heatwave detections may be less optimal and may require
further scientific evaluations and refinements both in terms
of sea surface temperature data (Vazquez-Cuervo et al., 2022;
Castro et al., 2023) and marine heatwave detection method-
ology (Hu et al., 2020; Huang et al., 2021). The yearly aver-
aged maximum duration of marine heatwave events doubled
between 2008 and 2023 (from 20 to about 40 d), while it was
relatively stable from 1982 to the mid-2000s (Fig. 12). The
global ocean surface fraction affected by marine heatwave
events lasting more than 1 month experienced a 5-fold in-
crease between the mid-2000s (about 12 %) and 2023 (55 %).
Similar results are obtained for the marine heatwave dura-
tions when excluding the sea-ice-covered regions.

These results also highlight the interannual variability of
marine heatwave events and the major role of climate drivers
such as ENSO, as larger fractions of the global ocean tend to
experience marine heatwave events during El Nifio years and
smaller regions during La Nifia periods (Oliver et al., 2019)
(Fig. 13). Larger fractions of the ocean were affected by
strong and severe marine heatwave events during the strong
El Nifio years (1982-1983, 1997-1998, 2010, 2015-2016),
and the yearly averaged maximum marine heatwave duration
was also larger for these years (Fig. 12).

State Planet, 4-0sr8, 1, 2024
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Figure 11. Temporal evolution of the Atlantic Meridional Overturning Circulation (AMOC) strength at 26.5° N obtained by integrating the
meridional transport at 26.5° N across the Atlantic basin (zonally) and then cumulatively integrating over depth. Its maximum value in depth
is then taken as the strength in Sverdrups (Sv=1 x 106 m3 s~1). The green line and shading (2 times the standard deviation) are based on
product ref. OV.2 computed from product ref. OHC.8. The black line shows the observational record from the RAPID array (Moat et al.,
2023). Panel (a) shows monthly mean values, and panel (b) shows interannual variations by applying a 12-month running mean.

In 2022, 74 % of the global ocean experienced a marine
heatwave, whatever its category, and large areas were af-
fected by strong (34 %) or even severe (7 %) and extreme
(5 %) marine heatwaves (Table 2). For 28 % of the ocean
surface, the maximum marine heatwave category detected in
2022 was moderate. These numbers are on the order of those
obtained by Peal et al. (2023). The most persistent and most
prominent feature for marine heatwaves, lasting over a period
of 6 months and longer, temporarily related to severe and ex-
treme categories, occurred in the Coral Sea, also affecting
waters off northeast Australia and the Melanesian Pacific is-
land states (Fig. 14). Marine heatwaves lasting more than 4
months in 2022 and reaching up to severe and extreme cat-
egories are reported for the central subtropical Pacific, the
South Atlantic, and the western Mediterranean Sea.

In 2023, 90 % of the global ocean surface was hit by at
least one marine heatwave event. This increase compared to
2022 is mainly due to evolving El Nifio conditions in winter
2023 and to particularly warm surface waters in the North

State Planet, 4-osr8, 1, 2024

Atlantic Ocean. For 26 % of the ocean surface, the maximum
marine heatwave category detected was moderate. Larger ar-
eas were affected by strong (43 %), severe (14 %), and ex-
treme (8 %) marine heatwaves. The regions that experienced
the most prominent marine heatwave events in 2023, lasting
more than 6 months and reaching up to severe and extreme
categories, include (Fig. 15) the following:

the tropical Pacific, driven by the emerging 2023-2024
El Nifio event;

off the coast of Peru and linked to the so-called “coastal
El Nifio”;

the northern tropical Atlantic Ocean;

the Southern Ocean poleward of 40° S, with large areas
of extreme category in the Atlantic and Pacific.

Areas where most prominent marine heatwaves lasted 3 to
6 months and reached up to extreme and severe categories
include the following:

https://doi.org/10.5194/sp-4-0sr8-1-2024
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Figure 12. (a) Percentage of global ocean surface where the maximum MHW category detected was moderate, strong, severe, or extreme
(Hobday et al., 2016), or there was no MHW. The dashed black line shows the same information for extreme categories when excluding sea
ice regions from the computation (see Fig. 14 for sea ice mask applied, minor impact for the other categories). These ocean fraction estimates
are done following the same method as Hobday et al. (2018). (b) Percentage of global ocean surface where the maximum MHW duration
was within a given period (lines) and yearly mean of maximum MHW durations (bars). The method of Hobday et al. (2016) is used and is
derived from the products ref. SST.1 and SST.2.
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Figure 13. Upper plot: globally averaged daily (light line) and annual (bold line) SST anomalies (reference period 1993-2016) from products
ref. SST.1 and SST.2. Bottom plot: the amplitude of the bars shows the percentage of global ocean surface where MHW were detected. The
colours of the bars correspond to the ENSO MEILv2 (multivariate) index values (red for El Nifio conditions when MEI > 0.5, blue for La
Nifia conditions when MEI < —0.5, and grey for neutral conditions when MEI is between —0.5 and 0.5 (product ref. SST.5)). The evaluation
of this MHW indicator is done following the method of Hobday et al. (2016) and is derived from the products ref. SST.1 and SST.2.
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Table 2. Percentage of global ocean surface hit by a MHW event in 2022 and 2023, depending on the category. The second column provides
the same information but considering the global ocean without the sea-ice-covered regions (see Fig. 14 for sea ice mask applied). These
ocean fraction estimates are done following the same method as Hobday et al. (2018).

Percentage of ocean surface hit by a MHW Global ‘ Global — sea ice excluded
2022 2023 ‘ 2022 2023

All categories 74% 90% | 73% 92%

Max category 1 (moderate) 28% 26% | 30% 29%

Max category 2 (strong) 3% 43% | 36% 46%

Max category 3 (severe) 7 % 14% | 6% 14 %

Max category 4 or higher (extreme)

5% 8% 1% 2%

(a) _ Marine Heat Waves - Maximum category reached in 2022 - OSTIA product
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(Category)

(b) Marine Heat Waves - Maximum duration in 2022 - OSTIA product
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Figure 14. (a) Maximum category of marine heatwave reached in
2022 and (b) maximum duration of marine heatwave events in 2022.
The evaluation of this indicator is done following the method of
Hobday et al. (2016) and is derived from the products ref. SST.1 and
SST.2. The areas shaded in grey correspond to regions where there
was at least 1d of sea ice (sea ice concentration larger than 0.15 in
the product ref. SST.1) during the climatological reference period
(1993-2016), implying potentially less accurate marine heatwave
detections (see text for more details).

— the southern tropical Indian Ocean;

— the northern tropical Atlantic up to the coast of Europe
and central America;

State Planet, 4-osr8, 1, 2024
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Figure 15. Same as Fig. 14 but for the year 2023.

— the central northern subpolar Pacific;

— the Arctic Ocean, particularly in the Kara, Beaufort,
Lincoln, and East Siberian seas.

3.2 Wind extremes over the ocean

Extreme wind speeds over the ocean surface and associated
stormy weather and rough surface ocean conditions are par-
ticularly destructive natural hazards. In coastal regions, the
combination of high waves and storm surges can lead to
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(a) ASCAT-A 99th wind speed percentile climatology (2007-2022)
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Figure 16. The 99th wind speed percentile. (a) Climatology (2007-2022) and (b) annual trend (2007-2023). Areas with trends significant
above the 90 % confidence level are outlined in black. Computation at 0.25° resolution from product ref. Wind.1 (ASCAT-A) following the
method of Giesen and Stoffelen (2022). The black box shows the region used in Fig. 17.

flooding, coastline erosion, coastal water quality degrada-
tion, and ecosystem destructions (Sopkin et al., 2014; Harley
et al., 2017; Amores et al., 2020; Wetz and Yoskowitz, 2013;
Gonzélez-De Zayas et al., 2021; Bonnington et al., 2023;
Patrick et al., 2022; Alvarez-Fanjul et al., 2022; Giesen et
al., 2021). Massive rainfall associated with storms can result
in inundation and landslides (Negri et al., 2005). The increas-
ing demographic pressure in coastal regions can increase the
risks and vulnerability of populations if disaster risk miti-
gation and reduction practices (e.g. shelters, early-warning
systems) are not adopted (Peduzzi et al., 2012; Alvarez-
Fanjul et al., 2022; She and Nielsen, 2019; de Alfonso et

https://doi.org/10.5194/sp-4-0sr8-1-2024

al., 2020; Giesen et al., 2021). Many economic sectors such
as tourism, ports, and fishing can be impacted by extreme
coastal events (Verschuur et al., 2023; Kunze, 2021; de Al-
fonso et al., 2020). In the open ocean, storms and associated
high winds and waves can affect offshore infrastructures as
well as marine traffic (Mattu et al., 2022; Lam and Lassa,
2016; Staneva et al., 2020).

Regions that have been affected by the most extreme ocean
surface wind speeds (>22ms~!) over the 20072022 period
(Fig. 16) (Sampe and Xie, 2007; Giesen and Stoffelen, 2022)
include the central and subpolar parts of the North Atlantic
Ocean, especially the southern tip and eastern coast of Green-
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Figure 17. (a) Monthly wind speed 99th percentile from product ref. Wind.1 (ASCAT-A) between latitudes 10° S and 10° N in the western
tropical Ocean (see box in Fig. 16), presented as a function of longitude and time. The horizontal grey lines show the longitudes 150° E and
150° W. (b) Time series of monthly and yearly wind speed 99th percentile from product ref. Wind.1 (ASCAT-A) for the box shown in Fig. 16.
The shading corresponds to the ENSO MEI.v2 index values: red for El Nifio conditions when MEI > 0.5, blue for La Nifia conditions when

MEI < —0.5, and white for neutral conditions (product ref. SST.5).

land. It should be noted that the values given here are repre-
sentative of the 1 % highest ocean surface wind speeds (i.e.
reported at 99th percentiles). The North Pacific Ocean and
the Southern Ocean are the other regions with the strongest
extreme wind speeds (>20ms~!) in the long-term climatol-
ogy. Extreme wind speeds reach about 13 ms~! in the tropi-
cal bands (10-30° of latitude), while they are low (around or
below 10ms~!) in the equatorial band (0-10° of latitude).

Typically, tropical cyclones are too short-lived and small
to be reflected in these numbers. Further analyses are re-
quired to address the role of tropical cyclones in affecting
the climatological extreme wind speeds, particularly with re-
spect to the percentile method used, and the sensitivity to the
spatial resolution of the wind products. Local patterns of ex-
treme wind speeds can also be noted, such as in the Gulf of
Tehuantepec, off Mexico in the Pacific Ocean (e.g., Zamudio
et al., 2006; Romero-Centeno et al., 2003).

Results from the recent IPCC sixth assessment report re-
flect the challenge of attributing long-term change in wind
extremes explained by the interplay with natural variability,
the length of the time series, and uncertainties in the esti-
mates. For example, past changes of maximum wind speeds
and other measures of dynamical intensity of extratropical
cyclones have been assessed with low confidence (Senevi-
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ratne et al., 2021). The report also assessed that tropical and
extra-tropical cyclone tracks tend to migrate poleward as the
tropical climate zones expand with global warming. How-
ever, while none of the observed changes of Category 3-5
tropical cyclone instances can be explained by natural vari-
ability alone, their observed increase is assessed as likely.
With respect to future evolution, there is high confidence
that the proportion of intense tropical cyclones, average peak
tropical cyclones wind speeds, and peak wind speeds of the
most intense tropical cyclones will increase on the global
scale with increasing global warming (Seneviratne et al.,
2021).

Due to their spatial and temporal abundance, satellite in-
struments excel in the monitoring of long-term trends in
ocean surface wind extremes (Fig. 16). Analysing long-term
trends of extreme wind speeds has revealed several areas of
significant increase in extreme wind speeds over the past
16 years (2007-2023) (Fig. 16). However, results are iden-
tified to be highly sensitive to methodological approaches
and trend periods, challenging the attribution of long-term
change and the interplay of natural variability (Giesen and
Stoffelen, 2022). The main regions where positive trend
features remain stable when addressing different timescales
(2007-2020 versus 2007-2023) are the central North At-
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lantic Ocean Gulf Stream region (30-35° N, 30-50° W), the
subpolar Atlantic region between Greenland and south of
Iceland, the Bering Sea and the northwest Pacific Ocean,
the subtropical Indian Ocean, and the sector of Southern
Ocean located south of Australia (Fig. 16b). Decreases in
wind speed extremes are also stable in the Tasman Front.
However, further analysis, specific detection, and attribution
studies, as well as longer time series, are needed in the future
for the identification of long-term trends in observed extreme
wind speeds.

In some areas, interannual variability such as large-scale
climate-mode teleconnections (El Nifio—Southern Oscilla-
tion/ENSO, North Atlantic Oscillation, Pacific Decadal Os-
cillation, Indian Ocean Dipole, etc.) are known to affect ex-
treme winds and storminess regimes (Krueger et al., 2019;
Roose et al., 2023; Yuan and Cao, 2013; and Lin et al., 2020),
as well as their consecutive impacts on the ocean (waves,
storm surges) (Holbrook et al., 2020). For example, wind
speed extremes in the western tropical Pacific are closely
correlated with the ENSO index (Fig. 17), with more ex-
treme wind speeds and longer-lived tropical cyclones during
El Nifio years (Hu et al., 2017; Eusebi Borzelli and Carniel,
2023; Camargo and Sobel, 2005). A positive trend is detected
in this region for the period 2007-2020 in Giesen and Stof-
felen (2022) because ENSO was negative (La Nifia) in the
early years (2007-2008) and positive (El Nifio) in 2015-2016
and 2019 (Fig. 17). La Nifa conditions in 2020-2022 al-
most entirely dampened the positive trend in the region when
adding the years 2021-2023 to the extreme wind speed trend
estimation (Fig. 16b).

In summary, our results indicate that extreme wind speeds
over the ocean show regional patterns but likewise are highly
variable in space and time. Satellite-based wind observa-
tions are the major source for analysis and statistics of ex-
treme wind events over the ocean. In particular, for extreme
winds, however, the satellite-based estimates are question-
able, and, hence, regular and state-of-the-art in situ moni-
toring of winds is and will be essential to inform national
meteorological and oceanographic services and feed their
early-warning systems with accurate and robust information
(see for example the WMO Regional Climate Centers: CSIS,
2024).
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